RESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that results from many diverse genetic causes. Although therapeutics specifically targeting known causal mutations may rescue individual types of ALS, these approaches cannot treat most cases since they have unknown genetic etiology. Thus, there is a pressing need for therapeutic strategies that rescue multiple forms of ALS. Here, we show that pharmacological inhibition of PIKFYVE kinase activates an unconventional protein clearance mechanism involving exocytosis of aggregation-prone proteins. Reducing PIKFYVE activity ameliorates ALS pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of ALS including C9ORF72, TARDBP, FUS, and sporadic. These findings highlight a potential approach for mitigating ALS pathogenesis that does not require stimulating macroautophagy or the ubiquitin-proteosome system.
Asunto(s)
Esclerosis Amiotrófica Lateral , Fosfatidilinositol 3-Quinasas , Animales , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras , Mutación , Proteína FUS de Unión a ARN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Modelos Animales de EnfermedadRESUMEN
Amyotrophic lateral sclerosis (ALS) is a progressive, adult onset neurodegenerative disease that is always fatal. The history of ALS drug discovery is fraught with many stops and starts. It took 22 years after the FDA approval of the anti-excitotoxic drug Riluzole before another drug was found to be effective in altering ALS progression: the anti-oxidant Edaravone.
Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Antipirina/análogos & derivados , Aprobación de Drogas , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Antipirina/uso terapéutico , Edaravona , Humanos , Riluzol/uso terapéuticoRESUMEN
Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Ratones , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Cisteína/genética , Mutación , Superóxido Dismutasa/genética , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genéticaRESUMEN
The enzyme cyclic GMP-AMP synthase (cGAS) is a key sensor for detecting misplaced double-stranded DNA (dsDNA) of genomic, mitochondrial, and microbial origin. It synthesizes 2'3'-cGAMP, which in turn activates the stimulator of interferon genes pathway, leading to the initiation of innate immune responses. Here, we identified Listerin as a negative regulator of cGAS-mediated innate immune response. We found that Listerin interacts with cGAS on endosomes and promotes its K63-linked ubiquitination through recruitment of the E3 ligase TRIM27. The polyubiquitinated cGAS is then recognized by the endosomal sorting complexes required for transport machinery and sorted into endosomes for degradation. Listerin deficiency enhances the innate antiviral response to herpes simplex virus 1 infection. Genetic deletion of Listerin also deteriorates the neuroinflammation and the ALS disease progress in an ALS mice model; overexpression of Listerin can robustly ameliorate disease progression in ALS mice. Thus, our work uncovers a mechanism for cGAS regulation and suggests that Listerin may be a promising therapeutic target for ALS disease.
Asunto(s)
Esclerosis Amiotrófica Lateral , Ubiquitina-Proteína Ligasas , Animales , Ratones , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/inmunología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Inmunidad Innata/genética , Nucleotidiltransferasas/metabolismo , Proteolisis , Transducción de Señal/fisiología , Modelos Animales de Enfermedad , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Mitochondrial involvement in neurodegenerative diseases is widespread and multifactorial. Targeting mitochondrial pathology is therefore of interest. The recent development of bioactive molecules that modulate mitochondrial dynamics (fusion, fission and motility) offers a new therapeutic approach for neurodegenerative diseases with either indirect or direct mitochondrial involvement. Here, we asked: (1) Can enhanced mitochondrial fusion and motility improve secondary mitochondrial pathology in superoxide dismutase1 (SOD1) mutant amyotrophic lateral sclerosis (ALS)? And: (2) What is the impact of enhancing mitochondria fitness on in vivo manifestations of SOD1 mutant ALS? We observed that small molecule mitofusin activators corrected mitochondrial fragmentation, depolarization and dysmotility in genetically diverse ALS patient reprogrammed motor neurons and fibroblasts, and in motor neurons, sensory neurons and fibroblasts from SOD1 G93A mice. Continuous, but not intermittent, pharmacologic mitofusin activation delayed phenotype progression and lethality in SOD1 G93A mice, reducing neuron loss and improving neuromuscular connectivity. Mechanistically, mitofusin activation increased mitochondrial motility, fitness and residency within neuromuscular synapses; reduced mitochondrial reactive oxygen species production; and diminished apoptosis in SOD1 mutant neurons. These benefits were accompanied by improved mitochondrial respiratory coupling, despite characteristic SOD1 mutant ALS-associated downregulation of mitochondrial respiratory complexes. Targeting mitochondrial dysdynamism is a promising approach to alleviate pathology caused by secondary mitochondrial dysfunction in some neurodegenerative diseases.
Asunto(s)
Esclerosis Amiotrófica Lateral , Ratones , Animales , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Superóxidos/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Ratones Transgénicos , Neuronas Motoras/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Progresión de la Enfermedad , Modelos Animales de EnfermedadRESUMEN
BACKGROUND: The intrathecally administered antisense oligonucleotide tofersen reduces synthesis of the superoxide dismutase 1 (SOD1) protein and is being studied in patients with amyotrophic lateral sclerosis (ALS) associated with mutations in SOD1 (SOD1 ALS). METHODS: In this phase 3 trial, we randomly assigned adults with SOD1 ALS in a 2:1 ratio to receive eight doses of tofersen (100 mg) or placebo over a period of 24 weeks. The primary end point was the change from baseline to week 28 in the total score on the ALS Functional Rating Scale-Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) among participants predicted to have faster-progressing disease. Secondary end points included changes in the total concentration of SOD1 protein in cerebrospinal fluid (CSF), in the concentration of neurofilament light chains in plasma, in slow vital capacity, and in handheld dynamometry in 16 muscles. A combined analysis of the randomized component of the trial and its open-label extension at 52 weeks compared the results in participants who started tofersen at trial entry (early-start cohort) with those in participants who switched from placebo to the drug at week 28 (delayed-start cohort). RESULTS: A total of 72 participants received tofersen (39 predicted to have faster progression), and 36 received placebo (21 predicted to have faster progression). Tofersen led to greater reductions in concentrations of SOD1 in CSF and of neurofilament light chains in plasma than placebo. In the faster-progression subgroup (primary analysis), the change to week 28 in the ALSFRS-R score was -6.98 with tofersen and -8.14 with placebo (difference, 1.2 points; 95% confidence interval [CI], -3.2 to 5.5; P = 0.97). Results for secondary clinical end points did not differ significantly between the two groups. A total of 95 participants (88%) entered the open-label extension. At 52 weeks, the change in the ALSFRS-R score was -6.0 in the early-start cohort and -9.5 in the delayed-start cohort (difference, 3.5 points; 95% CI, 0.4 to 6.7); non-multiplicity-adjusted differences favoring early-start tofersen were seen for other end points. Lumbar puncture-related adverse events were common. Neurologic serious adverse events occurred in 7% of tofersen recipients. CONCLUSIONS: In persons with SOD1 ALS, tofersen reduced concentrations of SOD1 in CSF and of neurofilament light chains in plasma over 28 weeks but did not improve clinical end points and was associated with adverse events. The potential effects of earlier as compared with delayed initiation of tofersen are being further evaluated in the extension phase. (Funded by Biogen; VALOR and OLE ClinicalTrials.gov numbers, NCT02623699 and NCT03070119; EudraCT numbers, 2015-004098-33 and 2016-003225-41.).
Asunto(s)
Esclerosis Amiotrófica Lateral , Oligonucleótidos Antisentido , Superóxido Dismutasa-1 , Adulto , Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Método Doble Ciego , Humanos , Inyecciones Espinales , Proteínas de Neurofilamentos/sangre , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Recuperación de la Función/efectos de los fármacos , Superóxido Dismutasa-1/líquido cefalorraquídeo , Superóxido Dismutasa-1/genéticaRESUMEN
OBJECTIVE: To explore whether the utility of neurofilament light chain (NfL), as a biomarker to aid amyotrophic lateral sclerosis (ALS) therapy development, would be enhanced by obtaining formal qualification from the US Food and Drug Administration for a defined context-of-use. METHODS: Consensus discussion among academic, industry, and patient advocacy group representatives. RESULTS: A wealth of scientific evidence supports the use of NfL as a prognostic, response, and potential safety biomarker in the broad ALS population, and as a risk/susceptibility biomarker among the subset of SOD1 pathogenic variant carriers. Although NfL has not yet been formally qualified for any of these contexts-of-use, the US Food and Drug Administration has provided accelerated approval for an SOD1-lowering antisense oligonucleotide, based partially on the recognition that a reduction in NfL is reasonably likely to predict a clinical benefit. INTERPRETATION: The increasing incorporation of NfL into ALS therapy development plans provides evidence that its utility-as a prognostic, response, risk/susceptibility, and/or safety biomarker-is already widely accepted by the community. The willingness of the US Food and Drug Administration to base regulatory decisions on rigorous peer-reviewed data-absent formal qualification, leads us to conclude that formal qualification, despite some benefits, is not essential for ongoing and future use of NfL as a tool to aid ALS therapy development. Although the balance of considerations for and against seeking NfL biomarker qualification will undoubtedly vary across different diseases and contexts-of-use, the robustness of the published data and careful deliberations of the ALS community may offer valuable insights for other disease communities grappling with the same issues. ANN NEUROL 2024;95:211-216.
Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Superóxido Dismutasa-1 , Filamentos Intermedios , Biomarcadores , Pronóstico , Proteínas de NeurofilamentosRESUMEN
Apilimod dimesylate is a first-in-class phosphoinositide kinase, FYVE-type zinc finger-containing (PIKfyve) inhibitor with a favourable clinical safety profile and has demonstrated activity in preclinical C9orf72 and TDP-43 amyotrophic lateral sclerosis (ALS) models. In this ALS clinical trial, the safety, tolerability, CNS penetrance and modulation of pharmacodynamic target engagement biomarkers were evaluated. This phase 2a, randomized, double-blind, placebo-controlled, biomarker-end-point clinical trial was conducted in four US centres (ClinicalTrials.gov NCT05163886). Participants with C9orf72 repeat expansions were randomly assigned (2:1) to receive twice-daily oral treatment with 125 mg apilimod dimesylate capsules or matching placebo for 12 weeks, followed by a 12-week open-label extension. Safety was measured as the occurrence of treatment-emergent or serious adverse events attributable to the study drug and tolerability at trial completion or treatment over 12 weeks. Changes from baseline in plasma and CSF and concentrations of apilimod dimesylate and its active metabolites and of pharmacodynamic biomarkers of PIKfyve inhibition [soluble glycoprotein nonmetastatic melanoma protein B (sGPNMB) upregulation] and disease-specific CNS target engagement [poly(GP)] were measured. Between 16 December 2021 and 7 July 2022, 15 eligible participants were enrolled. There were no drug-related serious adverse events reported in the trial. Fourteen (93%) participants completed the double-blind period with 99% dose compliance [n = 9 (90%) apilimod dimesylate; n = 5 (100%) placebo]. At Week 12, apilimod dimesylate was measurable in CSF at 1.63 ng/ml [standard deviation (SD): 0.937]. At Week 12, apilimod dimesylate increased plasma sGPNMB by >2.5-fold (P < 0.001), indicating PIKfyve inhibition, and lowered CSF poly(GP) protein levels by 73% (P < 0.001), indicating CNS tissue-level proof of mechanism. Apilimod dimesylate met prespecified key safety and biomarker end-points in this phase 2a trial and demonstrated CNS penetrance and pharmacodynamic target engagement. Apilimod dimesylate was observed to result in the greatest reduction in CSF poly(GP) levels observed to date in C9orf72 clinical trials.
Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Humanos , Masculino , Femenino , Persona de Mediana Edad , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Método Doble Ciego , Adulto , Anciano , Proteína C9orf72/genética , Pirazoles/uso terapéutico , Pirazoles/farmacocinética , Resultado del Tratamiento , Biomarcadores/sangre , Hidrazonas , Morfolinas , PirimidinasRESUMEN
The disassembly of the neuromuscular junction (NMJ) is an early event in amyotrophic lateral sclerosis (ALS), ultimately leading to motor dysfunction and lethal respiratory paralysis. The hexanucleotide GGGGCC repeat expansion in the C9orf72 gene is the most common genetic mutation, and the dipeptide repeat (DPR) proteins have been shown to cause neurodegeneration. While no drugs can treat ALS patients efficiently, new treatment strategies are urgently needed. Here, we report that a MuSK agonist antibody alleviates poly-PR-induced NMJ deficits in C9orf72-ALS mice. The HB9-PRF/F mice, which express poly-PR proteins in motor neurons, exhibited impaired motor behavior and NMJ deficits. Mechanistically, poly-PR proteins interacted with Agrin to disrupt the interaction between Agrin and Lrp4, leading to attenuated activation of MuSK. Treatment with a MuSK agonist antibody rescued NMJ deficits, and extended the lifespan of C9orf72-ALS mice. Moreover, impaired NMJ transmission was observed in C9orf72-ALS patients. These findings identify the mechanism by which poly-PR proteins attenuate MuSK activation and NMJ transmission, highlighting the potential of promoting MuSK activation with an agonist antibody as a therapeutic strategy to protect NMJ function and prolong the lifespan of ALS patients.
Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Modelos Animales de Enfermedad , Unión Neuromuscular , Proteínas Tirosina Quinasas Receptoras , Animales , Unión Neuromuscular/metabolismo , Unión Neuromuscular/efectos de los fármacos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Humanos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Longevidad/efectos de los fármacos , Neuronas Motoras/metabolismo , Neuronas Motoras/efectos de los fármacos , Agrina/metabolismo , Agrina/genética , Ratones Transgénicos , Anticuerpos/farmacología , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas Relacionadas con Receptor de LDL/genéticaRESUMEN
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases with no effective cure. GGGGCC repeat expansion in C9orf72 is the most common genetic cause of both ALS and FTD. A key pathological feature of C9orf72 related ALS/FTD is the presence of abnormal dipeptide repeat proteins translated from GGGGCC repeat expansion, including poly Glycine-Arginine (GR). In this study, we observed that (GR)50 conferred significant mitochondria damage and cytotoxicity. Metformin, the most widely used clinical drug, successfully relieved (GR)50 induced mitochondrial damage and inhibited (GR)50 related cytotoxicity. Further research revealed metformin effectively restored mitochondrial function by upregulating AKT phosphorylation in (GR)50 expressed cells. Taken together, our results indicated restoring mitochondrial function with metformin may be a rational therapeutic strategy to reduce poly(GR) toxicity in C9orf72 ALS/FTD patients.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Fosforilación , DipéptidosRESUMEN
As persistent elevation of transforming growth factor-ß (TGF-ß) promotes fibrosis of muscles and joints and accelerates disease progression in amyotrophic lateral sclerosis (ALS), we investigated whether inhibition of TGF-ß would be effective against both exacerbations. The effects of TGF-ß and its inhibitor on myoblasts and fibroblasts were tested in vitro and confirmed in vivo, and the dual action of a TGF-ß inhibitor in ameliorating the pathogenic role of TGF-ß in ALS mice was identified. In the peripheral neuromuscular system, fibrosis in the muscles and joint cavities induced by excessive TGF-ß causes joint contracture and muscular degeneration, which leads to motor dysfunction. In an ALS mouse model, an increase in TGF-ß in the central nervous system (CNS), consistent with astrocyte activity, was associated with M1 microglial activity and pro-inflammatory conditions, as well as with neuronal cell death. Treatment with the TGF-ß inhibitor halofuginone could prevent musculoskeletal fibrosis, resulting in the alleviation of joint contracture and delay of motor deterioration in ALS mice. Halofuginone could also reduce glial cell-induced neuroinflammation and neuronal apoptosis. These dual therapeutic effects on both the neuromuscular system and the CNS were observed from the beginning to the end stages of ALS; as a result, treatment with a TGF-ß inhibitor from the early stage of disease delayed the time of symptom exacerbation in ALS mice, which led to prolonged survival.
Asunto(s)
Esclerosis Amiotrófica Lateral , Contractura , Factor de Crecimiento Transformador beta , Animales , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Contractura/tratamiento farmacológico , Contractura/prevención & control , Ratones Transgénicos , Masculino , Ratones Endogámicos C57BL , Piperidinas/farmacología , Piperidinas/uso terapéutico , HumanosRESUMEN
Hyperphosphorylated TAR DNA-binding protein 43 (TDP-43) aggregates in the cytoplasm of neurons is the neuropathological hallmark of amyotrophic lateral sclerosis (ALS) and a group of neurodegenerative diseases collectively referred to as TDP-43 proteinopathies that includes frontotemporal dementia, Alzheimer's disease, and limbic onset age-related TDP-43 encephalopathy. The mechanism of TDP-43 phosphorylation is poorly understood. Previously we reported casein kinase 1 epsilon gene (CSNK1E gene encoding CK1ε protein) as being tightly correlated with phosphorylated TDP-43 (pTDP-43) pathology. Here we pursued studies to investigate in cellular models and in vitro how CK1ε and CK1δ (a closely related family sub-member) mediate TDP-43 phosphorylation in disease. We first validated the binding interaction between TDP-43 and either CK1δ and CK1ε using kinase activity assays and predictive bioinformatic database. We utilized novel inducible cellular models that generated translocated phosphorylated TDP-43 (pTDP-43) and cytoplasmic aggregation. Reducing CK1 kinase activity with siRNA or small molecule chemical inhibitors resulted in significant reduction of pTDP-43, in both soluble and insoluble protein fractions. We also established CK1δ and CK1ε are the primary kinases that phosphorylate TDP-43 compared to CK2α, CDC7, ERK1/2, p38α/MAPK14, and TTBK1, other identified kinases that have been implicated in TDP-43 phosphorylation. Throughout our studies, we were careful to examine both the soluble and insoluble TDP-43 protein fractions, the critical protein fractions related to protein aggregation diseases. These results identify CK1s as critical kinases involved in TDP-43 hyperphosphorylation and aggregation in cellular models and in vitro, and in turn are potential therapeutic targets by way of CK1δ/ε inhibitors.
Asunto(s)
Esclerosis Amiotrófica Lateral , Caseína Cinasa 1 épsilon , Quinasa Idelta de la Caseína , Proteínas de Unión al ADN , Fosforilación , Proteínas de Unión al ADN/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Humanos , Quinasa Idelta de la Caseína/metabolismo , Caseína Cinasa 1 épsilon/metabolismo , Células HEK293RESUMEN
Caffeine consumption outcomes on Amyotrophic Lateral Sclerosis (ALS) including progression, survival and cognition remain poorly defined and may depend on its metabolization influenced by genetic variants. 378 ALS patients with a precise evaluation of their regular caffeine consumption were monitored as part of a prospective multicenter study. Demographic, clinical characteristics, functional disability as measured with revised ALS Functional Rating Scale (ALSFRS-R), cognitive deficits measured using Edinburgh Cognitive and Behavioural ALS Screen (ECAS), survival and riluzole treatment were recorded. 282 patients were genotyped for six single nucleotide polymorphisms tagging different genes involved in caffeine intake and/or metabolism: CYP1A1 (rs2472297), CYP1A2 (rs762551), AHR (rs4410790), POR (rs17685), XDH (rs206860) and ADORA2A (rs5751876) genes. Association between caffeine consumption and ALSFRS-R, ALSFRS-R rate, ECAS and survival were statistically analyzed to determine the outcome of regular caffeine consumption on ALS disease progression and cognition. No association was observed between caffeine consumption and survival (p = 0.25), functional disability (ALSFRS-R; p = 0.27) or progression of ALS (p = 0.076). However, a significant association was found with higher caffeine consumption and better cognitive performance on ECAS scores in patients carrying the C/T and T/T genotypes at rs2472297 (p-het = 0.004). Our results support the safety of regular caffeine consumption on ALS disease progression and survival and also show its beneficial impact on cognitive performance in patients carrying the minor allele T of rs2472297, considered as fast metabolizers, that would set the ground for a new pharmacogenetic therapeutic strategy.
Asunto(s)
Esclerosis Amiotrófica Lateral , Cafeína , Citocromo P-450 CYP1A2 , Progresión de la Enfermedad , Polimorfismo de Nucleótido Simple , Receptor de Adenosina A2A , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Receptor de Adenosina A2A/genética , Citocromo P-450 CYP1A2/genética , Cognición/fisiología , Cognición/efectos de los fármacos , Estudios Prospectivos , Citocromo P-450 CYP1A1/genética , Receptores de Hidrocarburo de Aril/genética , Adulto , Disfunción Cognitiva/genética , Riluzol/uso terapéutico , Estimulantes del Sistema Nervioso Central/uso terapéutico , Factores de Transcripción con Motivo Hélice-Asa-Hélice BásicoRESUMEN
Variability in disease onset and progression is a hallmark of amyotrophic lateral sclerosis (ALS), both in sporadic and genetic forms. Recently, we found that SOD1-G93A transgenic mice expressing the same amount of mutant SOD1 but with different genetic backgrounds, C57BL/6JOlaHsd and 129S2/SvHsd, show slow and rapid muscle wasting and disease progression, respectively. Here, we investigated the different molecular mechanisms underlying muscle atrophy. Although both strains showed similar denervation-induced degradation of muscle proteins, only the rapidly progressing mice exhibited early and sustained STAT3 activation that preceded atrophy in gastrocnemius muscle. We therefore investigated the therapeutic potential of sunitinib, a tyrosine kinase inhibitor known to inhibit STAT3 and prevent cancer-induced muscle wasting. Although sunitinib treatment reduced STAT3 activation in the gastrocnemius muscle and lumbar spinal cord, it did not preserve spinal motor neurons, improve neuromuscular impairment, muscle atrophy and disease progression in the rapidly progressing SOD1-G93A mice. Thus, the effect of sunitinib is not equally positive in different diseases associated with muscle wasting. Moreover, given the complex role of STAT3 in the peripheral and central compartments of the neuromuscular system, the present study suggests that its broad inhibition may lead to opposing effects, ultimately preventing a potential positive therapeutic action in ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Modelos Animales de Enfermedad , Indoles , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético , Pirroles , Factor de Transcripción STAT3 , Médula Espinal , Sunitinib , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/patología , Sunitinib/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Indoles/farmacología , Ratones , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Pirroles/farmacología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Progresión de la EnfermedadRESUMEN
BACKGROUND: The interaction of CD40L and its receptor CD40 on activated T cells and B cells respectively control pro-inflammatory activation in the pathophysiology of autoimmunity and transplant rejection. Previous studies have implicated signaling pathways involving CD40L (interchangeably referred to as CD154), as well as adaptive and innate immune cell activation, in the induction of neuroinflammation in neurodegenerative diseases. This study aimed to assess the safety, tolerability, and impact on pro-inflammatory biomarker profiles of an anti CD40L antibody, tegoprubart, in individuals with amyotrophic lateral sclerosis (ALS). METHODS AND FINDINGS: In this multicenter dose-escalating open-label Phase 2A study, 54 participants with a diagnosis of ALS received 6 infusions of tegoprubart administered intravenously every 2 weeks. The study was comprised of 4 dose cohorts: 1 mg/kg, 2 mg/kg, 4 mg/kg, and 8 mg/kg. The primary endpoint of the study was safety and tolerability. Exploratory endpoints assessed the pharmacokinetics of tegoprubart as well as anti-drug antibody (ADA) responses, changes in disease progression utilizing the Revised ALS Functional Rating Scale (ALSFRS-R), CD154 target engagement, changes in pro-inflammatory biomarkers, and neurofilament light chain (NFL). Seventy subjects were screened, and 54 subjects were enrolled in the study. Forty-nine of 54 subjects completed the study (90.7%) receiving all 6 infusions of tegoprubart and completing their final follow-up visit. The most common treatment emergent adverse events (TEAEs) overall (>10%) were fatigue (25.9%), falls (22.2%), headaches (20.4%), and muscle spasms (11.1%). Mean tegoprubart plasma concentrations increased proportionally with increasing dose with a half-life of approximately 24 days. ADA titers were low and circulating levels of tegoprubart were as predicted for all cohorts. Tegoprubart demonstrated dose dependent target engagement associated and a reduction in 18 pro-inflammatory biomarkers in circulation. CONCLUSIONS: Tegoprubart appeared to be safe and well tolerated in adults with ALS demonstrating dose-dependent reduction in pro-inflammatory chemokines and cytokines associated with ALS. These results warrant further clinical studies with sufficient power and duration to assess clinical outcomes as a potential treatment for adults with ALS. TRIAL REGISTRATION: Clintrials.gov ID:NCT04322149.
Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/inmunología , Masculino , Persona de Mediana Edad , Femenino , Anciano , Adulto , Ligando de CD40/sangre , Biomarcadores/sangre , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/uso terapéutico , Proteínas de Neurofilamentos/sangre , Relación Dosis-Respuesta a Droga , Resultado del Tratamiento , Progresión de la Enfermedad , Imidazoles , PirazinasRESUMEN
Axonal degeneration is observed in early stages of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). This degeneration generally precedes apoptosis and therefore may be a promising therapeutic target. An increasing number of genes have been identified to actively regulate axonal degeneration and regeneration; however, only a few potential therapeutic targets have been identified in the context of neurodegenerative diseases. Here we investigate DLK-1, a major axonal regeneration pathway and its contribution to axonal degeneration phenotypes in several Caenorhabditis elegans ALS models. From this pathway, we identified the poly (ADP-ribose) (PAR) polymerases (PARP) PARP-1 and PARP-2 as the most consistent modifiers of axonal degeneration in our models of ALS. Genetic and pharmacological inhibition of PARP-1 and PARP-2 reduces axonal degeneration and improves related motor phenotypes.
Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Caenorhabditis elegans , Enfermedades Neurodegenerativas , Adenosina Difosfato , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Quinasas Quinasa Quinasa PAM , Enfermedades Neurodegenerativas/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , RibosaRESUMEN
PURPOSE OF REVIEW: Recent development in understanding the pathophysiology of amyotrophic lateral sclerosis (ALS) has led to increasing number of promising test drugs in the pipeline along with the existing ones. We will review these agents focusing on ultra-high dose methylcobalamin, which is pending approval in Japan. Clinical trial design best suited for ALS will also be discussed. RECENT FINDINGS: The most recent phase 3 trial (JETALS) of ultra-high dose methylcobalamin demonstrated significant slowing of ALSFRSR changes (0.5/month), with marked reduction of serum homocysteine levels in the initial double-blind period. The post hoc analysis of the previous phase 2/3 study (E761 trial; Eisai) showed that it prolonged survival of ALS patients, if started within 1âyear of onset, but the previous studies suggested its efficacy even in later stages, depending upon the rate of progression. Phase 3 trial of AMX0035 or Relyvrio on the other hand showed negative results despite the promising phase 2 data. The latter did not adjust the disease progression rate before entry. SUMMARY: Ultra-high dose methylcobalamin is not a vitamin supplement but a novel disease-modifying therapy for ALS, and it emphasizes homocysteine as a key factor in the disease process. Clinical trial design must include entering patients early and with similar rates of progression using pretrial observation periods for meaningful results, since ALS is a chronologically heterogenous condition with similar phenotypes.
Asunto(s)
Esclerosis Amiotrófica Lateral , Vitamina B 12 , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Vitamina B 12/análogos & derivados , Vitamina B 12/uso terapéutico , Vitamina B 12/administración & dosificación , Ensayos Clínicos como AsuntoRESUMEN
BACKGROUND: There is a lack of effective therapeutic strategies for amyotrophic lateral sclerosis (ALS); therefore, drug repurposing might provide a rapid approach to meet the urgent need for treatment. METHODS: To identify therapeutic targets associated with ALS, we conducted Mendelian randomization (MR) analysis and colocalization analysis using cis-eQTL of druggable gene and ALS GWAS data collections to determine annotated druggable gene targets that exhibited significant associations with ALS. By subsequent repurposing drug discovery coupled with inclusion criteria selection, we identified several drug candidates corresponding to their druggable gene targets that have been genetically validated. The pharmacological assays were then conducted to further assess the efficacy of genetics-supported repurposed drugs for potential ALS therapy in various cellular models. RESULTS: Through MR analysis, we identified potential ALS druggable genes in the blood, including TBK1 [OR 1.30, 95%CI (1.19, 1.42)], TNFSF12 [OR 1.36, 95%CI (1.19, 1.56)], GPX3 [OR 1.28, 95%CI (1.15, 1.43)], TNFSF13 [OR 0.45, 95%CI (0.32, 0.64)], and CD68 [OR 0.38, 95%CI (0.24, 0.58)]. Additionally, we identified potential ALS druggable genes in the brain, including RESP18 [OR 1.11, 95%CI (1.07, 1.16)], GPX3 [OR 0.57, 95%CI (0.48, 0.68)], GDF9 [OR 0.77, 95%CI (0.67, 0.88)], and PTPRN [OR 0.17, 95%CI (0.08, 0.34)]. Among them, TBK1, TNFSF12, RESP18, and GPX3 were confirmed in further colocalization analysis. We identified five drugs with repurposing opportunities targeting TBK1, TNFSF12, and GPX3, namely fostamatinib (R788), amlexanox (AMX), BIIB-023, RG-7212, and glutathione as potential repurposing drugs. R788 and AMX were prioritized due to their genetic supports, safety profiles, and cost-effectiveness evaluation. Further pharmacological analysis revealed that R788 and AMX mitigated neuroinflammation in ALS cell models characterized by overly active cGAS/STING signaling that was induced by MSA-2 or ALS-related toxic proteins (TDP-43 and SOD1), through the inhibition of TBK1 phosphorylation. CONCLUSIONS: Our MR analyses provided genetic evidence supporting TBK1, TNFSF12, RESP18, and GPX3 as druggable genes for ALS treatment. Among the drug candidates targeting the above genes with repurposing opportunities, FDA-approved drug-R788 and AMX served as effective TBK1 inhibitors. The subsequent pharmacological studies validated the potential of R788 and AMX for treating specific ALS subtypes through the inhibition of TBK1 phosphorylation.
Asunto(s)
Aminopiridinas , Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Reposicionamiento de Medicamentos , Análisis de la Aleatorización Mendeliana , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
Inorganic polyphosphate (polyP) is a simple, negatively charged biopolymer with chain lengths ranging from just a few to over a thousand ortho-phosphate (Pi) residues. polyP is detected in every cell type across all organisms in nature thus far analyzed. Despite its structural simplicity, polyP has been shown to play important roles in a remarkably broad spectrum of biological processes, including blood coagulation, bone mineralization and inflammation. Furthermore, polyP has been implicated in brain function and the neurodegenerative diseases amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease and Parkinson's disease. In this review, we first address the challenges associated with identifying mammalian polyP metabolizing enzymes, such as Nudt3, and quantifying polyP levels in brain tissue, cultured neural cells and cerebrospinal fluid. Subsequently, we focus on recent studies that unveil how the excessive release of polyP by human and mouse ALS/FTD astrocytes contributes to these devastating diseases by inducing hyperexcitability, leading to motoneuron death. Potential implications of elevated polyP levels in ALS/FTD patients for innovative diagnostic and therapeutic approaches are explored. It is emphasized, however, that caution is required in targeting polyP in the brain due to its diverse physiological functions, serving as an energy source, a chelator for divalent cations and a scaffold for amyloidogenic proteins. Reducing polyP levels, especially in neurons, might thus have adverse effects in brain functioning. Finally, we discuss how activated mast cells and platelets also can significantly contribute to ALS progression, as they can massively release polyP.
Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Parkinson , Animales , Ratones , Humanos , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/terapia , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Polifosfatos , MamíferosRESUMEN
Platform trials allow efficient evaluation of multiple interventions for a specific disease. The HEALEY ALS Platform Trial is testing multiple investigational products in parallel and sequentially in persons with amyotrophic lateral sclerosis (ALS) with the goal of rapidly identifying novel treatments to slow disease progression. Platform trials have considerable operational and statistical efficiencies compared with typical randomized controlled trials due to their use of shared infrastructure and shared control data. We describe the statistical approaches required to achieve the objectives of a platform trial in the context of ALS. This includes following regulatory guidance for the disease area of interest and accounting for potential differences in outcomes of participants within the shared control (potentially due to differences in time of randomization, mode of administration, and eligibility criteria). Within the HEALEY ALS Platform Trial, the complex statistical objectives are met using a Bayesian shared parameter analysis of function and survival. This analysis serves to provide a common integrated estimate of treatment benefit, overall slowing in disease progression, as measured by function and survival while accounting for potential differences in the shared control group using Bayesian hierarchical modeling. Clinical trial simulation is used to provide a better understanding of this novel analysis method and complex design. ANN NEUROL 2023;94:547-560.