Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 933
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 631(8022): 843-849, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39020180

RESUMEN

Ubiquitination pathways have crucial roles in protein homeostasis, signalling and innate immunity1-3. In these pathways, an enzymatic cascade of E1, E2 and E3 proteins conjugates ubiquitin or a ubiquitin-like protein (Ubl) to target-protein lysine residues4. Bacteria encode ancient relatives of E1 and Ubl proteins involved in sulfur metabolism5,6, but these proteins do not mediate Ubl-target conjugation, leaving open the question of whether bacteria can perform ubiquitination-like protein conjugation. Here we demonstrate that a bacterial operon associated with phage defence islands encodes a complete ubiquitination pathway. Two structures of a bacterial E1-E2-Ubl complex reveal striking architectural parallels with canonical eukaryotic ubiquitination machinery. The bacterial E1 possesses an amino-terminal inactive adenylation domain and a carboxy-terminal active adenylation domain with a mobile α-helical insertion containing the catalytic cysteine (CYS domain). One structure reveals a pre-reaction state with the bacterial Ubl C terminus positioned for adenylation, and a second structure mimics an E1-to-E2 transthioesterification state with the E1 CYS domain adjacent to the bound E2. We show that a deubiquitinase in the same pathway preprocesses the bacterial Ubl, exposing its C-terminal glycine for adenylation. Finally, we show that the bacterial E1 and E2 collaborate to conjugate Ubl to target-protein lysine residues. Together, these data reveal that bacteria possess bona fide ubiquitination systems with strong mechanistic and architectural parallels to canonical eukaryotic ubiquitination pathways, suggesting that these pathways arose first in bacteria.


Asunto(s)
Proteínas Bacterianas , Bacteriófagos , Escherichia , Enzimas Activadoras de Ubiquitina , Enzimas Ubiquitina-Conjugadoras , Ubiquitinación , Ubiquitinas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Bacteriófagos/química , Bacteriófagos/inmunología , Bacteriófagos/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/química , Cisteína/metabolismo , Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/metabolismo , Escherichia/química , Escherichia/enzimología , Escherichia/inmunología , Escherichia/virología , Evolución Molecular , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Operón/genética , Dominios Proteicos , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitinas/metabolismo , Ubiquitinas/química , Eucariontes/enzimología , Eucariontes/metabolismo
2.
Anal Chem ; 96(24): 9826-9833, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38829542

RESUMEN

The rapid and sensitive detection of Escherichia/Shigella genera is crucial for human disease and health. This study introduces a novel series of piezoelectric quartz crystal (SPQC) sensors for detecting Escherichia/Shigella genera. In this innovative biosensor, we propose a new target and novel method for synthesizing long-range DNA. The method relies on the amplification of two DNA probes, referred to as H and P amplification (HPA), resulting in the products of long-range DNA named Sn. The new target was screened from the 16S rRNA gene and utilized as a biomarker. The SPQC sensor operates as follows: the Capture probe is modified on the electrodes. In the presence of a Displace probe and target, the Capture can form a complex with the Displace probe. The resulting complex hybridizes with Sn, bridging the gap between the electrodes. Finally, silver wires are deposited between the electrodes using Sn as a template. This process results in a sensitive response from the SPQC. The detection limit of the SPQC sensor is 1 CFU/mL, and the detection time is within 2 h. This sensor would be of great benefit for food safety monitoring and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Escherichia , Técnicas Biosensibles/métodos , Escherichia/genética , ADN Bacteriano/análisis , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Electrodos , Cuarzo/química , Límite de Detección , Sondas de ADN/química , Humanos , Técnicas de Amplificación de Ácido Nucleico , Técnicas Electroquímicas
3.
Brain Behav Immun ; 118: 136-148, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428648

RESUMEN

Gut microbiota communicates bidirectionally with the brain through the nervous, immune, and endocrine systems of the gut. In our preliminary study, the fecal microbiota of volunteers with mild cognitive impairment (Fmci) exhibited a higher abundance of Escherichia fergusonii (NK2001), Veillonella infantium (NK2002), and Enterococcus faecium (NK2003) populations compared with those of healthy volunteers. Therefore, we examined the effects of Fmci, NK2001 (gram-negative), NK2002 (gram-negative-like), and NK2003 (gram-positive) on cognitive impairment-like behavior, neuroinflammation, and colitis in mice with or without antibiotics. Fmci transplantation increased cognitive impairment-like behavior, hippocampal tumor necrosis factor (TNF)-α expression, and the size of toll-like receptor (TLR)4+Iba1+, TLR2+Iba1+, and NF-κB+Iba1+ cell populations independent of antibiotic treatment. Oral gavage of NK2001, NK2002, or NK2003, which induced TNF-α expression in Caco-2 cells, significantly increased cognitive impairment-like behavior and hippocampal TNF-α expression and Iba1-positive cell populations and decreased brain-derived neurotrophic factor (BDNF) expression in mice. Celiac vagotomy significantly decreased NK2001- or NK2002-induced cognitive impairment-like behavior and hippocampal Iba1+ cell population and TNF-α expression and increased NK2001- or NK2002-suppressed hippocampal BDNF expression. However, NK2003-induced cognitive impairment-like behavior and hippocampal Iba1+ cell population and TNF-α expression were partially, but not significantly, attenuated by celiac vagotomy. Furthermore, celiac vagotomy did not affect NK2001-, NK2002-, or NK2003-induced lipopolysaccharide (LPS) levels in the blood and feces and TNF-α expression and NF-κB-positive cell population in the colon. In conclusion, LPS-producing NK2001 and NK2002 and LPS-nonproducing NK2003 may induce NF-κB-mediated neuroinflammation through the translocation of byproducts such as LPS and peptidoglycan into the brain through gut-blood/vagus nerve-brain and gut-blood-brain pathways, respectively, resulting in cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Escherichia , Lipopolisacáridos , Veillonella , Humanos , Ratones , Animales , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Factor Neurotrófico Derivado del Encéfalo , Factor de Necrosis Tumoral alfa/metabolismo , Enfermedades Neuroinflamatorias , Células CACO-2 , Nervio Vago , Ratones Endogámicos C57BL
4.
Protein Expr Purif ; 223: 106551, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38997076

RESUMEN

Hyaluronidase, an enzyme that degrades hyaluronic acid (HA), is utilized in clinical settings to facilitate drug diffusion, manage extravasation, and address injection-related complications linked to HA-based fillers. In this study, a novel hyaluronate lyase EsHyl8 was cloned, expressed, and characterized from Escherichia sp. A99 of human intestinal origin. This lyase belongs to polysaccharide lyase (PL) family 8, and showed specific activity towards HA. EsHyl8 exhibited optimal degradation at 40 °C and pH 6.0. EsHyl8 exhibited a high activity of 376.32 U/mg among hyaluronidases of human gut microorganisms. EsHyl8 was stable at 37 °C and remained about 70 % of activity after incubation at 37 °C for 24 h, demonstrating excellent thermostability. The activity of EsHyl8 was inhibited by Zn2+, Cu2+, Fe3+, and SDS. EsHyl8 was an endo-type enzyme whose end-product was unsaturated disaccharide. This study enhances our understanding of hyaluronidases from human gut microorganisms.


Asunto(s)
Clonación Molecular , Polisacárido Liasas , Polisacárido Liasas/genética , Polisacárido Liasas/química , Polisacárido Liasas/aislamiento & purificación , Polisacárido Liasas/metabolismo , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Escherichia/genética , Escherichia/enzimología , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Estabilidad de Enzimas , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Concentración de Iones de Hidrógeno , Especificidad por Sustrato
5.
Int Microbiol ; 27(1): 155-166, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37247084

RESUMEN

Escherichia coli is one of the most common causes of urinary tract infections. However, a recent upsurge in antibiotic resistance among uropathogenic E. coli (UPEC) strains has provided an impetus to explore alternative antibacterial compounds to encounter this major issue. In this study, a lytic phage against multi-drug-resistant (MDR) UPEC strains was isolated and characterized. The isolated Escherichia phage FS2B of class Caudoviricetes exhibited high lytic activity, high burst size, and a small adsorption and latent time. The phage also exhibited a broad host range and inactivated 69.8% of the collected clinical, and 64.8% of the identified MDR UPEC strains. Further, whole genome sequencing revealed that the phage was 77,407 bp long, having a dsDNA with 124 coding regions. Annotation studies confirmed that the phage carried all the genes associated with lytic life cycle and all lysogeny related genes were absent in the genome. Further, synergism studies of the phage FS2B with antibiotics demonstrated a positive synergistic association among them. The present study therefore concluded that the phage FS2B possesses an immense potential to serve as a novel candidate for treatment of MDR UPEC strains.


Asunto(s)
Bacteriófagos , Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Escherichia coli Uropatógena/genética , Bacteriófagos/genética , Escherichia , Infecciones Urinarias/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Escherichia coli/microbiología
6.
Microbiol Immunol ; 68(3): 115-121, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244192

RESUMEN

This study aimed to reveal the prevalence of heat-labile enterotoxin (LT) gene-positive Escherichia fergusonii in retail chicken meat and genetically characterize these strains. E. fergusonii harboring LT gene was isolated from 6 out of 60 (10%) retail chicken samples in Okinawa, Japan. Whole-genome sequencing analysis revealed that LT gene-positive E. fergusonii from chicken meat and feces contain an IncFII plasmid harboring elt1AB, and suggested to spread clonally to retail chicken through fecal contamination. Additionally, it was found that these strains harbor multidrug-resistant genes on their plasmids. Their pathogenicity and continuous monitoring are required for confirmation.


Asunto(s)
Enterotoxinas , Escherichia coli , Escherichia , Animales , Escherichia coli/genética , Enterotoxinas/genética , Pollos , Japón , Calor , Plásmidos/genética , Carne , Antibacterianos/farmacología , Farmacorresistencia Bacteriana
7.
BMC Biol ; 21(1): 81, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055811

RESUMEN

BACKGROUND: Within the genus Escherichia, several monophyletic clades other than the traditionally defined species have been identified. Of these, cryptic clade I (C-I) appears to represent a subspecies of E. coli, but due to the difficulty in distinguishing it from E. coli sensu stricto, the population structure and virulence potential of C-I are unclear. RESULTS: We defined a set of true C-I strains (n = 465), including a Shiga toxin 2a (Stx2a)-producing isolate from a patient with bloody diarrhoea identified by the retrospective analyses using a C-I-specific detection system. Through genomic analysis of 804 isolates from the cryptic clades, including these C-I strains, we revealed their global population structures and the marked accumulation of virulence genes and antimicrobial resistance genes in C-I. In particular, half of the C-I strains contained hallmark virulence genes of Stx-producing E. coli (STEC) and/or enterotoxigenic E. coli (ETEC). We also found the host-specific distributions of virulence genes, which suggests bovines as the potential source of human infections caused by STEC- and STEC/ETEC hybrid-type C-I strains, as is known in STEC. CONCLUSIONS: Our findings demonstrate the emergence of human intestinal pathogens in C-I lineage. To better understand the features of C-I strains and their infections, extensive surveillance and larger population studies of C-I strains are needed. The C-I-specific detection system developed in this study will be a powerful tool for screening and identifying C-I strains.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Humanos , Animales , Bovinos , Escherichia coli Shiga-Toxigénica/genética , Escherichia , Estudios Retrospectivos , Virulencia/genética , Proteínas de Escherichia coli/genética
8.
Environ Monit Assess ; 196(5): 412, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565815

RESUMEN

Cadmium (Cd) is a highly toxic metal that frequently contaminates our environment. In this study, the bioflocculant-producing, cadmium-resistant Escherichia fergusonii ZSF-15 was characterized from Paharang drain, Bawa Chak, Faisalabad, Pakistan. The Cd-resistant E. fergusonii was used to determine the bioflocculant production using yeast-peptone-glycerol medium (pH 6.5) supplemented with 50 mg L-1 of Cd. The culture was incubated for 3 days at 37 °C in a rotary shaker at 120 rpm. The fermentation broth was centrifuged at 4000 g for 10 min after the incubation period. The maximum flocculating activity by isolate ZSF-15 was found to be 71.4% after 48 h of incubation. According to the Fourier transform infrared spectroscopy analysis, the bioflocculant produced by strain ZSF-15 was comprised of typical polysaccharide and protein, i.e. hydroxyl, carboxyl, and amino groups. The strain ZSF-15 exhibited bioflocculant activity at range of pH (6-8) and temperature (35-50℃). Maximum flocculation activity (i.e. 71%) was observed at 47℃, whereas 63% flocculation production was observed at pH 8. In the present study, antioxidant enzyme profile of ZSF-15 was also evaluated under cadmium stress. A significant increase in antioxidant enzymes including superoxide dismutase (118%) and ascorbate peroxidase (28%) was observed, whereas contents of catalase (86%), glutathione transferase (13%), and peroxidase (8%) were decreased as compared to control.


Asunto(s)
Antioxidantes , Cadmio , Escherichia , Cadmio/toxicidad , Concentración de Iones de Hidrógeno , Monitoreo del Ambiente , Floculación
9.
Genome Res ; 30(1): 138-152, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31809257

RESUMEN

EnteroBase is an integrated software environment that supports the identification of global population structures within several bacterial genera that include pathogens. Here, we provide an overview of how EnteroBase works, what it can do, and its future prospects. EnteroBase has currently assembled more than 300,000 genomes from Illumina short reads from Salmonella, Escherichia, Yersinia, Clostridioides, Helicobacter, Vibrio, and Moraxella and genotyped those assemblies by core genome multilocus sequence typing (cgMLST). Hierarchical clustering of cgMLST sequence types allows mapping a new bacterial strain to predefined population structures at multiple levels of resolution within a few hours after uploading its short reads. Case Study 1 illustrates this process for local transmissions of Salmonella enterica serovar Agama between neighboring social groups of badgers and humans. EnteroBase also supports single nucleotide polymorphism (SNP) calls from both genomic assemblies and after extraction from metagenomic sequences, as illustrated by Case Study 2 which summarizes the microevolution of Yersinia pestis over the last 5000 years of pandemic plague. EnteroBase can also provide a global overview of the genomic diversity within an entire genus, as illustrated by Case Study 3, which presents a novel, global overview of the population structure of all of the species, subspecies, and clades within Escherichia.


Asunto(s)
Bases de Datos Genéticas , Escherichia/genética , Genoma Bacteriano , Genómica , Salmonella/genética , Yersinia pestis/genética , Escherichia/clasificación , Genómica/métodos , Metagenoma , Metagenómica/métodos , Tipificación de Secuencias Multilocus , Filogenia , Salmonella/clasificación , Programas Informáticos , Interfaz Usuario-Computador , Navegador Web , Yersinia pestis/clasificación
10.
Virus Genes ; 59(4): 613-623, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37170002

RESUMEN

As the problem of bacterial resistance becomes serious day by day, bacteriophage as a potential antibiotic substitute attracts more and more researchers' interest. In this study, Escherichia phage Kayfunavirus CY1 was isolated from sewage samples of swine farms and identified by biological characteristics and genomic analysis. One-step growth curve showed that the latent period of phage CY1 was about 10 min, the outbreak period was about 40 min and the burst size was 35 PFU/cell. Analysis of the electron microscopy and whole-genome sequence showed that the phage should be classified as a member of the Autographiviridae family, Studiervirinae subfamily. Genomic analysis of phage CY1 (GenBank accession no. OM937123) revealed a genome size of 39,173 bp with an average GC content of 50.51% and 46 coding domain sequences (CDSs). Eight CDSs encoding proteins involved in the replication and regulation of phage DNA, 2 CDSs encoded lysis proteins, 14 CDSs encoded packing and morphogenesis proteins. Genomic and proteomic analysis identified no sequence that encoded for virulence factor, integration-related proteins or antibiotic resistance genes. In summary, morphological and genomics suggest that phage CY1 is more likely a novel Escherichia phage.


Asunto(s)
Bacteriófagos , Caudovirales , Porcinos , Animales , Proteómica , Genoma Viral/genética , Genómica , Bacteriófagos/genética , Caudovirales/genética , Escherichia/genética
11.
BMC Infect Dis ; 23(1): 35, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670360

RESUMEN

BACKGROUND: Escherichia fergusonii is a rare opportunistic pathogen in humans and animals, especially with biofilm. METHODS: In one case, E. fergusonii with biofilm was detected in the bile, and silver staining was used to prove it had biofilm. The clinical characteristics and drug susceptibility of eight cases of E. fergusonii retrieved from the literature were also summarized. RESULTS: This is a case of E. fergusonii with biofilm, which has not been reported in China. The 8 cases retrieved from the literature did not specify whether they had biofilm, but we analyzed their clinical characteristics and drug susceptibility. All patients were treated with antimicrobial drugs. 8 cases showed sensitivity to piperacillin/tazobactam and imipenem in 6 cases (75%), but poor sensitivity to levofloxacin and ciprofloxacin. CONCLUSION: The silver staining method proved biofilm in this case, which is the first case of E. fergusonii with biofilm in China.


Asunto(s)
Antibacterianos , Antiinfecciosos , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia , Biopelículas , Pruebas de Sensibilidad Microbiana
12.
Nucleic Acids Res ; 49(19): 11257-11273, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34657954

RESUMEN

Bacteria have evolved a multitude of systems to prevent invasion by bacteriophages and other mobile genetic elements. Comparative genomics suggests that genes encoding bacterial defence mechanisms are often clustered in 'defence islands', providing a concerted level of protection against a wider range of attackers. However, there is a comparative paucity of information on functional interplay between multiple defence systems. Here, we have functionally characterised a defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a suite of thirty environmentally-isolated coliphages, we demonstrate multi-layered and robust phage protection provided by a plasmid-encoded defence island that expresses both a type I BREX system and the novel GmrSD-family type IV DNA modification-dependent restriction enzyme, BrxU. We present the structure of BrxU to 2.12 Å, the first structure of the GmrSD family of enzymes, and show that BrxU can utilise all common nucleotides and a wide selection of metals to cleave a range of modified DNAs. Additionally, BrxU undergoes a multi-step reaction cycle instigated by an unexpected ATP-dependent shift from an intertwined dimer to monomers. This direct evidence that bacterial defence islands can mediate complementary layers of phage protection enhances our understanding of the ever-expanding nature of phage-bacterial interactions.


Asunto(s)
Proteínas Bacterianas/química , Colifagos/genética , Enzimas de Restricción-Modificación del ADN/química , Escherichia coli/genética , Escherichia/genética , Plásmidos/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Colifagos/metabolismo , Cristalografía por Rayos X , Enzimas de Restricción-Modificación del ADN/genética , Enzimas de Restricción-Modificación del ADN/metabolismo , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , Escherichia/metabolismo , Escherichia/virología , Escherichia coli/metabolismo , Escherichia coli/virología , Expresión Génica , Islas Genómicas , Genómica/métodos , Modelos Moleculares , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
13.
J Am Soc Nephrol ; 33(12): 2276-2292, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36041791

RESUMEN

BACKGROUND: Gut dysbiosis is postulated to participate in the pathogenesis of IgA nephropathy (IgAN). However, the key bacterial taxa closely associated with IgAN onset and treatment response have not been identified. METHODS: We recruited 127 patients with IgAN who were treatment naive and 127 matched healthy controls (HCs) who were randomly divided into discovery and validation cohorts to investigate the characteristics of their gut microbiota and establish a bacterial diagnosis model for IgAN. A separate cohort of 56 patients and HCs was investigated to assess crossregional validation. A further 40 patients with primary membranous nephropathy (MN) were enrolled to probe disease-specific validation. A subgroup of 77 patients was prospectively followed to further dissect the association between alterations in gut microbiota and treatment response after 6 months of immunosuppressive therapy. Fecal microbiota samples were collected from all participants and analyzed using 16S ribosomal RNA sequencing. RESULTS: Decreased α-diversity (Shannon, P=0.03), altered microbial composition (Adonis, P=0.0001), and a striking expansion of the taxonomic chain Proteobacteria-Gammaproteobacteria-Enterobacteriales-Enterobacteriaceae-Escherichia-Shigella (all P<0.001) were observed in patients with IgAN who were treatment naive, which reversed only in patients who achieved clinical remission after 6 months of immunosuppressive therapy. Importantly, seven operational taxa units, of which Escherichia-Shigella contributed the most, were determined to be the optimal bacterial classifier of IgAN (AUC=0.8635, 0.8551, 0.8026 in discovery, validation, and cross-regional validation sets, respectively), but did not effectively distinguish patients with IgAN versus those with MN (AUC=0.6183). Bacterial function prediction further verified enrichment of the shigellosis infection pathway in IgAN. CONCLUSION: Gut dysbiosis, characterized by a striking expansion of genus Escherichia-Shigella, is a hallmark of patients with IgAN and may serve as a promising diagnostic biomarker and therapeutic target for IgAN. Further studies are warranted to investigate the potential contribution of Escherichia-Shigella in IgAN pathogenesis.


Asunto(s)
Glomerulonefritis por IGA , Terapia de Inmunosupresión , Shigella , Humanos , Bacterias , Disbiosis , Escherichia , Glomerulonefritis por IGA/genética
14.
J Appl Microbiol ; 132(3): 2121-2130, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34735750

RESUMEN

AIMS: Escherichia albertii is an emerging diarrheagenic pathogen causing food- and water-borne infection in humans. However, no selective enrichment broths for E. albertii have ever been reported. In this study, we tested several basal media, selective supplements and culture conditions which enabled selective enrichment of E. albertii. METHODS AND RESULTS: We developed a selective enrichment broth, novobiocin-cefixime-tellurite supplemented modified tryptic soy broth (NCT-mTSB). NCT-mTSB supported the growth of 22 E. albertii strains, while inhibited growth of other Enterobacteriaceae at 37°C, except for Escherichia coli and Shigella spp. Enrichment of E. albertii was improved further by growth at 44°C, a temperature that suppresses growth of several strains of E. coli/Shigella. Combined use of NCT-mTSB with XR-DH-agar, xylose-rhamnose supplemented deoxycholate hydrogen sulphide agar, enabled isolation of E. albertii when at least 1 CFU of the bacterium was present per gram of chicken meat. This level of enrichment was superior to those obtained using buffered peptone water, modified-EC broth, or mTSB (with novobiocin). CONCLUSIONS: Novobiocin-cefixime-tellurite supplemented modified tryptic soy broth enabled effective enrichment of E. albertii from poultry samples and was helpful for isolation of this bacterium. SIGNIFICANCE AND IMPACT OF STUDY: To our knowledge, this is the first report of selective enrichment of E. albertii from poultry samples.


Asunto(s)
Medios de Cultivo , Escherichia/aislamiento & purificación , Novobiocina , Aves de Corral , Animales , Caseínas , Cefixima , Microbiología de Alimentos , Novobiocina/farmacología , Aves de Corral/microbiología , Hidrolisados de Proteína , Telurio
15.
Foodborne Pathog Dis ; 19(12): 823-829, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36322900

RESUMEN

Escherichia albertii is an emerging enteropathogen. Several foodborne outbreaks of E. albertii have been reported in Japan; however, foods associated with most outbreaks remain unidentified. Therefore, polymerase chain reaction (PCR) assays detecting E. albertii specifically and sensitively are required. Primers and probe for real-time PCR assays targeting E. albertii-specific gene (EA-rtPCR) was designed. With 74 strains, including 43 E. albertii strains and several of its close relatives, EA-rtPCR specifically amplified E. albertii; therefore, the sensitivity of EA-rtPCR was then evaluated. The detection limits were 2.8 and 2.0-3.2 log colony-forming unit (CFU)/mL for E. albertii culture and enriched chicken culture inoculated with the pathogen, respectively. In addition, E. albertii was detected from 25 g of chicken meat inoculated with 0.1 log CFU of the pathogen by EA-rtPCR. The detection of E. albertii from chicken meat by EA-rtPCR was also evaluated by comparing with the nested-PCR assay, and 28 retail chicken meat and 193 dissected body parts from 21 chicken carcass were tested. One and three chicken meat were positive in the nested-PCR assay and EA-rtPCR, respectively. Fourteen carcasses had at least one body part that was positive for EA-rtPCR, and 36 and 48 samples were positive for the nested-PCR assay and EA-rtPCR, respectively. A total of 37 strains of E. albertii were isolated from seven PCR-positive samples obtained from six chicken carcass. All E. albertii isolates harbored eae gene, and were classified as E. albertii O-genotype (EAOg)3 or EAOg4 by EAO-genotyping. The EA-rtPCR developed in this study has potential to improve E. albertii detection in food and advance research on E. albertii infection.


Asunto(s)
Pollos , Escherichia , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa , Escherichia/genética , Carne
16.
Microbiology (Reading) ; 167(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34698627

RESUMEN

Bacterial small RNAs (sRNAs) are important regulators of gene expression; however, the impact of natural mutations on sRNA functions has not been studied extensively. Here we show that the sRNA MgrR contains a unique 53 bp insertion in Escherichia fergusonii, a close relative of Escherichia coli and Salmonella enterica. The insertion is a repetitive extragenic palindromic (REP) sequence that could block transcription, but full-length MgrR is produced in E. fergusonii, showing that the insertion has not affected sRNA production. Additionally, despite containing the large insertion, the sRNA appears to be functional because deletion of mgrR made E. fergusonii more susceptible to H2O2. The molecular details of MgrR's roles in H2O2defence are yet to be defined, but our results suggest that having an alternative function allowed the sRNA to be retained in E. fergusonii despite it sustaining a large, potentially disruptive mutation.


Asunto(s)
Escherichia/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Escherichia/clasificación , Escherichia/metabolismo , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Magnesio/metabolismo , Mutación , Filogenia , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo
17.
Biochem Biophys Res Commun ; 557: 288-293, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33894416

RESUMEN

Glycosomal malate dehydrogenase from Trypanosoma cruzi (tcgMDH) catalyzes the oxidation/reduction of malate/oxaloacetate, a crucial step of the glycolytic process occurring in the glycosome of the human parasite. Inhibition of tcgMDH is considered a druggable trait for the development of trypanocidal drugs. Sequence comparison of MDHs from different organisms revealed a distinct insertion of a prolin rich 9-mer (62-KLPPVPRDP-70) in tcgMDH as compared to other eukaryotic MDHs. Crystal structure of tcgMDH is solved here at 2.6 Å resolution with Rwork/Rfree values of 0.206/0.216. The tcgMDH forms homo-dimer with the solvation free energy (ΔGo) gain of -9.77 kcal/mol. The dimeric form is also confirmed in solution by biochemical assays, chemical-crosslinking and dynamic light scattering. The inserted 9-mer adopts a structure of a solvent accessible loop in the vicinity of NAD+ binding site. The distinct sequence and structural feature of tcgMDH, revealed in the present report, provides an anchor point for the development of inhibitors specific for tcgMDH, possible trypanocidal agents of the future.


Asunto(s)
Malato Deshidrogenasa/química , Trypanosoma cruzi/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Dispersión Dinámica de Luz , Escherichia/metabolismo , Malato Deshidrogenasa/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteínas Recombinantes , Alineación de Secuencia , Trypanosoma cruzi/química , Trypanosoma cruzi/enzimología
18.
Mol Syst Biol ; 16(7): e9464, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32633465

RESUMEN

Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.


Asunto(s)
Arabidopsis/metabolismo , Lisina/química , Acetiltransferasas N-Terminal/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/genética , Plastidios/metabolismo , Acetilación , Arabidopsis/enzimología , Arabidopsis/genética , Cloroplastos/enzimología , Cloroplastos/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Epigenoma , Escherichia/genética , Escherichia/metabolismo , Técnicas de Inactivación de Genes , Genoma de Planta , Técnicas In Vitro , Acetiltransferasas N-Terminal/química , Acetiltransferasas N-Terminal/genética , Péptidos/química , Péptidos/genética , Filogenia , Proteínas de Plantas/genética , Plastidios/enzimología , Proteínas Recombinantes , Espectrometría de Masas en Tándem
19.
Microb Pathog ; 150: 104688, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33307120

RESUMEN

Multidrug resistance due to the expression of extended spectrum ß-lactamases (ESBLs) by bacterial pathogens is an alarming health concern with huge socio-economic burden. Here, 102 bacterial isolates from Wastewater treatment plants (WTPs) were screened for resistance to different antibiotics. Kirby-Bauer method and phenotypic disc confirmatory test confirmed the prevalence of 20 ESBLs. Polymerase chain reaction-based detection confirmed 11 blaCTX-M positive bacterial isolates. Genotyping of bacterial isolates by 16S rRNA gene sequencing showed the dissemination of blaCTX-M in Escherichia fergusonii, Escherichia coli, Shigella sp., Kluyvera georgiana and Enterobacter sp. Amongst Kluyvera georgiana isolates, two were harboring blaCTX-M-152. The 3D model of CTX-M-152 protein was generated using SwissProt and characterized by Ramachandran plot and SAVES. A library of natural compounds was screened to identify novel CTX-M-152 inhibitor(s). High-throughput virtual screening (HTVS), standard precision (SP) and extra precision (XP) docking led to the identification of five natural compounds (Naringin dihydrochalcone, Salvianolic acid B, Inositol, Guanosine and Ellagic acid) capable of binding to active site of CTX-M-152. Futher, characterization by MM-GBSA (Molecular Mechanism General Born Surface Area), and ADMET (Adsorption, Distribution, Metabolism, Excretion and Toxicity) showed that Ellagic acid was the most potent inhibitor of CTX-M-152. Molecular dynamics simulation also confirmed that Ellagic acid form a stable complex with CTX-M-152. The ability of Ellagic acid to inhibit growth of bacteria harboring CTX-M-152 was confirmed by MIC (Minimum Inhibitory Concentration; broth dilution method) and Zone of Inhibition (ZOI) studies with respect to Cefotaxime. The identification of a novel inhibitor of CTX-M-152 from a natural source holds promise for employment in the control of bacterial infections.


Asunto(s)
Antibacterianos , beta-Lactamasas , Antibacterianos/farmacología , Simulación por Computador , Escherichia , Kluyvera , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S/genética , beta-Lactamasas/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-33406029

RESUMEN

The genus Escherichia comprises five species and at least five lineages currently not assigned to any species, termed 'Escherichia cryptic clades'. We isolated an Escherichia strain from an international traveller and resolved the complete DNA sequence of the chromosome and an IncI multidrug resistance plasmid using Illumina and Nanopore whole-genome sequencing (WGS). Strain OPT1704T can be differentiated from existing Escherichia species using biochemical (VITEK2) and genomic tests [average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH)]. Phylogenetic analysis based on alignment of 16S rRNA sequences and 682 concatenated core genes showed similar results. Our analysis further revealed that strain OPT1704T falls within Escherichia cryptic clade IV and is closely related to cryptic clade III. Combining our analyses with publicly available WGS data of cryptic clades III and IV from Enterobase confirmed the close relationship between clades III and IV (>96 % interclade ANI), warranting assignment of both clades to the same novel species. We propose Escherichia ruysiae sp. nov. as a novel species, encompassing Escherichia cryptic clades III and IV (type strain OPT1704T=NCCB 100732T=NCTC 14359T).


Asunto(s)
Escherichia/clasificación , Heces/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Escherichia/aislamiento & purificación , Genes Bacterianos , Humanos , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Viaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA