Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 628(8008): 569-575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570681

RESUMEN

Shuotheriids are Jurassic mammaliaforms that possess pseudotribosphenic teeth in which a pseudotalonid is anterior to the trigonid in the lower molar, contrasting with the tribosphenic pattern of therian mammals (placentals, marsupials and kin) in which the talonid is posterior to the trigonid1-4. The origin of the pseudotribosphenic teeth remains unclear, obscuring our perception of shuotheriid affinities and the early evolution of mammaliaforms1,5-9. Here we report a new Jurassic shuotheriid represented by two skeletal specimens. Their complete pseudotribosphenic dentitions allow reidentification of dental structures using serial homology and the tooth occlusal relationship. Contrary to the conventional view1,2,6,10,11, our findings show that dental structures of shuotheriids can be homologized to those of docodontans and partly support homologous statements for some dental structures between docodontans and other mammaliaforms6,12. The phylogenetic analysis based on new evidence removes shuotheriids from the tribosphenic ausktribosphenids (including monotremes) and clusters them with docodontans to form a new clade, Docodontiformes, that is characterized by pseudotribosphenic features. In the phylogeny, docodontiforms and 'holotherians' (Kuehneotherium, monotremes and therians)13 evolve independently from a Morganucodon-like ancestor with triconodont molars by labio-lingual widening their posterior teeth for more efficient food processing. The pseudotribosphenic pattern passed a cusp semitriangulation stage9, whereas the tribosphenic pattern and its precursor went through a stage of cusp triangulation. The two different processes resulted in complex tooth structures and occlusal patterns that elucidate the earliest diversification of mammaliaforms.


Asunto(s)
Evolución Biológica , Fósiles , Mamíferos , Diente , Animales , Euterios/anatomía & histología , Mamíferos/anatomía & histología , Mamíferos/clasificación , Mamíferos/fisiología , Marsupiales/anatomía & histología , Diente Molar/anatomía & histología , Diente Molar/fisiología , Filogenia , Diente/anatomía & histología , Diente/fisiología , Masticación
2.
Nature ; 602(7896): 263-267, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34937052

RESUMEN

High-throughput sequencing projects generate genome-scale sequence data for species-level phylogenies1-3. However, state-of-the-art Bayesian methods for inferring timetrees are computationally limited to small datasets and cannot exploit the growing number of available genomes4. In the case of mammals, molecular-clock analyses of limited datasets have produced conflicting estimates of clade ages with large uncertainties5,6, and thus the timescale of placental mammal evolution remains contentious7-10. Here we develop a Bayesian molecular-clock dating approach to estimate a timetree of 4,705 mammal species integrating information from 72 mammal genomes. We show that increasingly larger phylogenomic datasets produce diversification time estimates with progressively smaller uncertainties, facilitating precise tests of macroevolutionary hypotheses. For example, we confidently reject an explosive model of placental mammal origination in the Palaeogene8 and show that crown Placentalia originated in the Late Cretaceous with unambiguous ordinal diversification in the Palaeocene/Eocene. Our Bayesian methodology facilitates analysis of complete genomes and thousands of species within an integrated framework, making it possible to address hitherto intractable research questions on species diversifications. This approach can be used to address other contentious cases of animal and plant diversifications that require analysis of species-level phylogenomic datasets.


Asunto(s)
Evolución Molecular , Mamíferos , Filogenia , Animales , Teorema de Bayes , Euterios/clasificación , Euterios/genética , Femenino , Mamíferos/clasificación , Mamíferos/genética , Placenta , Embarazo , Especificidad de la Especie
3.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38276965

RESUMEN

The varying pathways of mammary gland development across species and evolutionary history are underexplored, largely due to a lack of model systems. Recent progress in organoid technology holds the promise of enabling in-depth studies of the developmental adaptations that have occurred throughout the evolution of different species, fostering beneficial phenotypes. The practical application of this technology for mammary glands has been mostly confined to rodents and humans. In the current study, we have successfully created next-generation 3D mammary gland organoids from eight eutherian mammals and the first branched organoid of a marsupial mammary gland. Using mammary organoids, we identified a role for ROCK protein in regulating branching morphogenesis, a role that manifests differently in organoids from different mammals. This finding demonstrates the utility of the 3D organoid model for understanding the evolution and adaptations of signaling pathways. These achievements highlight the potential for organoid models to expand our understanding of mammary gland biology and evolution, and their potential utility in studies of lactation or breast cancer.


Asunto(s)
Glándulas Mamarias Humanas , Marsupiales , Humanos , Femenino , Animales , Marsupiales/genética , Organoides/metabolismo , Lactancia , Euterios , Glándulas Mamarias Animales/metabolismo
4.
PLoS Biol ; 22(1): e3002422, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38252616

RESUMEN

When vertebrates first conquered the land, they encountered a visual world that was radically distinct from that of their aquatic ancestors. Fish exploit the strong wavelength-dependent interactions of light with water by differentially feeding the signals from up to 5 spectral photoreceptor types into distinct behavioural programmes. However, above the water the same spectral rules do not apply, and this called for an update to visual circuit strategies. Early tetrapods soon evolved the double cone, a still poorly understood pair of new photoreceptors that brought the "ancestral terrestrial" complement from 5 to 7. Subsequent nonmammalian lineages differentially adapted this highly parallelised retinal input strategy for their diverse visual ecologies. By contrast, mammals shed most ancestral photoreceptors and converged on an input strategy that is exceptionally general. In eutherian mammals including in humans, parallelisation emerges gradually as the visual signal traverses the layers of the retina and into the brain.


Asunto(s)
Retina , Agua , Animales , Humanos , Células Fotorreceptoras Retinianas Conos , Encéfalo , Ecología , Euterios
5.
Proc Natl Acad Sci U S A ; 121(23): e2401973121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38809707

RESUMEN

In many mammals, recombination events are concentrated in hotspots directed by a sequence-specific DNA-binding protein named PRDM9. Intriguingly, PRDM9 has been lost several times in vertebrates, and notably among mammals, it has been pseudogenized in the ancestor of canids. In the absence of PRDM9, recombination hotspots tend to occur in promoter-like features such as CpG islands. It has thus been proposed that one role of PRDM9 could be to direct recombination away from PRDM9-independent hotspots. However, the ability of PRDM9 to direct recombination hotspots has been assessed in only a handful of species, and a clear picture of how much recombination occurs outside of PRDM9-directed hotspots in mammals is still lacking. In this study, we derived an estimator of past recombination activity based on signatures of GC-biased gene conversion in substitution patterns. We quantified recombination activity in PRDM9-independent hotspots in 52 species of boreoeutherian mammals. We observe a wide range of recombination rates at these loci: several species (such as mice, humans, some felids, or cetaceans) show a deficit of recombination, while a majority of mammals display a clear peak of recombination. Our results demonstrate that PRDM9-directed and PRDM9-independent hotspots can coexist in mammals and that their coexistence appears to be the rule rather than the exception. Additionally, we show that the location of PRDM9-independent hotspots is relatively more stable than that of PRDM9-directed hotspots, but that PRDM9-independent hotspots nevertheless evolve slowly in concert with DNA hypomethylation.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Recombinación Genética , Animales , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Mamíferos/genética , Islas de CpG/genética , Euterios/genética , Ratones , Femenino , Conversión Génica , Evolución Molecular
6.
Nature ; 587(7833): 240-245, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177664

RESUMEN

The Zoonomia Project is investigating the genomics of shared and specialized traits in eutherian mammals. Here we provide genome assemblies for 131 species, of which all but 9 are previously uncharacterized, and describe a whole-genome alignment of 240 species of considerable phylogenetic diversity, comprising representatives from more than 80% of mammalian families. We find that regions of reduced genetic diversity are more abundant in species at a high risk of extinction, discern signals of evolutionary selection at high resolution and provide insights from individual reference genomes. By prioritizing phylogenetic diversity and making data available quickly and without restriction, the Zoonomia Project aims to support biological discovery, medical research and the conservation of biodiversity.


Asunto(s)
Conservación de los Recursos Naturales , Euterios/clasificación , Euterios/genética , Variación Genética , Genómica/métodos , Descubrimiento del Conocimiento , Animales , Biodiversidad , Investigación Biomédica , Conservación de los Recursos Naturales/métodos , Evolución Molecular , Extinción Biológica , Especiación Genética , Humanos , Infecciones , Descubrimiento del Conocimiento/métodos , Pérdida de Heterocigocidad , Neoplasias , Filogenia , Medición de Riesgo , Selección Genética , Alineación de Secuencia , Especificidad de la Especie , Ponzoñas
7.
Nature ; 583(7815): 286-289, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380510

RESUMEN

The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Euterios/virología , Evolución Molecular , Genoma Viral/genética , Homología de Secuencia de Ácido Nucleico , Animales , Betacoronavirus/clasificación , COVID-19 , China , Quirópteros/virología , Chlorocebus aethiops , Proteínas de la Envoltura de Coronavirus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Proteínas M de Coronavirus , Proteínas de la Nucleocápside de Coronavirus , Reservorios de Enfermedades/virología , Genómica , Especificidad del Huésped , Humanos , Pulmón/patología , Pulmón/virología , Malasia , Proteínas de la Nucleocápside/genética , Pandemias , Fosfoproteínas , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Neumonía Viral/virología , Reacción en Cadena de la Polimerasa , Recombinación Genética , SARS-CoV-2 , Alineación de Secuencia , Análisis de Secuencia de ARN , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Proteínas del Envoltorio Viral/genética , Proteínas de la Matriz Viral/genética , Zoonosis/transmisión , Zoonosis/virología
8.
Nature ; 583(7815): 282-285, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32218527

RESUMEN

The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Euterios/virología , Evolución Molecular , Genoma Viral/genética , Homología de Secuencia de Ácido Nucleico , Secuencia de Aminoácidos , Animales , Betacoronavirus/química , Betacoronavirus/clasificación , COVID-19 , China/epidemiología , Quirópteros/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Reservorios de Enfermedades/virología , Genómica , Humanos , Malasia , Pandemias , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Neumonía Viral/virología , Recombinación Genética , SARS-CoV-2 , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Zoonosis/virología
9.
Nature ; 581(7807): 221-224, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32225175

RESUMEN

A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) recently emerged and is rapidly spreading in humans, causing COVID-191,2. A key to tackling this pandemic is to understand the receptor recognition mechanism of the virus, which regulates its infectivity, pathogenesis and host range. SARS-CoV-2 and SARS-CoV recognize the same receptor-angiotensin-converting enzyme 2 (ACE2)-in humans3,4. Here we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 (engineered to facilitate crystallization) in complex with ACE2. In comparison with the SARS-CoV RBD, an ACE2-binding ridge in SARS-CoV-2 RBD has a more compact conformation; moreover, several residue changes in the SARS-CoV-2 RBD stabilize two virus-binding hotspots at the RBD-ACE2 interface. These structural features of SARS-CoV-2 RBD increase its ACE2-binding affinity. Additionally, we show that RaTG13, a bat coronavirus that is closely related to SARS-CoV-2, also uses human ACE2 as its receptor. The differences among SARS-CoV-2, SARS-CoV and RaTG13 in ACE2 recognition shed light on the potential animal-to-human transmission of SARS-CoV-2. This study provides guidance for intervention strategies that target receptor recognition by SARS-CoV-2.


Asunto(s)
Betacoronavirus/química , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Receptores Virales/química , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Zoonosis/virología , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19 , China/epidemiología , Quirópteros/virología , Coronavirus/química , Coronavirus/aislamiento & purificación , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Cristalización , Cristalografía por Rayos X , Reservorios de Enfermedades/virología , Euterios/virología , Humanos , Modelos Moleculares , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Neumonía Viral/virología , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Zoonosis/epidemiología , Zoonosis/transmisión
10.
Proc Natl Acad Sci U S A ; 120(22): e2208654120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216522

RESUMEN

The development of precise neural circuits in the brain requires spontaneous patterns of neural activity prior to functional maturation. In the rodent cerebral cortex, patchwork and wave patterns of activity develop in somatosensory and visual regions, respectively, and are present at birth. However, whether such activity patterns occur in noneutherian mammals, as well as when and how they arise during development, remain open questions relevant for understanding brain formation in health and disease. Since the onset of patterned cortical activity is challenging to study prenatally in eutherians, here we offer an approach in a minimally invasive manner using marsupial dunnarts, whose cortex forms postnatally. We discovered similar patchwork and travelling waves in the dunnart somatosensory and visual cortices at stage 27 (equivalent to newborn mice) and examined earlier stages of development to determine the onset of these patterns and how they first emerge. We observed that these patterns of activity emerge in a region-specific and sequential manner, becoming evident as early as stage 24 in somatosensory and stage 25 in visual cortices (equivalent to embryonic day 16 and 17, respectively, in mice), as cortical layers establish and thalamic axons innervate the cortex. In addition to sculpting synaptic connections of existing circuits, evolutionarily conserved patterns of neural activity could therefore help regulate other early events in cortical development.


Asunto(s)
Corteza Cerebral , Marsupiales , Animales , Ratones , Axones , Mamíferos , Encéfalo , Euterios , Corteza Somatosensorial
11.
Proc Natl Acad Sci U S A ; 120(28): e2218900120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399384

RESUMEN

Milk production is an ancient adaptation that unites all mammals. Milk contains a microbiome that can contribute to offspring health and microbial-immunological development. We generated a comprehensive milk microbiome dataset (16S rRNA gene) for the class Mammalia, representing 47 species from all placental superorders, to determine processes structuring milk microbiomes. We show that across Mammalia, milk exposes offspring to maternal bacterial and archaeal symbionts throughout lactation. Deterministic processes of environmental selection accounted for 20% of milk microbiome assembly processes; milk microbiomes were similar from mammals with the same host superorder (Afrotheria, Laurasiathera, Euarchontoglires, and Xenarthra: 6%), environment (marine captive, marine wild, terrestrial captive, and terrestrial wild: 6%), diet (carnivore, omnivore, herbivore, and insectivore: 5%), and milk nutrient content (sugar, fat, and protein: 3%). We found that diet directly and indirectly impacted milk microbiomes, with indirect effects being mediated by milk sugar content. Stochastic processes, such as ecological drift, accounted for 80% of milk microbiome assembly processes, which was high compared to mammalian gut and mammalian skin microbiomes (69% and 45%, respectively). Even amid high stochasticity and indirect effects, our results of direct dietary effects on milk microbiomes provide support for enteromammary trafficking, representing a mechanism by which bacteria are transferred from the mother's gut to mammary gland and then to offspring postnatally. The microbial species present in milk reflect both selective pressures and stochastic processes at the host level, exemplifying various ecological and evolutionary factors acting on milk microbiomes, which, in turn, set the stage for offspring health and development.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Femenino , Embarazo , Leche , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Placenta , Microbiota/genética , Mamíferos/genética , Bacterias/genética , Euterios/genética
12.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507667

RESUMEN

Selfish genetic elements comprise significant fractions of mammalian genomes. In rare instances, host genomes domesticate segments of these elements for function. Using a complete human genome assembly and 25 additional vertebrate genomes, we re-analyzed the evolutionary trajectories and functional potential of capsid (CA) genes domesticated from Metaviridae, a lineage of retrovirus-like retrotransposons. Our study expands on previous analyses to unearth several new insights about the evolutionary histories of these ancient genes. We find that at least five independent domestication events occurred from diverse Metaviridae, giving rise to three universally retained single-copy genes evolving under purifying selection and two gene families unique to placental mammals, with multiple members showing evidence of rapid evolution. In the SIRH/RTL family, we find diverse amino-terminal domains, widespread loss of protein-coding capacity in RTL10 despite its retention in several mammalian lineages, and differential utilization of an ancient programmed ribosomal frameshift in RTL3 between the domesticated CA and protease domains. Our analyses also reveal that most members of the PNMA family in mammalian genomes encode a conserved putative amino-terminal RNA-binding domain (RBD) both adjoining and independent from domesticated CA domains. Our analyses lead to a significant correction of previous annotations of the essential CCDC8 gene. We show that this putative RBD is also present in several extant Metaviridae, revealing a novel protein domain configuration in retrotransposons. Collectively, our study reveals the divergent outcomes of multiple domestication events from diverse Metaviridae in the common ancestor of placental mammals.


Asunto(s)
Cápside , Retroelementos , Embarazo , Animales , Femenino , Humanos , Evolución Molecular , Placenta , Mamíferos/genética , Proteínas de la Cápside/genética , Euterios/genética , Filogenia
13.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35005774

RESUMEN

Only mammals evolved a neocortex, which integrates sensory-motor and cognitive functions. Significant diversifications in the cellular composition and connectivity of the neocortex occurred between the two main therian groups: marsupials and eutherians. However, the developmental mechanisms underlying these diversifications are largely unknown. Here, we compared the neocortical transcriptomes of Sminthopsis crassicaudata, a mouse-sized marsupial, with those of eutherian mice at two developmentally equivalent time points corresponding to deeper and upper layer neuron generation. Enrichment analyses revealed more mature gene networks in marsupials at the early stage, which reverted at the later stage, suggesting a more precocious but protracted neuronal maturation program relative to birth timing of cortical layers. We ranked genes expressed in different species and identified important differences in gene expression rankings between species. For example, genes known to be enriched in upper-layer cortical projection neuron subtypes, such as Cux1, Lhx2 and Satb2, likely relate to corpus callosum emergence in eutherians. These results show molecular heterochronies of neocortical development in Theria, and highlight changes in gene expression and cell type composition that may underlie neocortical evolution and diversification. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Evolución Biológica , Euterios/crecimiento & desarrollo , Marsupiales/crecimiento & desarrollo , Neocórtex/crecimiento & desarrollo , Transcriptoma , Animales , Euterios/clasificación , Euterios/genética , Marsupiales/clasificación , Marsupiales/genética , Ratones , Neocórtex/metabolismo , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Development ; 149(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36162816

RESUMEN

Retrotransposon Gag-like 5 [RTL5, also known as sushi-ichi-related retrotransposon homolog 8 (SIRH8)] and RTL6 (also known as SIRH3) are eutherian-specific genes presumably derived from a retrovirus and phylogenetically related to each other. They, respectively, encode a strongly acidic and extremely basic protein, and are well conserved among the eutherians. Here, we report that RTL5 and RTL6 are microglial genes with roles in the front line of innate brain immune response. Venus and mCherry knock-in mice exhibited expression of RTL5-mCherry and RTL6-Venus fusion proteins in microglia and appeared as extracellular dots and granules in the central nervous system. These proteins display a rapid response to pathogens such as lipopolysaccharide (LPS), double-stranded (ds) RNA analog and non-methylated CpG DNA, acting both cooperatively and/or independently. Experiments using Rtl6 or Rtl5 knockout mice provided additional evidence that RTL6 and RTL5 act as factors against LPS and dsRNA, respectively, in the brain, providing the first demonstration that retrovirus-derived genes play a role in the eutherian innate immune system. Finally, we propose a model emphasizing the importance of extra-embryonic tissues as the origin site of retrovirus-derived genes. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Lipopolisacáridos , Retroviridae , Animales , Encéfalo/metabolismo , Euterios/genética , Humanos , Sistema Inmunológico , Inmunidad Innata/genética , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Noqueados , Microglía/metabolismo , ARN Bicatenario/metabolismo , Retroelementos/genética , Retroviridae/genética
15.
PLoS Biol ; 20(4): e3001615, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35476669

RESUMEN

Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.


Asunto(s)
Placenta , Proteínas de Unión al ARN , Empalme Alternativo/genética , Animales , Euterios/genética , Femenino , Placenta/metabolismo , Embarazo , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(40): e2204716119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161929

RESUMEN

Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive. Here, we performed comprehensive comparative epigenomic and transcription factor binding analyses among pigs, humans, and mice to identify pluripotency-associated SEs. Like typical enhancers, SEs displayed rapid evolution in mammals. We showed that BRD4 is an essential and conserved activator for mammalian pluripotency-associated SEs. Comparative motif enrichment analysis revealed 30 shared transcription factor binding motifs among the three species. The majority of transcriptional factors that bind to identified motifs are known regulators associated with pluripotency. Further, we discovered three pluripotency-associated SEs (SE-SOX2, SE-PIM1, and SE-FGFR1) that displayed remarkable conservation in placental mammals and were sufficient to drive reporter gene expression in a pluripotency-dependent manner. Disruption of these conserved SEs through the CRISPR-Cas9 approach severely impaired stem cell pluripotency. Our study provides insights into the understanding of conserved regulatory mechanisms underlying the maintenance of pluripotency as well as species-specific modulation of the pluripotency-associated regulatory networks in mammals.


Asunto(s)
Elementos de Facilitación Genéticos , Células Madre Pluripotentes , Animales , Proteínas de Ciclo Celular/metabolismo , Elementos de Facilitación Genéticos/genética , Euterios/genética , Femenino , Humanos , Ratones , Proteínas Nucleares/metabolismo , Placenta/metabolismo , Células Madre Pluripotentes/metabolismo , Embarazo , Porcinos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(40): e2209139119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161960

RESUMEN

Decrypting the rearrangements that drive mammalian chromosome evolution is critical to understanding the molecular bases of speciation, adaptation, and disease susceptibility. Using 8 scaffolded and 26 chromosome-scale genome assemblies representing 23/26 mammal orders, we computationally reconstructed ancestral karyotypes and syntenic relationships at 16 nodes along the mammalian phylogeny. Three different reference genomes (human, sloth, and cattle) representing phylogenetically distinct mammalian superorders were used to assess reference bias in the reconstructed ancestral karyotypes and to expand the number of clades with reconstructed genomes. The mammalian ancestor likely had 19 pairs of autosomes, with nine of the smallest chromosomes shared with the common ancestor of all amniotes (three still conserved in extant mammals), demonstrating a striking conservation of synteny for ∼320 My of vertebrate evolution. The numbers and types of chromosome rearrangements were classified for transitions between the ancestral mammalian karyotype, descendent ancestors, and extant species. For example, 94 inversions, 16 fissions, and 14 fusions that occurred over 53 My differentiated the therian from the descendent eutherian ancestor. The highest breakpoint rate was observed between the mammalian and therian ancestors (3.9 breakpoints/My). Reconstructed mammalian ancestor chromosomes were found to have distinct evolutionary histories reflected in their rates and types of rearrangements. The distributions of genes, repetitive elements, topologically associating domains, and actively transcribed regions in multispecies homologous synteny blocks and evolutionary breakpoint regions indicate that purifying selection acted over millions of years of vertebrate evolution to maintain syntenic relationships of developmentally important genes and regulatory landscapes of gene-dense chromosomes.


Asunto(s)
Evolución Molecular , Cariotipo , Mamíferos , Sintenía , Animales , Bovinos/genética , Cromosomas de los Mamíferos/genética , Euterios/genética , Humanos , Mamíferos/genética , Filogenia , Perezosos/genética , Sintenía/genética
18.
Mol Biol Evol ; 40(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36721950

RESUMEN

Genomic imprinting is a parent-of-origin-specific expression phenomenon that plays fundamental roles in many biological processes. In animals, imprinting is only observed in therian mammals, with ∼200 imprinted genes known in humans and mice. The imprinting pattern in marsupials has been minimally investigated by examining orthologs to known eutherian imprinted genes. To identify marsupial-specific imprinting in an unbiased way, we performed RNA-seq studies on samples of fetal brain and placenta from the reciprocal cross progeny of two laboratory opossum stocks. We inferred allele-specific expression for >3,000 expressed genes and discovered/validated 13 imprinted genes, including three previously known imprinted genes, Igf2r, Peg10, and H19. We estimate that marsupials imprint ∼60 autosomal genes, which is a much smaller set compared with eutherians. Among the nine novel imprinted genes, three noncoding RNAs have no known homologs in eutherian mammals, while the remaining genes have important functions in pluripotency, transcription regulation, nucleolar homeostasis, and neural differentiation. Methylation analyses at promoter CpG islands revealed differentially methylated regions in five of these marsupial-specific imprinted genes, suggesting that differential methylation is a common mechanism in the epigenetic regulation of marsupial imprinting. Clustering and co-regulation were observed at marsupial imprinting loci Pou5f3-Npdc1 and Nkrfl-Ipncr2, but eutherian-type multi-gene imprinting clusters were not detected. Also differing from eutherian mammals, the brain and placenta imprinting profiles are remarkably similar in opossums, presumably due to the shared origin of these organs from the trophectoderm. Our results contribute to a fuller understanding of the origin, evolution, and mechanisms of genomic imprinting in therian mammals.


Asunto(s)
Marsupiales , Embarazo , Humanos , Femenino , Animales , Ratones , Marsupiales/genética , Metilación de ADN , Epigénesis Genética , Duplicación de Gen , Impresión Genómica , Zarigüeyas/genética , Mamíferos , Euterios/genética
19.
Genome Res ; 31(8): 1353-1365, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34301625

RESUMEN

Susumu Ohno proposed that the gene content of the mammalian X Chromosome should remain highly conserved due to dosage compensation. X Chromosome linkage (gene order) conservation is widespread in placental mammals but does not fall within the scope of Ohno's prediction and may be an indirect result of selection on gene content or selection against rearrangements that might disrupt X-Chromosome inactivation (XCI). Previous comparisons between the human and mouse X Chromosome sequences have suggested that although single-copy X Chromosome genes are conserved between species, most ampliconic genes were independently acquired. To better understand the evolutionary and functional constraints on X-linked gene content and linkage conservation in placental mammals, we aligned a new, high-quality, long-read X Chromosome reference assembly from the domestic cat (incorporating 19.3 Mb of targeted BAC clone sequence) to the pig, human, and mouse assemblies. A comprehensive analysis of annotated X-linked orthologs in public databases demonstrated that the majority of ampliconic gene families were present on the ancestral placental X Chromosome. We generated a domestic cat Hi-C contact map from an F1 domestic cat/Asian leopard cat hybrid and demonstrated the formation of the bipartite structure found in primate and rodent inactivated X Chromosomes. Conservation of gene order and recombination patterns is attributable to strong selective constraints on three-dimensional genomic architecture necessary for superloop formation. Species with rearranged X Chromosomes retain the ancestral order and relative spacing of loci critical for superloop formation during XCI, with compensatory inversions evolving to maintain these long-range physical interactions.


Asunto(s)
Placenta , Cromosoma X , Animales , Gatos/genética , Euterios/genética , Evolución Molecular , Femenino , Genómica , Ratones , Embarazo , Porcinos , Cromosoma X/genética , Inactivación del Cromosoma X
20.
J Anat ; 244(1): 1-21, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37720992

RESUMEN

After successfully diversifying during the Paleocene, the descendants of the first wave of mammals that survived the end-Cretaceous mass extinction waned throughout the Eocene. Competition with modern crown clades and intense climate fluctuations may have been part of the factors leading to the extinction of these archaic groups. Why these taxa went extinct has rarely been studied from the perspective of the nervous system. Here, we describe the first virtual endocasts for the archaic order Tillodontia. Three species from the middle Eocene of North America were analyzed: Trogosus hillsii, Trogosus grangeri, and Trogosus castoridens. We made morphological comparisons with the plaster endocast of another tillodont, Tillodon fodiens, as well as groups potentially related to Tillodontia: Pantodonta, Arctocyonidae, and Cimolesta. Trogosus shows very little inter-specific variation with the only potential difference being related to the fusion of the optic canal and sphenorbital fissure. Many ancestral features are displayed by Trogosus, including an exposed midbrain, small neocortex, orbitotemporal canal ventral to rhinal fissure, and a broad circular fissure. Potential characteristics that could unite Tillodontia with Pantodonta, and Arctocyonidae are the posterior position of cranial nerve V3 exit in relation to the cerebrum and the low degree of development of the subarcuate fossa. The presence of large olfactory bulbs and a relatively small neocortex are consistent with a terrestrial lifestyle. A relatively small neocortex may have put Trogosus at risk when competing with artiodactyls for potentially similar resources and avoiding predation from archaic carnivorans, both of which are known to have had larger relative brain and neocortex sizes in the Eocene. These factors may have possibly exacerbated the extinction of Tillodontia, which showed highly specialized morphologies despite the increase in climate fluctuations throughout the Eocene, before disappearing during the middle Eocene.


Asunto(s)
Artiodáctilos , Euterios , Animales , Femenino , Embarazo , Evolución Biológica , Fósiles , Placenta , Encéfalo/anatomía & histología , Mamíferos/anatomía & histología , Artiodáctilos/anatomía & histología , Filogenia , Extinción Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA