Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.143
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Genet ; 53: 417-444, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31537103

RESUMEN

Cryptococcus species utilize a variety of sexual reproduction mechanisms, which generate genetic diversity, purge deleterious mutations, and contribute to their ability to occupy myriad environmental niches and exhibit a range of pathogenic potential. The bisexual and unisexual cycles of pathogenic Cryptococcus species are stimulated by properties associated with their environmental niches and proceed through well-characterized signaling pathways and corresponding morphological changes. Genes governing mating are encoded by the mating-type (MAT) loci and influence pathogenesis, population dynamics, and lineage divergence in Cryptococcus. MAT has undergone significant evolutionary changes within the Cryptococcus genus, including transition from the ancestral tetrapolar state in nonpathogenic species to a bipolar mating system in pathogenic species, as well as several internal reconfigurations. Owing to the variety of established sexual reproduction mechanisms and the robust characterization of the evolution of mating and MAT in this genus, Cryptococcus species provide key insights into the evolution of sexual reproduction.


Asunto(s)
Cryptococcus/fisiología , Cryptococcus/patogenicidad , Genes del Tipo Sexual de los Hongos , Reproducción/fisiología , Evolución Biológica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genética de Población , Interacciones Huésped-Patógeno , Humanos , Esporas Fúngicas/patogenicidad , Esporas Fúngicas/fisiología
2.
Proc Natl Acad Sci U S A ; 121(26): e2405553121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38889144

RESUMEN

The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues. Here, we used fission yeast spores as a model system of dormant cells to elucidate the mechanisms underlying regulation of the cytoplasmic properties. By tracking fluorescent tracer particles, we found that particle mobility decreased in spores compared to vegetative cells and rapidly increased at the onset of dormancy breaking upon glucose addition. This cytoplasmic fluidization depended on glucose-sensing via the cyclic adenosine monophosphate-protein kinase A pathway. PKA activation led to trehalose degradation through trehalase Ntp1, thereby increasing particle mobility as the amount of trehalose decreased. In contrast, the rapid cytoplasmic fluidization did not require de novo protein synthesis, cytoskeletal dynamics, or cell volume increase. Furthermore, the measurement of diffusion coefficients with tracer particles of different sizes suggests that the spore cytoplasm impedes the movement of larger protein complexes (40 to 150 nm) such as ribosomes, while allowing free diffusion of smaller molecules (~3 nm) such as second messengers and signaling proteins. Our experiments have thus uncovered a series of signaling events that enable cells to quickly fluidize the cytoplasm at the onset of dormancy breaking.


Asunto(s)
Citoplasma , Schizosaccharomyces , Esporas Fúngicas , Trehalosa , Esporas Fúngicas/metabolismo , Esporas Fúngicas/fisiología , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiología , Citoplasma/metabolismo , Trehalosa/metabolismo , Glucosa/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal
3.
EMBO J ; 41(4): e109446, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35023198

RESUMEN

Sexual reproduction requires genome haploidization by the two divisions of meiosis and a differentiation program to generate gametes. Here, we have investigated how sporulation, the yeast equivalent of gamete differentiation, is coordinated with progression through meiosis. Spore differentiation is initiated at metaphase II when a membrane-nucleating structure, called the meiotic plaque, is assembled at the centrosome. While all components of this structure accumulate already at entry into meiosis I, they cannot assemble because centrosomes are occupied by Spc72, the receptor of the γ-tubulin complex. Spc72 is removed from centrosomes by a pathway that depends on the polo-like kinase Cdc5 and the meiosis-specific kinase Ime2, which is unleashed by the degradation of Spo13/Meikin upon activation of the anaphase-promoting complex at anaphase I. Meiotic plaques are finally assembled upon reactivation of Cdk1 at entry into metaphase II. This unblocking-activation mechanism ensures that only single-copy genomes are packaged into spores and might serve as a paradigm for the regulation of other meiosis II-specific processes.


Asunto(s)
Meiosis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas/fisiología , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Proteínas de Unión al ADN/metabolismo , Cinetocoros/metabolismo , Meiosis/fisiología , Metafase/fisiología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Esporas Fúngicas/citología , Factores de Transcripción/metabolismo
4.
Plant J ; 119(2): 828-843, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38804074

RESUMEN

Plants have evolved finely regulated defense systems to counter biotic and abiotic threats. In the natural environment, plants are typically challenged by simultaneous stresses and, amid such conditions, crosstalk between the activated signaling pathways becomes evident, ultimately altering the outcome of the defense response. As an example of combined biotic and abiotic stresses, inorganic phosphate (Pi) deficiency, common in natural and agricultural environments, can occur along with attack by the fungus Botrytis cinerea, a devastating necrotrophic generalist pathogen responsible for massive crop losses. We report that Pi deficiency in Arabidopsis thaliana increases its susceptibility to infection by B. cinerea by influencing the early stages of pathogen infection, namely spore adhesion and germination on the leaf surface. Remarkably, Pi-deficient plants are more susceptible to B. cinerea despite displaying the appropriate activation of the jasmonic acid and ethylene signaling pathways, as well as producing secondary defense metabolites and reactive oxygen species. Conversely, the callose deposition in response to B. cinerea infection is compromised under Pi-deficient conditions. The levels of abscisic acid (ABA) are increased in Pi-deficient plants, and the heightened susceptibility to B. cinerea observed under Pi deficiency can be reverted by blocking ABA biosynthesis. Furthermore, high level of leaf ABA induced by overexpression of NCED6 in Pi-sufficient plants also resulted in greater susceptibility to B. cinerea infection associated with increased spore adhesion and germination, and reduced callose deposition. Our findings reveal a link between the enhanced accumulation of ABA induced by Pi deficiency and an increased sensitivity to B. cinerea infection.


Asunto(s)
Ácido Abscísico , Arabidopsis , Botrytis , Fosfatos , Enfermedades de las Plantas , Transducción de Señal , Botrytis/fisiología , Ácido Abscísico/metabolismo , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Fosfatos/metabolismo , Fosfatos/deficiencia , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Etilenos/metabolismo , Ciclopentanos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Oxilipinas/metabolismo , Esporas Fúngicas/fisiología , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Susceptibilidad a Enfermedades
5.
New Phytol ; 242(4): 1785-1797, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403930

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are ubiquitous plant root symbionts, which can house two endobacteria: Ca. Moeniiplasma glomeromycotorum (CaMg) and Ca. Glomeribacter gigasporarum (CaGg). However, little is known about their distribution and population structure in natural AMF populations and whether AMF can harbour other endobacteria. We isolated AMF from two environments and conducted detailed analyses of endobacterial communities associated with surface-sterilised AMF spores. Consistent with the previous reports, we found that CaMg were extremely abundant (80%) and CaGg were extremely rare (2%) in both environments. Unexpectedly, we discovered an additional and previously unknown level of bacterial diversity within AMF spores, which extended beyond the known endosymbionts, with bacteria belonging to 10 other phyla detected across our spore data set. Detailed analysis revealed that: CaGg were not limited in distribution to the Gigasporaceae family of AMF, as previously thought; CaMg population structure was driven by AMF host genotype; and a significant inverse correlation existed between the diversity of CaMg and diversity of all other endobacteria. Based on these data, we generate novel testable hypotheses regarding the function of CaMg in AMF biology by proposing that they might act as conditional mutualists of AMF.


Asunto(s)
Micorrizas , Esporas Fúngicas , Micorrizas/fisiología , Esporas Fúngicas/fisiología , Bacterias/genética , Bacterias/clasificación , Biodiversidad , Filogenia , Simbiosis
6.
J Exp Bot ; 75(10): 3125-3140, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38386894

RESUMEN

Effects of Venturia inaequalis on water relations of apple leaves were studied under controlled conditions without limitation of water supply to elucidate their impact on the non-haustorial biotrophy of this pathogen. Leaf water relations, namely leaf water content and transpiration, were spatially resolved by hyperspectral imaging and thermography; non-imaging techniques-gravimetry, a pressure chamber, and porometry-were used for calibration and validation. Reduced stomatal transpiration 3-4 d after inoculation coincided with a transient increase of water potential. Perforation of the plant cuticle by protruding conidiophores subsequently increased cuticular transpiration even before visible symptoms occurred. With sufficient water supply, cuticular transpiration remained at elevated levels for several weeks. Infections did not affect the leaf water content before scab lesions became visible. Only hyperspectral imaging was suitable to demonstrate that a decreased leaf water content was strictly limited to sites of emerging conidiophores and that cuticle porosity increased with sporulation. Microscopy confirmed marginal cuticle injury; although perforated, it tightly surrounded the base of conidiophores throughout sporulation and restricted water loss. The role of sustained redirection of water flow to the pathogen's hyphae in the subcuticular space above epidermal cells, to facilitate the acquisition and uptake of nutrients by V. inaequalis, is discussed.


Asunto(s)
Ascomicetos , Malus , Enfermedades de las Plantas , Hojas de la Planta , Agua , Malus/fisiología , Malus/microbiología , Hojas de la Planta/fisiología , Agua/metabolismo , Ascomicetos/fisiología , Transpiración de Plantas , Imágenes Hiperespectrales/métodos , Esporas Fúngicas/fisiología
7.
Biol Lett ; 20(10): 20240295, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39353567

RESUMEN

Ecosystem restoration interventions often utilize visible elements to restore an ecosystem (e.g. replanting native plant communities and reintroducing lost species). However, using acoustic stimulation to help restore ecosystems and promote plant growth has received little attention. Our study aimed to assess the effect of acoustic stimulation on the growth rate and sporulation of the plant growth-promoting fungus Trichoderma harzianum Rifai, 1969. We played a monotone acoustic stimulus (80 dB sound pressure level (SPL) at a peak frequency of 8 kHz and a bandwidth at -10 dB from the peak of 6819 Hz-parameters determined via review and pilot research) over 5 days to T. harzianum to assess whether acoustic stimulation affected the growth rate and sporulation of this fungus (control samples received only ambient sound stimulation less than 30 dB). We show that the acoustic stimulation treatments resulted in increased fungal biomass and enhanced T. harzianum conidia (spore) activity compared to controls. These results indicate that acoustic stimulation influences plant growth-promoting fungal growth and potentially facilitates their functioning (e.g. stimulating sporulation). The mechanism responsible for this phenomenon may be fungal mechanoreceptor stimulation and/or potentially a piezoelectric effect; however, further research is required to confirm this hypothesis. Our novel study highlights the potential of acoustic stimulation to alter important fungal attributes, which could, with further development, be harnessed to aid ecosystem restoration and sustainable agriculture.


Asunto(s)
Estimulación Acústica , Trichoderma , Trichoderma/fisiología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/fisiología , Biomasa , Ecosistema
8.
Nature ; 560(7718): 392-396, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30069047

RESUMEN

Extant species have wildly different numbers of chromosomes, even among taxa with relatively similar genome sizes (for example, insects)1,2. This is likely to reflect accidents of genome history, such as telomere-telomere fusions and genome duplication events3-5. Humans have 23 pairs of chromosomes, whereas other apes have 24. One human chromosome is a fusion product of the ancestral state6. This raises the question: how well can species tolerate a change in chromosome numbers without substantial changes to genome content? Many tools are used in chromosome engineering in Saccharomyces cerevisiae7-10, but CRISPR-Cas9-mediated genome editing facilitates the most aggressive engineering strategies. Here we successfully fused yeast chromosomes using CRISPR-Cas9, generating a near-isogenic series of strains with progressively fewer chromosomes ranging from sixteen to two. A strain carrying only two chromosomes of about six megabases each exhibited modest transcriptomic changes and grew without major defects. When we crossed a sixteen-chromosome strain with strains with fewer chromosomes, we noted two trends. As the number of chromosomes dropped below sixteen, spore viability decreased markedly, reaching less than 10% for twelve chromosomes. As the number of chromosomes decreased further, yeast sporulation was arrested: a cross between a sixteen-chromosome strain and an eight-chromosome strain showed greatly reduced full tetrad formation and less than 1% sporulation, from which no viable spores could be recovered. However, homotypic crosses between pairs of strains with eight, four or two chromosomes produced excellent sporulation and spore viability. These results indicate that eight chromosome-chromosome fusion events suffice to isolate strains reproductively. Overall, budding yeast tolerates a reduction in chromosome number unexpectedly well, providing a striking example of the robustness of genomes to change.


Asunto(s)
Fusión Artificial Génica/métodos , Cromosomas Fúngicos/genética , Edición Génica , Cariotipo , Viabilidad Microbiana/genética , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas/genética , Cruzamientos Genéticos , Reproducción/genética , Esporas Fúngicas/genética , Esporas Fúngicas/fisiología
9.
Phytopathology ; 114(7): 1596-1602, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38536966

RESUMEN

The fungal pathogen Calonectria pseudonaviculata causes boxwood blight and is a significant threat to the boxwood industry, as well as historic boxwood gardens. The pathogen produces conidia in sticky masses that are splash dispersed, which germinate and infect through stomata on the leaves or stems, causing leaf spots and stem lesions. Despite its ability to cause severe infections on boxwood plants, the pathogen often has a low germination rate on artificial media under lab conditions. To identify cues that stimulate germination, we explored whether host factors could induce high germination rates. In this study, we demonstrate that C. pseudonaviculata spores achieve high germination rates when they are placed on detached leaves of boxwood and other known hosts, compared to potato dextrose agar and glass coverslips. We also demonstrate that germination is induced by volatiles from detached leaves of boxwood, as well as the nonhost Berberis thunbergii. When C. pseudonaviculata spores were exposed to volatiles from boxwood leaves in the presence of ethylene scrubber packs that contained potassium permanganate, the stimulatory effect on spore germination was reduced. However, ethylene, a regulator of leaf senescence, did not stimulate germination of C. pseudonaviculata spores. This suggests that the pathogen may have evolved to recognize one or more host volatiles, other than ethylene to induce germination, thus limiting its growth until it senses the presence of a host plant.


Asunto(s)
Enfermedades de las Plantas , Hojas de la Planta , Esporas Fúngicas , Compuestos Orgánicos Volátiles , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/fisiología , Esporas Fúngicas/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Compuestos Orgánicos Volátiles/farmacología , Ascomicetos/fisiología , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo
10.
Biosci Biotechnol Biochem ; 88(5): 475-492, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38449372

RESUMEN

The fission yeast Schizosaccharomyces pombe is an excellent model organism to explore cellular events owing to rich tools in genetics, molecular biology, cellular biology, and biochemistry. Schizosaccharomyces pombe proliferates continuously when nutrients are abundant but arrests in G1 phase upon depletion of nutrients such as nitrogen and glucose. When cells of opposite mating types are present, cells conjugate, fuse, undergo meiosis, and finally form 4 spores. This sexual differentiation process in S. pombe has been studied extensively. To execute sexual differentiation, the glucose-sensing cAMP-PKA (cyclic adenosine monophosphate-protein kinase A) pathway, nitrogen-sensing TOR (target of rapamycin) pathway, and SAPK (stress-activating protein kinase) pathway are crucial, and the MAPK (mitogen-activating protein kinase) cascade is essential for pheromone sensing. These signals regulate ste11 at the transcriptional and translational levels, and Ste11 is modified in multiple ways. This review summarizes the initiation of sexual differentiation in S. pombe based on results I have helped to obtain, including the work of many excellent researchers.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Factores de Transcripción , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Regulación Fúngica de la Expresión Génica , Transducción de Señal , Meiosis , Feromonas/metabolismo , Diferenciación Sexual/genética , Glucosa/metabolismo , Nitrógeno/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , Esporas Fúngicas/fisiología
11.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34417298

RESUMEN

Plant pathogens are responsible for the annual yield loss of crops worldwide and pose a significant threat to global food security. A necessary prelude to many plant disease epidemics is the short-range dispersal of spores, which may generate several disease foci within a field. New information is needed on the mechanisms of plant pathogen spread within and among susceptible plants. Here, we show that self-propelled jumping dew droplets, working synergistically with low wind flow, can propel spores of a fungal plant pathogen (wheat leaf rust) beyond the quiescent boundary layer and disperse them onto neighboring leaves downwind. An array of horizontal water-sensitive papers was used to mimic healthy wheat leaves and showed that up to 25 spores/h may be deposited on a single leaf downwind of the infected leaf during a single dew cycle. These findings reveal that a single dew cycle can disperse copious numbers of fungal spores to other wheat plants, even in the absence of rain splash or strong gusts of wind.


Asunto(s)
Hongos/fisiología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Lluvia , Esporas Fúngicas/fisiología , Triticum/microbiología , Viento , Hojas de la Planta/microbiología
12.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593906

RESUMEN

The maintenance of sufficient but nontoxic pools of metal micronutrients is accomplished through diverse homeostasis mechanisms in fungi. Siderophores play a well established role for iron homeostasis; however, no copper-binding analogs have been found in fungi. Here we demonstrate that, in Aspergillus fumigatus, xanthocillin and other isocyanides derived from the xan biosynthetic gene cluster (BGC) bind copper, impact cellular copper content, and have significant metal-dependent antimicrobial properties. xan BGC-derived isocyanides are secreted and bind copper as visualized by a chrome azurol S (CAS) assay, and inductively coupled plasma mass spectrometry analysis of A. fumigatus intracellular copper pools demonstrated a role for xan cluster metabolites in the accumulation of copper. A. fumigatus coculture with a variety of human pathogenic fungi and bacteria established copper-dependent antimicrobial properties of xan BGC metabolites, including inhibition of laccase activity. Remediation of xanthocillin-treated Pseudomonas aeruginosa growth by copper supported the copper-chelating properties of xan BGC isocyanide products. The existence of the xan BGC in several filamentous fungi suggests a heretofore unknown role of eukaryotic natural products in copper homeostasis and mediation of interactions with competing microbes.


Asunto(s)
Antiinfecciosos/farmacología , Aspergillus fumigatus/metabolismo , Cobre/metabolismo , Cianuros/metabolismo , Antiinfecciosos/química , Aspergillus fumigatus/química , Aspergillus fumigatus/genética , Aspergillus nidulans/efectos de los fármacos , Butadienos/síntesis química , Butadienos/metabolismo , Butadienos/farmacología , Cianuros/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Lacasa/metabolismo , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Mutación , Fenoles/síntesis química , Fenoles/metabolismo , Fenoles/farmacología , Pigmentación , Esporas Fúngicas/fisiología
13.
Mycorrhiza ; 34(4): 251-270, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023766

RESUMEN

Hot deserts impose extreme conditions on plants growing in arid soils. Deserts are expanding due to climate change, thereby increasing the vulnerability of ecosystems and the need to preserve them. Arbuscular mycorrhizal fungi (AMF) improve plant fitness by enhancing plant water/nutrient uptake and stress tolerance. However, few studies have focused on AMF diversity and community composition in deserts, and the soil and land use parameters affecting them. This study aimed to comprehensively describe AMF ecological features in a 5,000 km2 arid hyperalkaline region in AlUla, Saudi Arabia. We used a multimethod approach to analyse over 1,000 soil and 300 plant root samples of various species encompassing agricultural, old agricultural, urban and natural ecosystems. Our method involved metabarcoding using 18S and ITS2 markers, histological techniques for direct AMF colonization observation and soil spore extraction and observation. Our findings revealed a predominance of AMF taxa assigned to Glomeraceae, regardless of the local conditions, and an almost complete absence of Gigasporales taxa. Land use had little effect on the AMF richness, diversity and community composition, while soil texture, pH and substantial unexplained stochastic variance drove these compositions in AlUla soils. Mycorrhization was frequently observed in the studied plant species, even in usually non-mycorrhizal plant taxa (e.g. Amaranthaceae, Urticaceae). Date palms and Citrus trees, representing two major crops in the region, however, displayed a very low mycorrhizal frequency and intensity. AlUla soils had a very low concentration of spores, which were mostly small. This study generated new insight on AMF and specific behavioral features of these fungi in arid environments.


Asunto(s)
Clima Desértico , Micorrizas , Microbiología del Suelo , Micorrizas/fisiología , Arabia Saudita , Esporas Fúngicas/fisiología , Suelo/química , Glomeromycota/fisiología , Raíces de Plantas/microbiología
14.
Plant Dis ; 108(9): 2838-2844, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38736151

RESUMEN

Grapevine anthracnose, caused by Elsinoë ampelina, is one of the most devastating diseases for wine and table grapes, particularly in hot, humid regions. This study explores how temperature and leaf age affect incubation and how temperature affects lesion development and sporulation. The influence of temperature and leaf age on incubation period (days) was tested under controlled conditions. Leaves from 1 to 8 days old were inoculated and maintained at temperatures of 5, 10, 15, 20, 25, and 30°C. The time elapsed between inoculation and the emergence of initial lesions was recorded. The effect of temperature on lesion development and sporulation was investigated under vineyard conditions. This was achieved through artificial inoculations, with 17, 11, and 11 inoculations conducted in 2016, 2017, and 2018, respectively. The average incubation period, considering all leaf ages, was 27.50 days at 5°C, 15.10 days at 10°C, 9.70 days at 15°C, 5.90 days at 20°C, 3.70 days at 25°C, and 2.26 days at 30°C. Regardless of temperature, the average incubation period was 3.6, 5.9, 8.3, 9.8, 11.9, 13.4, 15.6, and 17.1 days for leaves 1, 2, 3, 4, 5, 6, 7, and 8 days old, respectively. The exponential decay model accurately describes the incubation period as a function of both temperature and leaf age. On average, the relative lesion development (RLD) was 0.00, 0.00, 0.23, 0.47, 0.72, 0.93, 0.92, 0.90, 0.94, and 1.0 at 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 days after inoculation, respectively. The average relative sporulation (RSPO) was 0.03, 0.36, 0.82, 0.96, and 1.0 at 5, 10, 15, 20, and 25 days after inoculation, respectively. Both RLD and RSPO as a function of degree-days (Tbase = 0°C) since inoculation were well described by the logistic function. The rates of change in RLD and RSPO were 0.055 and 0.032, respectively. The results of this study provide new quantitative insights into three important stages (monocyclic processes) in the development of grapevine anthracnose caused by E. ampelina.


Asunto(s)
Enfermedades de las Plantas , Hojas de la Planta , Temperatura , Vitis , Vitis/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Ascomicetos/fisiología , Esporas Fúngicas/fisiología
15.
Plant Dis ; 108(9): 2894-2905, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38831592

RESUMEN

Germicidal UV light (UV-C) has been shown to effectively suppress several plant pathogens as well as some arthropod pests. Recent reports describe the efficacy of nighttime applications of UV-C at doses from 100 to 200 J/m2 in vineyards to reduce grape powdery mildew (Erysiphe necator). Our in vitro studies confirmed the efficacy of UV-C to inhibit germination of E. necator and Botrytis cinerea conidia, demonstrated a range of tolerances to UV-C within a collection of E. necator isolates, and showed growth stage-specific effects of UV-C on B. cinerea. Nighttime use of UV-C was evaluated at 48 to 96 J/m2 in small plot trials (<1,000 vines) from 2020 to 2023. Once- or twice-weekly UV-C applications significantly reduced the incidence of foliar powdery mildew compared with non-UV-C-treated controls (P < 0.02). Suppression of powdery mildew on fruit was less consistent, where once or twice weekly UV-C exposure reduced powdery mildew disease severity in 2020 (P = 0.04), 2021 (P = 0.02), and 2023 (P = 0.003) but less so in 2022 (P = 0.07). Bunch rot severity was not significantly reduced with UV-C treatment in any year of the study. Application of UV-C until the onset of fruit color change (veraison) also had a minimal effect on the fruit-soluble solids, pH, anthocyanins, or phenolics in harvested fruit at any UV-C dose or frequency (P > 0.10). Suppression of powdery mildew by nighttime application of UV-C at lower doses in small plots suggests that such treatments merit further evaluation in larger-scale studies in Western Oregon.


Asunto(s)
Ascomicetos , Botrytis , Enfermedades de las Plantas , Rayos Ultravioleta , Vitis , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Vitis/microbiología , Vitis/efectos de la radiación , Botrytis/efectos de la radiación , Botrytis/fisiología , Ascomicetos/fisiología , Ascomicetos/efectos de la radiación , Oregon , Esporas Fúngicas/efectos de la radiación , Esporas Fúngicas/fisiología
16.
J Insect Sci ; 24(4)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39193858

RESUMEN

Rust fungi (Pucciniales) are plant pathogens that can cause devastating yield losses to economically important crops and threaten native plants with extinction. Rusts are usually controlled with fungicides when rust-resistant plant varieties are unavailable. However, natural enemies may offer an alternative to chemicals by acting as biological controls. The larvae of Mycodiplosis Rübsaamen (49 spp.) feed on the spores of rusts and powdery mildew fungi and have been suggested as a potential biocontrol candidate for disease-causing rusts. However, little is known about the phylogenetic relationships, biogeography, and host range of this genus. We screened 5,665 rust specimens from fungarium specimens and field collections and recovered a total of 363 larvae on 315 rust specimens from 17 countries. Three mitochondrial and 2 nuclear loci were amplified and sequenced for the phylogenetic reconstruction of 129 individuals. We recovered 12 clades, of which 12 and 10 were supported with maximum likelihood and Bayesian inference, respectively. Of the 12 clades, 7 comprised species from multiple continents and climatic regions, and 5 comprised species from a single region. Individuals forming clades were collected from 2 to 18 rust species, suggesting that Mycodiplosis species have a broad host range. In total, Mycodiplosis larvae were identified on 44 different rust species collected from 18 plant families. Future studies should focus on expanding field sampling efforts, including data from additional gene regions, and incorporating morphological data to further elucidate species diversity and distribution patterns.


Asunto(s)
Basidiomycota , Especificidad del Huésped , Larva , Filogenia , Animales , Basidiomycota/fisiología , Basidiomycota/genética , Larva/microbiología , Larva/crecimiento & desarrollo , Larva/fisiología , Dípteros/microbiología , Filogeografía , Esporas Fúngicas/fisiología
17.
BMC Microbiol ; 23(1): 68, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918804

RESUMEN

At particular stages during their life cycles, fungi use multiple strategies to form specialized structures to survive unfavorable environmental conditions. These strategies encompass sporulation, as well as cell-wall melanization, multicellular tissue formation or even dimorphism. The resulting structures are not only used to disperse to other environments, but also to survive long periods of time awaiting favorable growth conditions. As a result, these specialized fungal structures are part of the microbial seed bank, which is known to influence the microbial community composition and contribute to the maintenance of diversity. Despite the importance of the microbial seed bank in the environment, methods to study the diversity of fungal structures with improved resistance only target spores dispersing in the air, omitting the high diversity of these structures in terms of morphology and environmental distribution. In this study, we applied a separation method based on cell lysis to enrich lysis-resistant fungal structures (for instance, spores, sclerotia, melanized yeast) to obtain a proxy of the composition of the fungal seed bank. This approach was first evaluated in-vitro in selected species. The results obtained showed that DNA from fungal spores and from yeast was only obtained after the application of the enrichment method, while mycelium was always lysed. After validation, we compared the diversity of the total and lysis-resistant fractions in the polyextreme environment of the Salar de Huasco, a high-altitude athalassohaline wetland in the Chilean Altiplano. Environmental samples were collected from the salt flat and from microbial mats in small surrounding ponds. Both the lake sediments and microbial mats were dominated by Ascomycota and Basidiomycota, however, the diversity and composition of each environment differed at lower taxonomic ranks. Members of the phylum Chytridiomycota were enriched in the lysis-resistant fraction, while members of the phylum Rozellomycota were never detected in this fraction. Moreover, we show that the community composition of the lysis-resistant fraction reflects the diversity of life cycles and survival strategies developed by fungi in the environment. To the best of our knowledge this is the first time that the fungal diversity is explored in the Salar de Huasco. In addition, the method presented here provides a simple and culture independent approach to assess the diversity of fungal lysis-resistant cells in the environment.


Asunto(s)
ADN de Hongos , Hongos , Sedimentos Geológicos , Micobioma , Esporas Fúngicas , Ascomicetos/genética , Ascomicetos/fisiología , Basidiomycota/genética , Basidiomycota/fisiología , Chile , Hongos/genética , Hongos/fisiología , Sedimentos Geológicos/microbiología , Lagos/microbiología , Microbiota/fisiología , Micelio/genética , Micelio/aislamiento & purificación , Micelio/fisiología , Micobioma/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas/genética , Esporas Fúngicas/aislamiento & purificación , Esporas Fúngicas/fisiología , Humedales , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , ADN de Hongos/fisiología
18.
Proc Natl Acad Sci U S A ; 117(10): 5134-5143, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32098849

RESUMEN

Fungi disperse spores to move across landscapes and spore liberation takes different patterns. Many species release spores intermittently; others release spores at specific times of day. Despite intriguing evidence of periodicity, why (and if) the timing of spore release would matter to a fungus remains an open question. Here we use state-of-the-art numerical simulations of atmospheric transport and meteorological data to follow the trajectory of many spores in the atmosphere at different times of day, seasons, and locations across North America. While individual spores follow unpredictable trajectories due to turbulence, in the aggregate patterns emerge: Statistically, spores released during the day fly for several days, whereas spores released at night return to ground within a few hours. Differences are caused by intense turbulence during the day and weak turbulence at night. The pattern is widespread but its reliability varies; for example, day/night patterns are stronger in southern regions. Results provide testable hypotheses explaining both intermittent and regular patterns of spore release as strategies to maximize spore survival in the air. Species with short-lived spores reproducing where there is strong turbulence during the day, for example in Mexico, maximize survival by releasing spores at night. Where cycles are weak, for example in Canada during fall, there is no benefit to releasing spores at the same time every day. Our data challenge the perception of fungal dispersal as risky, wasteful, and beyond control of individuals; our data suggest the timing of spore liberation may be finely tuned to maximize fitness during atmospheric transport.


Asunto(s)
Microbiología del Aire , Movimientos del Aire , Estaciones del Año , Esporas Fúngicas/fisiología , Atmósfera , Canadá , México
19.
New Phytol ; 234(6): 2057-2072, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35179789

RESUMEN

Elucidating the temporal dynamics of arbuscular mycorrhizal (AM) fungi is critical for understanding their functions. Furthermore, research investigating the temporal dynamics of AM fungi in response to agricultural practices remains in its infancy. We investigated the effect of nitrogen fertilisation and watering reduction on the temporal dynamics of AM fungi, across the lifespan of wheat. Nitrogen fertilisation decreased AM fungal spore density (SD), extraradical hyphal density (ERHD), and intraradical colonisation rate (IRCR) in both watering conditions. Nitrogen fertilisation affected AM fungal community composition in soil but not in roots, regardless of watering conditions. The temporal analysis revealed that AM fungal ERHD and IRCR were higher under conventional watering and lower under reduced watering in March than in other growth stages at low (≤ 70 kg N ha-1 yr-1 ) but not at high (≥ 140) nitrogen fertilisation levels. AM fungal SD was lower in June than in other growth stages and community composition varied with plant development at all nitrogen fertilisation levels, regardless of watering conditions. This study demonstrates that high nitrogen fertilisation levels disrupt the temporal dynamics of AM fungal hyphal growth but not sporulation and community composition.


Asunto(s)
Micorrizas , Fertilización , Hifa , Micorrizas/fisiología , Nitrógeno/farmacología , Raíces de Plantas/microbiología , Suelo , Microbiología del Suelo , Esporas Fúngicas/fisiología , Triticum , Agua
20.
Cell Microbiol ; 23(3): e13301, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33331054

RESUMEN

Fungal spores are unique cells that mediate dispersal and survival in the environment. For pathogenic fungi encountering a susceptible host, these specialised structures may serve as infectious particles. The main causative agent of the opportunistic disease aspergillosis, Aspergillus fumigatus, produces asexual spores, the conidia, that become dissipated by air flows or water currents but also serve as propagules to infect a susceptible host. We demonstrate that the defX gene of this mould encodes putative antimicrobial peptides resembling cysteine-stabilised (CS)αß defensins that are expressed in a specific spatial and temporal manner in the course of asexual spore formation. Localisation studies on strains expressing a fluorescent proxy or tagged defX alleles expose that these antimicrobial peptides are secreted to coat the conidial surface. Deletion mutants reveal that the spore-associated defX gene products delay the growth of Gram-positive Staphylococcus aureus and demonstrate that the defX gene and presumably its encoded spore-associated defensins confer a growth advantage to the fungal opponent over bacterial competitors. These findings have implications with respect to the ecological niche of A. fumigatus that serves as a 'virulence school' for this human pathogenic mould; further relevance is given for the infectious process resulting in aspergillosis, considering competition with the host microbiome or co-infecting microorganisms to break colonisation resistance at host surfaces.


Asunto(s)
Aspergillus fumigatus/patogenicidad , Defensinas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Aspergilosis/microbiología , Aspergillus fumigatus/genética , Aspergillus fumigatus/fisiología , Defensinas/genética , Escherichia coli/crecimiento & desarrollo , Proteínas Fúngicas/genética , Genes Fúngicos , Humanos , Proteínas Citotóxicas Formadoras de Poros/genética , Esporas Fúngicas/metabolismo , Esporas Fúngicas/fisiología , Staphylococcus aureus/crecimiento & desarrollo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA