Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.166
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 23(10): 680-694, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35513717

RESUMEN

Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.


Asunto(s)
Ácido Abscísico , Reguladores del Crecimiento de las Plantas , Brasinoesteroides , Citocininas , Etilenos , Regulación de la Expresión Génica de las Plantas , Giberelinas , Hormonas , Ácidos Indolacéticos , Plantas/genética , Estrés Fisiológico/fisiología
2.
Cell ; 164(3): 447-59, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26777403

RESUMEN

Plant roots forage the soil for minerals whose concentrations can be orders of magnitude away from those required for plant cell function. Selective uptake in multicellular organisms critically requires epithelia with extracellular diffusion barriers. In plants, such a barrier is provided by the endodermis and its Casparian strips--cell wall impregnations analogous to animal tight and adherens junctions. Interestingly, the endodermis undergoes secondary differentiation, becoming coated with hydrophobic suberin, presumably switching from an actively absorbing to a protective epithelium. Here, we show that suberization responds to a wide range of nutrient stresses, mediated by the stress hormones abscisic acid and ethylene. We reveal a striking ability of the root to not only regulate synthesis of suberin, but also selectively degrade it in response to ethylene. Finally, we demonstrate that changes in suberization constitute physiologically relevant, adaptive responses, pointing to a pivotal role of the endodermal membrane in nutrient homeostasis.


Asunto(s)
Arabidopsis/fisiología , Raíces de Plantas/fisiología , Ácido Abscísico/metabolismo , Arabidopsis/citología , Diferenciación Celular , Etilenos/metabolismo , Fluoresceínas/análisis , Lípidos/química , Raíces de Plantas/citología , Transducción de Señal
3.
Cell ; 163(3): 670-83, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496607

RESUMEN

Ethylene is a gaseous phytohormone that plays vital roles in plant growth and development. Previous studies uncovered EIN2 as an essential signal transducer linking ethylene perception on ER to transcriptional regulation in the nucleus through a "cleave and shuttle" model. In this study, we report another mechanism of EIN2-mediated ethylene signaling, whereby EIN2 imposes the translational repression of EBF1 and EBF2 mRNA. We find that the EBF1/2 3' UTRs mediate EIN2-directed translational repression and identify multiple poly-uridylates (PolyU) motifs as functional cis elements of 3' UTRs. Furthermore, we demonstrate that ethylene induces EIN2 to associate with 3' UTRs and target EBF1/2 mRNA to cytoplasmic processing-body (P-body) through interacting with multiple P-body factors, including EIN5 and PABs. Our study illustrates translational regulation as a key step in ethylene signaling and presents mRNA 3' UTR functioning as a "signal transducer" to sense and relay cellular signaling in plants. VIDEO ABSTRACT.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Receptores de Superficie Celular/metabolismo , Proteínas de Arabidopsis/genética , Exorribonucleasas/metabolismo , Proteínas F-Box/genética , Conformación de Ácido Nucleico , Proteínas de Plantas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/metabolismo
4.
Cell ; 163(3): 684-97, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496608

RESUMEN

The central role of translation in modulating gene activity has long been recognized, yet the systematic exploration of quantitative changes in translation at a genome-wide scale in response to a specific stimulus has only recently become technically feasible. Using the well-characterized signaling pathway of the phytohormone ethylene and plant-optimized genome-wide ribosome footprinting, we have uncovered a molecular mechanism linking this hormone's perception to the activation of a gene-specific translational control mechanism. Characterization of one of the targets of this translation regulatory machinery, the ethylene signaling component EBF2, indicates that the signaling molecule EIN2 and the nonsense-mediated decay proteins UPFs play a central role in this ethylene-induced translational response. Furthermore, the 3'UTR of EBF2 is sufficient to confer translational regulation and required for the proper activation of ethylene responses. These findings represent a mechanistic paradigm of gene-specific regulation of translation in response to a key growth regulator.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Biosíntesis de Proteínas , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Regiones no Traducidas 3' , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN , Etilenos/metabolismo , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Factores de Transcripción/metabolismo
5.
Cell ; 163(3): 543-4, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496600

RESUMEN

Ethylene regulates many aspects of plant growth and development. In the presence of ethylene, the C terminus of EIN2 (EIN2C) translocates into the nucleus and activates transcription. Li et al. and Merchante et al. show that EIN2C also regulates translation through an interaction with the 3' UTRs of transcripts.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Receptores de Superficie Celular/metabolismo
6.
Nat Rev Mol Cell Biol ; 23(10): 643, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35879435

Asunto(s)
Etilenos , Hormonas
7.
Plant Cell ; 36(5): 1736-1754, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38315889

RESUMEN

Roses are among the most popular ornamental plants cultivated worldwide for their great economic, symbolic, and cultural importance. Nevertheless, rapid petal senescence markedly reduces rose (Rosa hybrida) flower quality and value. Petal senescence is a developmental process tightly regulated by various phytohormones. Ethylene accelerates petal senescence, while gibberellic acid (GA) delays this process. However, the molecular mechanisms underlying the crosstalk between these phytohormones in the regulation of petal senescence remain largely unclear. Here, we identified SENESCENCE-ASSOCIATED F-BOX (RhSAF), an ethylene-induced F-box protein gene encoding a recognition subunit of the SCF-type E3 ligase. We demonstrated that RhSAF promotes degradation of the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (RhGID1) to accelerate petal senescence. Silencing RhSAF expression delays petal senescence, while suppressing RhGID1 expression accelerates petal senescence. RhSAF physically interacts with RhGID1s and targets them for ubiquitin/26S proteasome-mediated degradation. Accordingly, ethylene-induced RhGID1C degradation and RhDELLA3 accumulation are compromised in RhSAF-RNAi lines. Our results demonstrate that ethylene antagonizes GA activity through RhGID1 degradation mediated by the E3 ligase RhSAF. These findings enhance our understanding of the phytohormone crosstalk regulating petal senescence and provide insights for improving flower longevity.


Asunto(s)
Etilenos , Proteínas F-Box , Flores , Regulación de la Expresión Génica de las Plantas , Giberelinas , Proteínas de Plantas , Rosa , Etilenos/metabolismo , Etilenos/farmacología , Giberelinas/metabolismo , Giberelinas/farmacología , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rosa/genética , Rosa/efectos de los fármacos , Rosa/metabolismo , Flores/genética , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Senescencia de la Planta/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética
8.
Plant Cell ; 36(6): 2393-2409, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38489602

RESUMEN

Optimizing the root architecture of crops is an effective strategy for improving crop yields. Soil compaction is a serious global problem that limits crop productivity by restricting root growth, but the underlying molecular mechanisms are largely unclear. Here, we show that ethylene stimulates rice (Oryza sativa) crown root development in response to soil compaction. First, we demonstrate that compacted soil promotes ethylene production and the accumulation of ETHYLENE INSENSITIVE 3-LIKE 1 (OsEIL1) in rice roots, stimulating crown root primordia initiation and development, thereby increasing crown root number in lower stem nodes. Through transcriptome profiling and molecular analyses, we reveal that OsEIL1 directly activates the expression of WUSCHEL-RELATED HOMEOBOX 11 (OsWOX11), an activator of crown root emergence and growth, and that OsWOX11 mutations delay crown root development, thus impairing the plant's response to ethylene and soil compaction. Genetic analysis demonstrates that OsWOX11 functions downstream of OsEIL1. In summary, our results demonstrate that the OsEIL1-OsWOX11 module regulates ethylene action during crown root development in response to soil compaction, providing a strategy for the genetic modification of crop root architecture and grain agronomic traits.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Raíces de Plantas , Factores de Transcripción , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Suelo/química , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
9.
Nature ; 591(7849): 288-292, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658715

RESUMEN

The evolutionarily conserved target of rapamycin (TOR) kinase acts as a master regulator that coordinates cell proliferation and growth by integrating nutrient, energy, hormone and stress signals in all eukaryotes1,2. Research has focused mainly on TOR-regulated translation, but how TOR orchestrates the global transcriptional network remains unclear. Here we identify ethylene-insensitive protein 2 (EIN2), a central integrator3-5 that shuttles between the cytoplasm and the nucleus, as a direct substrate of TOR in Arabidopsis thaliana. Glucose-activated TOR kinase directly phosphorylates EIN2 to prevent its nuclear localization. Notably, the rapid global transcriptional reprogramming that is directed by glucose-TOR signalling is largely compromised in the ein2-5 mutant, and EIN2 negatively regulates the expression of a wide range of target genes of glucose-activated TOR that are involved in DNA replication, cell wall and lipid synthesis and various secondary metabolic pathways. Chemical, cellular and genetic analyses reveal that cell elongation and proliferation processes that are controlled by the glucose-TOR-EIN2 axis are decoupled from canonical ethylene-CTR1-EIN2 signalling, and mediated by different phosphorylation sites. Our findings reveal a molecular mechanism by which a central signalling hub is shared but differentially modulated by diverse signalling pathways using distinct phosphorylation codes that can be specified by upstream protein kinases.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Desarrollo de la Planta , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Arabidopsis/citología , Arabidopsis/genética , Dominio Catalítico , Proteínas de Unión al ADN/metabolismo , Etilenos/metabolismo , Glucosa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Meristema/metabolismo , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Quinasas/metabolismo , Especificidad por Sustrato , Factores de Transcripción/metabolismo , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 121(2): e2314101120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165935

RESUMEN

Mycobacterium abscessus (Mab), a nontuberculous mycobacterial (NTM) species, is an emerging pathogen with high intrinsic drug resistance. Current standard-of-care therapy results in poor outcomes, demonstrating the urgent need to develop effective antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), we have identified a distinct structural subclass of N-ethylene linked aminomethyl SPCs (eAmSPCs) that are up to 64-fold more potent against Mab over the parent SPC. Mechanism of action and crystallography studies demonstrate that the eAmSPCs display a mode of ribosomal inhibition consistent with SPC. However, they exert their increased antimicrobial activity through enhanced accumulation, largely by circumventing efflux mechanisms. The N-ethylene linkage within this series plays a critical role in avoiding TetV-mediated efflux, as lead eAmSPC 2593 displays a mere fourfold susceptibility improvement against Mab ΔtetV, in contrast to the 64-fold increase for SPC. Even a minor shortening of the linkage by a single carbon, akin to 1st generation AmSPC 1950, results in a substantial increase in MICs and a 16-fold rise in susceptibility against Mab ΔtetV. These shifts suggest that longer linkages might modify the kinetics of drug expulsion by TetV, ultimately shifting the equilibrium towards heightened intracellular concentrations and enhanced antimicrobial efficacy. Furthermore, lead eAmSPCs were also shown to synergize with various classes of anti-Mab antibiotics and retain activity against clinical isolates and other mycobacterial strains. Encouraging pharmacokinetic profiles coupled with robust efficacy in Mab murine infection models suggest that eAmSPCs hold the potential to be developed into treatments for Mab and other NTM infections.


Asunto(s)
Antiinfecciosos , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Humanos , Animales , Ratones , Espectinomicina/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antibacterianos/farmacología , Micobacterias no Tuberculosas , Antiinfecciosos/farmacología , Etilenos/farmacología , Pruebas de Sensibilidad Microbiana
11.
EMBO J ; 41(19): e112282, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35975893

RESUMEN

Protein synthesis is an essential but energetically expensive cellular process that is challenged under environmental stress in plants. Recent work demonstrates that the plant hormone ethylene, through GCN2, represses general translation during flooding stress to conserve energy. Moreover, ethylene also promotes the translation of specific stress-responsive mRNAs to survive submergence stress.


Asunto(s)
Etilenos , Reguladores del Crecimiento de las Plantas , Etilenos/metabolismo , Inundaciones , Regulación de la Expresión Génica de las Plantas , Plantas/genética , Plantas/metabolismo
12.
Plant Cell ; 35(3): 1038-1057, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36471914

RESUMEN

Fruit ripening relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, and the evolutionarily conserved Mediator (MED) coactivator complex plays an essential role in this process. In tomato (Solanum lycopersicum), a model climacteric fruit, ripening is tightly coordinated by ethylene and several key transcription factors. However, the mechanism underlying the transmission of context-specific regulatory signals from these ripening-related transcription factors to the Pol II transcription machinery remains unknown. Here, we report the mechanistic function of MED25, a subunit of the plant Mediator transcriptional coactivator complex, in controlling the ethylene-mediated transcriptional program during fruit ripening. Multiple lines of evidence indicate that MED25 physically interacts with the master transcription factors of the ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE (EIL) family, thereby playing an essential role in pre-initiation complex formation during ethylene-induced gene transcription. We also show that MED25 forms a transcriptional module with EIL1 to regulate the expression of ripening-related regulatory as well as structural genes through promoter binding. Furthermore, the EIL1-MED25 module orchestrates both positive and negative feedback transcriptional circuits, along with its downstream regulators, to fine-tune ethylene homeostasis during fruit ripening.


Asunto(s)
Solanum lycopersicum , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Solanum lycopersicum/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Plant Cell ; 35(1): 390-408, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36321994

RESUMEN

Germinated plants grow in darkness until they emerge above the soil. To help the seedling penetrate the soil, most dicot seedlings develop an etiolated apical structure consisting of an apical hook and folded, unexpanded cotyledons atop a rapidly elongating hypocotyl. Brassinosteroids (BRs) are necessary for etiolated apical development, but their precise role and mechanisms remain unclear. Arabidopsis thaliana SMALL AUXIN UP RNA17 (SAUR17) is an apical-organ-specific regulator that promotes production of an apical hook and closed cotyledons. In darkness, ethylene and BRs stimulate SAUR17 expression by transcription factor complexes containing PHYTOCHROME-INTERACTING FACTORs (PIFs), ETHYLENE INSENSITIVE 3 (EIN3), and its homolog EIN3-LIKE 1 (EIL1), and BRASSINAZOLE RESISTANT1 (BZR1). BZR1 requires EIN3 and PIFs for enhanced DNA-binding and transcriptional activation of the SAUR17 promoter; while EIN3, PIF3, and PIF4 stability depends on BR signaling. BZR1 transcriptionally downregulates EIN3-BINDING F-BOX 1 and 2 (EBF1 and EBF2), which encode ubiquitin ligases mediating EIN3 and PIF3 protein degradation. By modulating the EBF-EIN3/PIF protein-stability circuit, BRs induce EIN3 and PIF3 accumulation, which underlies BR-responsive expression of SAUR17 and HOOKLESS1 and ultimately apical hook development. We suggest that in the etiolated development of apical structures, BRs primarily modulate plant sensitivity to darkness and ethylene.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Oscuridad , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Plantones/genética , Plantones/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
14.
Plant Cell ; 35(6): 2271-2292, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36916511

RESUMEN

Ethylene induces anthocyanin biosynthesis in most fruits, including apple (Malus domestica) and plum (Prunus spp.). By contrast, ethylene inhibits anthocyanin biosynthesis in pear (Pyrus spp.), but the underlying molecular mechanism remains unclear. In this study, we identified and characterized an ethylene-induced ETHYLENE RESPONSE FACTOR (ERF) transcription factor, PpETHYLENE RESPONSE FACTOR9 (PpERF9), which functions as a transcriptional repressor. Our analyses indicated PpERF9 can directly inhibit expression of the MYB transcription factor gene PpMYB114 by binding to its promoter. Additionally, PpERF9 inhibits the expression of the transcription factor gene PpRELATED TO APETALA2.4 (PpRAP2.4), which activates PpMYB114 expression, by binding to its promoter, thus forming a PpERF9-PpRAP2.4-PpMYB114 regulatory circuit. Furthermore, PpERF9 interacts with the co-repressor PpTOPLESS1 (PpTPL1) via EAR motifs to form a complex that removes the acetyl group on histone H3 and maintains low levels of acetylated H3 in the PpMYB114 and PpRAP2.4 promoter regions. The resulting suppressed expression of these 2 genes leads to decreased anthocyanin biosynthesis in pear. Collectively, these results indicate that ethylene inhibits anthocyanin biosynthesis by a mechanism that involves PpERF9-PpTPL1 complex-mediated histone deacetylation of PpMYB114 and PpRAP2.4. The data presented herein will be useful for clarifying the relationship between chromatin status and hormone signaling, with implications for plant biology research.


Asunto(s)
Malus , Pyrus , Pyrus/genética , Pyrus/metabolismo , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Histonas/metabolismo , Regulación de la Expresión Génica de las Plantas , Etilenos/metabolismo , Frutas/metabolismo , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Plant Cell ; 35(11): 4133-4154, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37542517

RESUMEN

Phytohormones play indispensable roles in plant growth and development. However, the molecular mechanisms underlying phytohormone-mediated regulation of fiber secondary cell wall (SCW) formation in cotton (Gossypium hirsutum) remain largely underexplored. Here, we provide mechanistic evidence for functional interplay between the APETALA2/ethylene response factor (AP2/ERF) transcription factor GhERF108 and auxin response factors GhARF7-1 and GhARF7-2 in dictating the ethylene-auxin signaling crosstalk that regulates fiber SCW biosynthesis. Specifically, in vitro cotton ovule culture revealed that ethylene and auxin promote fiber SCW deposition. GhERF108 RNA interference (RNAi) cotton displayed remarkably reduced cell wall thickness compared with controls. GhERF108 interacted with GhARF7-1 and GhARF7-2 to enhance the activation of the MYB transcription factor gene GhMYBL1 (MYB domain-like protein 1) in fibers. GhARF7-1 and GhARF7-2 respond to auxin signals that promote fiber SCW thickening. GhMYBL1 RNAi and GhARF7-1 and GhARF7-2 virus-induced gene silencing (VIGS) cotton displayed similar defects in fiber SCW formation as GhERF108 RNAi cotton. Moreover, the ethylene and auxin responses were reduced in GhMYBL1 RNAi plants. GhMYBL1 directly binds to the promoters of GhCesA4-1, GhCesA4-2, and GhCesA8-1 and activates their expression to promote cellulose biosynthesis, thereby boosting fiber SCW formation. Collectively, our findings demonstrate that the collaboration between GhERF108 and GhARF7-1 or GhARF7-2 establishes ethylene-auxin signaling crosstalk to activate GhMYBL1, ultimately leading to the activation of fiber SCW biosynthesis.


Asunto(s)
Fibra de Algodón , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Gossypium/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Etilenos/metabolismo , Pared Celular/metabolismo
16.
Plant Cell ; 35(8): 2887-2909, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37132483

RESUMEN

The phytohormone ethylene plays an important role in promoting the softening of climacteric fruits, such as apples (Malus domestica); however, important aspects of the underlying regulatory mechanisms are not well understood. In this study, we identified apple MITOGEN-ACTIVATED PROTEIN KINASE 3 (MdMAPK3) as an important positive regulator of ethylene-induced apple fruit softening during storage. Specifically, we show that MdMAPK3 interacts with and phosphorylates the transcription factor NAM-ATAF1/2-CUC2 72 (MdNAC72), which functions as a transcriptional repressor of the cell wall degradation-related gene POLYGALACTURONASE1 (MdPG1). The increase in MdMAPK3 kinase activity was induced by ethylene, which promoted the phosphorylation of MdNAC72 by MdMAPK3. Additionally, MdPUB24 functions as an E3 ubiquitin ligase to ubiquitinate MdNAC72, resulting in its degradation via the 26S proteasome pathway, which was enhanced by ethylene-induced phosphorylation of MdNAC72 by MdMAPK3. The degradation of MdNAC72 increased the expression of MdPG1, which in turn promoted apple fruit softening. Notably, using variants of MdNAC72 that were mutated at specific phosphorylation sites, we observed that the phosphorylation state of MdNAC72 affected apple fruit softening during storage. This study thus reveals that the ethylene-MdMAPK3-MdNAC72-MdPUB24 module is involved in ethylene-induced apple fruit softening, providing insights into climacteric fruit softening.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Frutas/metabolismo , Fosforilación , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
Nature ; 587(7832): 103-108, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32999461

RESUMEN

Plants grow within a complex web of species that interact with each other and with the plant1-10. These interactions are governed by a wide repertoire of chemical signals, and the resulting chemical landscape of the rhizosphere can strongly affect root health and development7-9,11-18. Here, to understand how interactions between microorganisms influence root growth in Arabidopsis, we established a model system for interactions between plants, microorganisms and the environment. We inoculated seedlings with a 185-member bacterial synthetic community, manipulated the abiotic environment and measured bacterial colonization of the plant. This enabled us to classify the synthetic community into four modules of co-occurring strains. We deconstructed the synthetic community on the basis of these modules, and identified interactions between microorganisms that determine root phenotype. These interactions primarily involve a single bacterial genus (Variovorax), which completely reverses the severe inhibition of root growth that is induced by a wide diversity of bacterial strains as well as by the entire 185-member community. We demonstrate that Variovorax manipulates plant hormone levels to balance the effects of our ecologically realistic synthetic root community on root growth. We identify an auxin-degradation operon that is conserved in all available genomes of Variovorax and is necessary and sufficient for the reversion of root growth inhibition. Therefore, metabolic signal interference shapes bacteria-plant communication networks and is essential for maintaining the stereotypic developmental programme of the root. Optimizing the feedbacks that shape chemical interaction networks in the rhizosphere provides a promising ecological strategy for developing more resilient and productive crops.


Asunto(s)
Arabidopsis/microbiología , Comamonadaceae/clasificación , Comamonadaceae/fisiología , Microbiota/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Comamonadaceae/genética , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Microbiota/genética , Operón/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Rizosfera , Transducción de Señal
18.
Annu Rev Cell Dev Biol ; 28: 463-87, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22856461

RESUMEN

Plants exhibit a unique developmental flexibility to ever-changing environmental conditions. To achieve their profound adaptability, plants are able to maintain permanent stem cell populations and form new organs during the entire plant life cycle. Signaling substances, called plant hormones, such as auxin, cytokinin, abscisic acid, brassinosteroid, ethylene, gibberellin, jasmonic acid, and strigolactone, govern and coordinate these developmental processes. Physiological and genetic studies have dissected the molecular components of signal perception and transduction of the individual hormonal pathways. However, over recent years it has become evident that hormones do not act only in a linear pathway. Hormonal pathways are interconnected by a complex network of interactions and feedback circuits that determines the final outcome of the individual hormone actions. This raises questions about the molecular mechanisms underlying hormonal cross talk and about how these hormonal networks are established, maintained, and modulated throughout plant development.


Asunto(s)
Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/fisiología , Brasinoesteroides/metabolismo , Citocininas/metabolismo , Citocininas/fisiología , Etilenos/metabolismo , Germinación , Giberelinas/metabolismo , Giberelinas/fisiología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo
19.
Bioessays ; 46(6): e2400043, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571390

RESUMEN

Volatile compounds, such as nitric oxide and ethylene gas, play a vital role as signaling molecules in organisms. Ethylene is a plant hormone that regulates a wide range of plant growth, development, and responses to stress and is perceived by a family of ethylene receptors that localize in the endoplasmic reticulum. Constitutive Triple Response 1 (CTR1), a Raf-like protein kinase and a key negative regulator for ethylene responses, tethers to the ethylene receptors, but undergoes nuclear translocation upon activation of ethylene signaling. This ER-to-nucleus trafficking transforms CTR1 into a positive regulator for ethylene responses, significantly enhancing stress resilience to drought and salinity. The nuclear trafficking of CTR1 demonstrates that the spatiotemporal control of ethylene signaling is essential for stress adaptation. Understanding the mechanisms governing the spatiotemporal control of ethylene signaling elements is crucial for unraveling the system-level regulatory mechanisms that collectively fine-tune ethylene responses to optimize plant growth, development, and stress adaptation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Transducción de Señal , Estrés Fisiológico , Etilenos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Retículo Endoplásmico/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Quinasas
20.
PLoS Genet ; 19(11): e1011052, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37976306

RESUMEN

Rapid and uniform seed germination is required for modern cropping system. Thus, it is important to optimize germination performance through breeding strategies in maize, in which identification for key regulators is needed. Here, we characterized an AP2/ERF transcription factor, ZmEREB92, as a negative regulator of seed germination in maize. Enhanced germination in ereb92 mutants is contributed by elevated ethylene signaling and starch degradation. Consistently, an ethylene signaling gene ZmEIL7 and an α-amylase gene ZmAMYa2 are identified as direct targets repressed by ZmEREB92. OsERF74, the rice ortholog of ZmEREB92, shows conserved function in negatively regulating seed germination in rice. Importantly, this orthologous gene pair is likely experienced convergently selection during maize and rice domestication. Besides, mutation of ZmEREB92 and OsERF74 both lead to enhanced germination under cold condition, suggesting their regulation on seed germination might be coupled with temperature sensitivity. Collectively, our findings uncovered the ZmEREB92-mediated regulatory mechanism of seed germination in maize and provide breeding targets for maize and rice to optimize seed germination performance towards changing climates.


Asunto(s)
Germinación , Oryza , Germinación/genética , Almidón/genética , Almidón/metabolismo , Zea mays/metabolismo , Semillas/genética , Semillas/metabolismo , Fitomejoramiento , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA