Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 675
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Alzheimers Dement ; 20(6): 4092-4105, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38716833

RESUMEN

INTRODUCTION: The limbic system is critical for memory function and degenerates early in the Alzheimer's disease continuum. Whether obstructive sleep apnea (OSA) is associated with alterations in the limbic white matter tracts remains understudied. METHODS: Polysomnography, neurocognitive assessment, and brain magnetic resonance imaging (MRI) were performed in 126 individuals aged 55-86 years, including 70 cognitively unimpaired participants and 56 participants with mild cognitive impairment (MCI). OSA measures of interest were the apnea-hypopnea index and composite variables of sleep fragmentation and hypoxemia. Microstructural properties of the cingulum, fornix, and uncinate fasciculus were estimated using free water-corrected diffusion tensor imaging. RESULTS: Higher levels of OSA-related hypoxemia were associated with higher left fornix diffusivities only in participants with MCI. Microstructure of the other white matter tracts was not associated with OSA measures. Higher left fornix diffusivities correlated with poorer episodic verbal memory. DISCUSSION: OSA may contribute to fornix damage and memory dysfunction in MCI. HIGHLIGHTS: Sleep apnea-related hypoxemia was associated with altered fornix integrity in MCI. Altered fornix integrity correlated with poorer memory function. Sleep apnea may contribute to fornix damage and memory dysfunction in MCI.


Asunto(s)
Disfunción Cognitiva , Imagen de Difusión Tensora , Fórnix , Hipoxia , Humanos , Masculino , Femenino , Disfunción Cognitiva/etiología , Anciano , Fórnix/diagnóstico por imagen , Fórnix/patología , Persona de Mediana Edad , Anciano de 80 o más Años , Hipoxia/complicaciones , Polisomnografía , Pruebas Neuropsicológicas/estadística & datos numéricos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen por Resonancia Magnética , Síndromes de la Apnea del Sueño/complicaciones , Apnea Obstructiva del Sueño/complicaciones
2.
J Cogn Neurosci ; 35(10): 1635-1655, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584584

RESUMEN

In March 2020, C.T., a kind, bright, and friendly young woman underwent surgery for a midline tumor involving her septum pellucidum and extending down into her fornices bilaterally. Following tumor diagnosis and surgery, C.T. experienced significant memory deficits: C.T.'s family reported that she could remember things throughout the day, but when she woke up in the morning or following a nap, she would expect to be in the hospital, forgetting all the information that she had learned before sleep. The current study aimed to empirically validate C.T.'s pattern of memory loss and explore its neurological underpinnings. On two successive days, C.T. and age-matched controls watched an episode of a TV show and took a nap or stayed awake before completing a memory test. Although C.T. performed numerically worse than controls in both conditions, sleep profoundly exacerbated her memory impairment, such that she could not recall any details following a nap. This effect was replicated in a second testing session. High-resolution MRI scans showed evidence of the trans-callosal surgical approach's impact on the mid-anterior corpus callosum, indicated that C.T. had perturbed white matter particularly in the right fornix column, and demonstrated that C.T.'s hippocampal volumes did not differ from controls. These findings suggest that the fornix is important for processing episodic memories during sleep. As a key output pathway of the hippocampus, the fornix may ensure that specific memories are replayed during sleep, maintain the balance of sleep stages, or allow for the retrieval of memories following sleep.


Asunto(s)
Recuerdo Mental , Sueño , Humanos , Femenino , Fórnix/diagnóstico por imagen , Aprendizaje , Hipocampo/diagnóstico por imagen , Trastornos de la Memoria/etiología
3.
Eur J Neurosci ; 57(7): 1141-1160, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36808163

RESUMEN

Converging evidence from studies of human and nonhuman animals suggests that the hippocampus contributes to sequence learning by using temporal context to bind sequentially occurring items. The fornix is a white matter pathway containing the major input and output pathways of the hippocampus, including projections from medial septum and to diencephalon, striatum, lateral septum and prefrontal cortex. If the fornix meaningfully contributes to hippocampal function, then individual differences in fornix microstructure might predict sequence memory. Here, we tested this prediction by performing tractography in 51 healthy adults who had undertaken a sequence memory task. Microstructure properties of the fornix were compared with those of tracts connecting medial temporal lobe regions but not predominantly the hippocampus: the Parahippocampal Cingulum bundle (PHC) (conveying retrosplenial projections to parahippocampal cortex) and the Inferior Longitudinal Fasciculus (ILF) (conveying occipital projections to perirhinal cortex). Using principal components analysis, we combined Free-Water Elimination Diffusion Tensor Imaging and Neurite Orientation Dispersion and Density Imaging measures obtained from multi-shell diffusion MRI into two informative indices: the first (PC1) capturing axonal packing/myelin and the second (PC2) capturing microstructural complexity. We found a significant correlation between fornix PC2 and implicit reaction-time indices of sequence memory, indicating that greater fornix microstructural complexity is associated with better sequence memory. No such relationship was found with measures from the PHC and ILF. This study highlights the importance of the fornix in aiding memory for objects within a temporal context, potentially reflecting a role in mediating inter-regional communication within an extended hippocampal system.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Adulto , Humanos , Imagen de Difusión Tensora/métodos , Fórnix/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen
4.
Eur J Clin Invest ; 53(8): e13995, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37004153

RESUMEN

Alzheimer's disease (AD) is one of the most common progressive neurodegenerative diseases associated with the degradation of memory and cognitive ability. Current pharmacotherapies show little therapeutic effect in AD treatment and still cannot prevent the pathological progression of AD. Deep brain stimulation (DBS) has shown to enhance memory in morbid obese, epilepsy and traumatic brain injury patients, and cognition in Parkinson's disease (PD) patients deteriorates during DBS off. Some relevant animal studies and clinical trials have been carried out to discuss the DBS treatment for AD. Reviewing the fornix trials, no unified conclusion has been reached about the clinical benefits of DBS in AD, and the dementia ratings scale has not been effectively improved in the long term. However, some patients have presented promising results, such as improved glucose metabolism, increased connectivity in cognition-related brain regions and even elevated cognitive function rating scale scores. The fornix plays an important regulatory role in memory, attention, and emotion through its complex fibre projection to cognition-related structures, making it a promising target for DBS for AD treatment. Moreover, the current stereotaxic technique and various evaluation methods have provided references for the operator to select accurate stimulation points. Related adverse events and relatively higher costs in DBS have been emphasized. In this article, we summarize and update the research progression on fornix DBS in AD and seek to provide a reliable reference for subsequent experimental studies on DBS treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Estimulación Encefálica Profunda , Animales , Humanos , Enfermedad de Alzheimer/terapia , Estimulación Encefálica Profunda/métodos , Fórnix/metabolismo , Fórnix/patología , Encéfalo/patología , Cognición
5.
Neurocase ; 29(6): 186-190, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38700142

RESUMEN

Isolated fornix anterior column infarction has rarely been described and is difficult to assess accurately using conventional magnetic resonance imaging (MRI). We report the case of a 75-year-old female who experienced acute anterograde amnesia. MRI performed within 24 h after amnesia onset showed an isolated infarction of the bilateral anterior columns of the fornix on diffusion-weighted imaging (DWI). Her symptoms persisted for up to 50 days, and diffusion tensor imaging (DTI) showed disruption of the fiber tracts of the fornix. when acute amnesia syndrome onset, fornix anterior column infarction should be considered, and optimized DWI and DTI methods are needed to study the fornix in vivo in future research.


Asunto(s)
Imagen de Difusión Tensora , Fórnix , Humanos , Femenino , Fórnix/diagnóstico por imagen , Fórnix/patología , Anciano , Imagen de Difusión por Resonancia Magnética , Amnesia Anterógrada/etiología , Amnesia/etiología , Amnesia/diagnóstico por imagen , Infarto Cerebral/diagnóstico por imagen , Infarto Cerebral/complicaciones
6.
Dev Med Child Neurol ; 65(6): 792-802, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36335569

RESUMEN

AIM: To evaluate mammillary body abnormalities in school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal hypoxic-ischaemic encephalopathy (cases) and matched controls, and associations with cognitive outcome, hippocampal volume, and diffusivity in the mammillothalamic tract (MTT) and fornix. METHOD: Mammillary body abnormalities were scored from T1-weighted magnetic resonance imaging (MRI) in 32 cases and 35 controls (median age [interquartile range] 7 years [6 years 7 months-7 years 7 months] and 7 years 4 months [6 years 7 months-7 years 7 months] respectively). Cognition was assessed using the Wechsler Intelligence Scale for Children, Fourth Edition. Hippocampal volume (normalized by total brain volume) was measured from T1-weighted MRI. Radial diffusivity and fractional anisotropy were measured in the MTT and fornix, from diffusion-weighted MRI using deterministic tractography. RESULTS: More cases than controls had mammillary body abnormalities (34% vs 0%; p < 0.001). Cases with abnormal mammillary bodies had lower processing speed (p = 0.016) and full-scale IQ (p = 0.028) than cases without abnormal mammillary bodies, and lower scores than controls in all cognitive domains (p < 0.05). Cases with abnormal mammillary bodies had smaller hippocampi (left p = 0.016; right p = 0.004) and increased radial diffusivity in the right MTT (p = 0.004) compared with cases without mammillary body abnormalities. INTERPRETATION: Cooled children with mammillary body abnormalities at school-age have reduced cognitive scores, smaller hippocampi, and altered MTT microstructure compared with those without mammillary body abnormalities, and matched controls. WHAT THIS PAPER ADDS: Cooled children are at higher risk of mammillary body abnormalities than controls. Abnormal mammillary bodies are associated with reduced cognitive scores and smaller hippocampi. Abnormal mammillary bodies are associated with altered mammillothalamic tract diffusivity.


Asunto(s)
Encefalopatías , Enfermedades del Recién Nacido , Recién Nacido , Humanos , Niño , Lactante , Tubérculos Mamilares/diagnóstico por imagen , Tubérculos Mamilares/patología , Fórnix/patología , Imagen de Difusión por Resonancia Magnética , Cognición , Imagen por Resonancia Magnética
7.
Cereb Cortex ; 32(23): 5388-5403, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35169831

RESUMEN

Episodic memory relies on the coordination of widespread brain regions that reconstruct spatiotemporal details of an episode. These topologically dispersed brain regions can rapidly communicate through structural pathways. Research in animal and human lesion studies implicate the fornix-the major output pathway of the hippocampus-in supporting various aspects of episodic memory. Because episodic memory undergoes marked changes in early childhood, we tested the link between the fornix and episodic memory in an age window of robust memory development (ages 4-8 years). Children were tested on the stories subtest from the Children's Memory Scale, a temporal order memory task, and a source memory task. Fornix streamlines were reconstructed using probabilistic tractography to estimate fornix microstructure. In addition, we measured fornix macrostructure and computed free water. To assess selectivity of our findings, we also reconstructed the uncinate fasciculus. Findings show that children's memory increases from ages 4 to 8 and that fornix micro- and macrostructure increases between ages 4 and 8. Children's memory performance across nearly every memory task correlated with individual differences in fornix, but not uncinate fasciculus, white matter. These findings suggest that the fornix plays an important role in supporting the development of episodic memory, and potentially semantic memory, in early childhood.


Asunto(s)
Memoria Episódica , Sustancia Blanca , Niño , Humanos , Preescolar , Fórnix/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Red Nerviosa , Encéfalo
8.
Adv Exp Med Biol ; 1423: 11-20, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37525029

RESUMEN

The fornix, the limbic system's white matter tract connecting the extended hippocampal system to subcortical structures of the medial diencephalon, is strongly associated with learning and memory in humans and nonhuman primates (NHPs). Here, we sought to investigate alterations in structural connectivity across key cortical and subcortical regions after fornix transection in NHPs. We collected diffusion-weighted MRI (dMRI) data from three macaque monkeys that underwent bilateral fornix transection during neurosurgery and from four age- and cohort-matched control macaques that underwent surgery to implant a head-post but remained neurologically intact. dMRI data were collected from both groups at two time points, before and after the surgeries, and scans took place at around the same time for the two groups. We used probabilistic tractography and employed the number of tracking streamlines to quantify connectivity across our regions of interest (ROIs), in all dMRI sessions. In the neurologically intact monkeys, we observed high connectivity across certain ROIs, including the CA3 hippocampal subfield with the retrosplenial cortex (RSC), the anterior thalamus with the RSC, and the RSC with the anterior cingulate cortex (ACC). However, we found that, compared to the control group, the fornix-transected monkeys showed marked, significant, connectivity changes including increases between the anterior thalamus and the ACC and between the CA3 and the ACC, as well as decreases between the CA3 and the RSC. Our results highlight cortical and subcortical network changes after fornix transection and identify candidate indirect connectivity routes that may support memory functions after damage and/or neurodegeneration.


Asunto(s)
Imagen de Difusión Tensora , Fórnix , Animales , Humanos , Fórnix/diagnóstico por imagen , Fórnix/cirugía , Hipocampo/diagnóstico por imagen , Hipocampo/cirugía , Giro del Cíngulo , Macaca mulatta , Vías Nerviosas/diagnóstico por imagen
9.
Learn Mem ; 29(1): 29-37, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34911801

RESUMEN

Plasticity is a neural phenomenon in which experience induces long-lasting changes to neuronal circuits and is at the center of most neurobiological theories of learning and memory. However, too much plasticity is maladaptive and must be balanced with substrate stability. Area CA3 of the hippocampus provides such a balance via hemispheric lateralization, with the left hemisphere dominant in providing plasticity and the right specialized for stability. Left and right CA3 project bilaterally to CA1; however, it is not known whether this downstream merging of lateralized plasticity and stability is functional. We hypothesized that interhemispheric convergence of input from these pathways is essential for integrating spatial memory stored in the left CA3 with navigational working memory facilitated by the right CA3. To test this, we severed interhemispheric connections between the left and right hippocampi in mice and assessed learning and memory. Despite damage to this major hippocampal fiber tract, hippocampus-dependent navigational working memory and short- and long-term memory were both spared. However, tasks that required the integration of information retrieved from memory with ongoing navigational working memory and navigation were impaired. We propose that one function of interhemispheric communication in the mouse hippocampus is to integrate lateralized processing of plastic and stable circuits to facilitate memory-guided spatial navigation.


Asunto(s)
Memoria a Corto Plazo , Memoria Espacial , Animales , Fórnix , Hipocampo , Aprendizaje por Laberinto , Ratones
10.
J Biol Chem ; 296: 100188, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33334882

RESUMEN

Exosomes transfer signaling molecules such as proteins, lipids, and RNAs to facilitate cell-cell communication and play an important role in the stem cell microenvironment. In previous work, we demonstrated that rat fimbria-fornix transection (FFT) enhances neurogenesis from neural stem cells (NSCs) in the subgranular zone (SGZ). However, how neurogenesis is modulated after denervation remains unknown. Here, we investigated whether exosomes in a denervated hippocampal niche may affect neurogenesis. Using the FFT rat model, we extracted hippocampal exosomes and identified them using western blots, transmission electron microscopy (TEM), and nanoparticle size measurement. We also used RNA sequencing and bioinformatic analysis of exosomes to identify noncoding RNA expression profiles and neurogenesis-related miRNAs, respectively. RNA sequencing analysis demonstrated 9 upregulated and 15 downregulated miRNAs. miR-3559-3P and miR-6324 increased gradually after FFT. Thus, we investigated the function of miR-3559-3P and miR-6324 with NSC proliferation and differentiation assays. Transfection of miR-3559-3p and miR-6324 mimics inhibited the proliferation of NSCs and promoted the differentiation of NSCs into neurons, while miR-3559-3p and miR-6324 inhibitors promoted NSC proliferation and inhibited neuronal differentiation. Additionally, the exosome marker molecules CD9, CD63, and Alix were expressed in exosomes extracted from the hippocampal niche. Finally, TEM showed that exosomes were ∼100 nm in diameter and had a "saucer-like" bilayer membrane structure. Taken together, these findings suggest that differentially expressed exosomes and their related miRNAs in the denervated hippocampal niche can promote differentiation of NSCs into neurons.


Asunto(s)
Exosomas/metabolismo , Hipocampo/fisiología , Células-Madre Neurales/citología , Neurogénesis , Animales , Femenino , Fórnix/cirugía , Hipocampo/citología , Masculino , Ratas , Ratas Sprague-Dawley
11.
Neurocase ; 28(1): 63-65, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35037569

RESUMEN

Acute episodes of amnestic syndrome can be a challenging diagnostic problem. Except for nonvascular etiology, thalamic strokes or infarction involving several temporal lobe structures has been reported in earlier cases. The authors report a patient who suddenly developed memory loss without any other focal neurologic deficits. Brain magnetic resonance imaging (MRI) with diffusion-weighted imaging (DWI) performed 1 day after onset revealed acute infarction involving the bilateral fornix column and the genu of corpus callosum. Because simple fornix infarcts often have no obvious positive neurological signs, most of the related manifestations were provided by family members, are easy to be diagnosed falsely, and missed in clinical areas, we suggest that bilateral fornix infarction should be considered in the diagnosis of an acute onset amnestic syndrome.


Asunto(s)
Amnesia , Fórnix , Amnesia/diagnóstico por imagen , Amnesia/etiología , Amnesia/patología , Fórnix/irrigación sanguínea , Fórnix/diagnóstico por imagen , Fórnix/patología , Humanos , Infarto/complicaciones , Infarto/patología , Imagen por Resonancia Magnética , Trastornos de la Memoria
12.
Neurosurg Rev ; 45(2): 979-988, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34498223

RESUMEN

The historical evolution of the fornix has not been sufficiently reviewed in the literature. In this article, we follow this evolution from the first mention of the fornix in animal dissections of the second century AD, to the legalization of cadaver dissection in the 1300 s, to the introduction of neural staining techniques and the microscope in the seventeenth century, to today. We summarize the focus of fornix studies on memory to reveal its relationship with the hippocampus. We then cover the detection of the fornix and its neural connections noninvasively with the advancement of radiological imaging techniques. Finally, we discuss the prominence of the fornix as a target for deep brain stimulation in Alzheimer's disease and post-traumatic brain injury memory disorders.


Asunto(s)
Enfermedad de Alzheimer , Estimulación Encefálica Profunda , Enfermedad de Alzheimer/terapia , Animales , Fórnix/fisiología , Hipocampo , Humanos
13.
J Neurosci ; 40(41): 7887-7901, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32900835

RESUMEN

The frontal cortex and temporal lobes together regulate complex learning and memory capabilities. Here, we collected resting-state functional and diffusion-weighted MRI data before and after male rhesus macaque monkeys received extensive training to learn novel visuospatial discriminations (reward-guided learning). We found functional connectivity changes in orbitofrontal, ventromedial prefrontal, inferotemporal, entorhinal, retrosplenial, and anterior cingulate cortices, the subicular complex, and the dorsal, medial thalamus. These corticocortical and thalamocortical changes in functional connectivity were accompanied by related white matter structural alterations in the uncinate fasciculus, fornix, and ventral prefrontal tract: tracts that connect (sub)cortical networks and are implicated in learning and memory processes in monkeys and humans. After the well-trained monkeys received fornix transection, they were impaired in learning new visuospatial discriminations. In addition, the functional connectivity profile that was observed after the training was altered. These changes were accompanied by white matter changes in the ventral prefrontal tract, although the integrity of the uncinate fasciculus remained unchanged. Our experiments highlight the importance of different communication relayed among corticocortical and thalamocortical circuitry for the ability to learn new visuospatial associations (learning-to-learn) and to make reward-guided decisions.SIGNIFICANCE STATEMENT Frontal neural networks and the temporal lobes contribute to reward-guided learning in mammals. Here, we provide novel insight by showing that specific corticocortical and thalamocortical functional connectivity is altered after rhesus monkeys received extensive training to learn novel visuospatial discriminations. Contiguous white matter fiber pathways linking these gray matter structures, namely, the uncinate fasciculus, fornix, and ventral prefrontal tract, showed structural changes after completing training in the visuospatial task. Additionally, different patterns of functional and structural connectivity are reported after removal of subcortical connections within the extended hippocampal system, via fornix transection. These results highlight the importance of both corticocortical and thalamocortical interactions in reward-guided learning in the normal brain and identify brain structures important for memory capabilities after injury.


Asunto(s)
Corteza Cerebral/fisiología , Condicionamiento Operante/fisiología , Discriminación en Psicología/fisiología , Vías Nerviosas/fisiología , Tálamo/fisiología , Sustancia Blanca/fisiología , Animales , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Fórnix/fisiología , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Memoria/fisiología , Vías Nerviosas/diagnóstico por imagen , Recompensa , Percepción Espacial/fisiología , Tálamo/diagnóstico por imagen , Percepción Visual/fisiología , Sustancia Blanca/diagnóstico por imagen
14.
Neuroimage ; 244: 118610, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34571161

RESUMEN

A tool was developed to automatically segment several subcortical limbic structures (nucleus accumbens, basal forebrain, septal nuclei, hypothalamus without mammillary bodies, the mammillary bodies, and fornix) using only a T1-weighted MRI as input. This tool fills an unmet need as there are few, if any, publicly available tools to segment these clinically relevant structures. A U-Net with spatial, intensity, contrast, and noise augmentation was trained using 39 manually labeled MRI data sets. In general, the Dice scores, true positive rates, false discovery rates, and manual-automatic volume correlation were very good relative to comparable tools for other structures. A diverse data set of 698 subjects were segmented using the tool; evaluation of the resulting labelings showed that the tool failed in less than 1% of cases. Test-retest reliability of the tool was excellent. The automatically segmented volume of all structures except mammillary bodies showed effectiveness at detecting either clinical AD effects, age effects, or both. This tool will be publicly released with FreeSurfer (surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic). Together with the other cortical and subcortical limbic segmentations, this tool will allow FreeSurfer to provide a comprehensive view of the limbic system in an automated way.


Asunto(s)
Aprendizaje Profundo , Sistema Límbico/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Prosencéfalo Basal/diagnóstico por imagen , Femenino , Fórnix/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Núcleo Accumbens/diagnóstico por imagen , Reproducibilidad de los Resultados , Núcleos Septales/diagnóstico por imagen , Adulto Joven
15.
J Neurophysiol ; 126(6): 2138-2157, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34817294

RESUMEN

Social interaction complexity makes humans unique. But in times of social deprivation, this strength risks exposure of important vulnerabilities. Human social neuroscience studies have placed a premium on the default network (DN). In contrast, hippocampus (HC) subfields have been intensely studied in rodents and monkeys. To bridge these two literatures, we here quantified how DN subregions systematically covary with specific HC subfields in the context of subjective social isolation (i.e., loneliness). By codecomposition using structural brain scans of ∼40,000 UK Biobank participants, loneliness was specially linked to midline subregions in the uncovered DN patterns. These association cortex patterns coincided with concomitant HC patterns implicating especially CA1 and molecular layer. These patterns also showed a strong affiliation with the fornix white matter tract and the nucleus accumbens. In addition, separable signatures of structural HC-DN covariation had distinct associations with the genetic predisposition for loneliness at the population level.NEW & NOTEWORTHY The hippocampus and default network have been implicated in rich social interaction. Yet, these allocortical and neocortical neural systems have been interrogated in mostly separate literatures. Here, we conjointly investigate the hippocampus and default network at a subregion level, by capitalizing structural brain scans from ∼40,000 participants. We thus reveal unique insights on the nature of the "lonely brain" by estimating the regimes of covariation between the hippocampus and default network at population scale.


Asunto(s)
Red en Modo Predeterminado/anatomía & histología , Predisposición Genética a la Enfermedad , Hipocampo/anatomía & histología , Soledad , Adulto , Anciano , Bases de Datos Factuales , Femenino , Fórnix/anatomía & histología , Fórnix/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Herencia Multifactorial , Núcleo Accumbens/anatomía & histología , Núcleo Accumbens/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen
16.
Hum Genet ; 140(6): 885-896, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33417013

RESUMEN

The 22q11.2 deletion syndrome (22q11DS) is associated with a wide spectrum of cognitive and psychiatric symptoms. Despite the considerable work performed over the past 20 years, the genetic etiology of the neurodevelopmental phenotype remains speculative. Here, we report de novo heterozygous truncating variants in the HIRA (Histone cell cycle regulation defective, S. Cerevisiae, homolog of, A) gene associated with a neurodevelopmental disorder in two unrelated patients. HIRA is located within the commonly deleted region of the 22q11DS and encodes a histone chaperone that regulates neural progenitor proliferation and neurogenesis, and that belongs to the WD40 Repeat (WDR) protein family involved in brain development and neuronal connectivity. To address the specific impact of HIRA haploinsufficiency in the neurodevelopmental phenotype of 22q11DS, we combined Hira knock-down strategies in developing mouse primary hippocampal neurons, and the direct study of brains from heterozygous Hira+/- mice. Our in vitro analyses revealed that Hira gene is mostly expressed during neuritogenesis and early dendritogenesis stages in mouse total brain and in developing primary hippocampal neurons. Moreover, shRNA knock-down experiments showed that a twofold decrease of endogenous Hira expression level resulted in an impaired dendritic growth and branching in primary developing hippocampal neuronal cultures. In parallel, in vivo analyses demonstrated that Hira+/- mice displayed subtle neuroanatomical defects including a reduced size of the hippocampus, the fornix and the corpus callosum. Our results suggest that HIRA haploinsufficiency would likely contribute to the complex pathophysiology of the neurodevelopmental phenotype of 22q11DS by impairing key processes in neurogenesis and by causing neuroanatomical defects during cerebral development.


Asunto(s)
Proteínas de Ciclo Celular/genética , Síndrome de DiGeorge/genética , Haploinsuficiencia , Chaperonas de Histonas/genética , Trastornos del Neurodesarrollo/genética , Plasticidad Neuronal/genética , Neuronas/metabolismo , Factores de Transcripción/genética , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/metabolismo , Niño , Preescolar , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Síndrome de DiGeorge/metabolismo , Síndrome de DiGeorge/patología , Femenino , Fórnix/metabolismo , Fórnix/patología , Expresión Génica , Heterocigoto , Hipocampo/metabolismo , Hipocampo/patología , Chaperonas de Histonas/antagonistas & inhibidores , Chaperonas de Histonas/deficiencia , Chaperonas de Histonas/metabolismo , Humanos , Ratones , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Neurogénesis/genética , Neuronas/patología , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo
17.
Hum Brain Mapp ; 42(8): 2445-2460, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33739544

RESUMEN

While stress may be a potential mechanism by which childhood threat and deprivation influence mental health, few studies have considered specific stress-related white matter pathways, such as the stria terminalis (ST) and medial forebrain bundle (MFB). Our goal was to examine the relationships between childhood adversity and ST and MFB structural integrity and whether these pathways may provide a link between childhood adversity and affective symptoms and disorders. Participants were young adults (n = 100) with a full distribution of maltreatment history and affective symptom severity. Threat was determined by measures of childhood abuse and repeated traumatic events. Socioeconomic deprivation (SED) was determined by a measure of childhood socioeconomic status (parental education). Participants underwent diffusion spectrum imaging. Human Connectome Project data was used to perform ST and MFB tractography; these tracts were used as ROIs to extract generalized fractional anisotropy (gFA) from each participant. Childhood threat was associated with ST gFA, such that greater threat was associated with less ST gFA. SED was also associated with ST gFA, however, conversely to threat, greater SED was associated with greater ST gFA. Additionally, threat was negatively associated with MFB gFA, and MFB gFA was negatively associated with post-traumatic stress symptoms. Our results suggest that childhood threat and deprivation have opposing influences on ST structural integrity, providing new evidence that the context of childhood adversity may have an important influence on its neurobiological effects, even on the same structure. Further, the MFB may provide a novel link between childhood threat and affective symptoms.


Asunto(s)
Experiencias Adversas de la Infancia , Síntomas Afectivos/patología , Haz Prosencefálico Medial/patología , Estrés Psicológico/patología , Sustancia Blanca/patología , Adulto , Adultos Sobrevivientes del Maltrato a los Niños , Síntomas Afectivos/diagnóstico por imagen , Imagen de Difusión Tensora , Femenino , Fórnix/diagnóstico por imagen , Fórnix/patología , Humanos , Masculino , Haz Prosencefálico Medial/diagnóstico por imagen , Carencia Psicosocial , Núcleos Septales/diagnóstico por imagen , Núcleos Septales/patología , Factores Socioeconómicos , Estrés Psicológico/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
18.
Acta Neuropathol ; 142(5): 791-806, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34448021

RESUMEN

Huntington disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The typical motor symptoms have been associated with basal ganglia pathology. However, psychiatric and cognitive symptoms often precede the motor component and may be due to changes in the limbic system. Recent work has indicated pathology in the hypothalamus in HD but other parts of the limbic system have not been extensively studied. Emerging evidence suggests that changes in HD also include white matter pathology. Here we investigated if the main white matter tract of the limbic system, the fornix, is affected in HD. We demonstrate that the fornix is 34% smaller already in prodromal HD and 41% smaller in manifest HD compared to controls using volumetric analyses of MRI of the IMAGE-HD study. In post-mortem fornix tissue from HD cases, we confirm the smaller fornix volume in HD which is accompanied by signs of myelin breakdown and reduced levels of the transcription factor myelin regulating factor but detect no loss of oligodendrocytes. Further analyses using RNA-sequencing demonstrate downregulation of oligodendrocyte identity markers in the fornix of HD cases. Analysis of differentially expressed genes based on transcription-factor/target-gene interactions also revealed enrichment for binding sites of SUZ12 and EZH2, components of the Polycomb Repressive Complex 2, as well as RE1 Regulation Transcription Factor. Taken together, our data show that there is early white matter pathology of the fornix in the limbic system in HD likely due to a combination of reduction in oligodendrocyte genes and myelin break down.


Asunto(s)
Fórnix/patología , Enfermedad de Huntington/patología , Sistema Límbico/patología , Sustancia Blanca/patología , Adulto , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vaina de Mielina/patología , Oligodendroglía/patología
19.
Stress ; 24(5): 590-601, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34003076

RESUMEN

Corticotropin releasing hormone (CRH) neurons located in the nucleus of hippocampal commissure (NHpC) have been proposed to be involved in the avian neuroendocrine regulation of stress and appeared to respond prior to CRH neurons in the hypothalamic paraventricular nucleus (PVN) when food deprivation stress was applied. Since the response of the NHpC was rapid and short-lived, was it regulated differentially from CRH neurons in the PVN? We, therefore, applied immobilization stress to test whether the NHpC response was stressor specific. Gene expression of CRH and stress-related genes in the NHpC, PVN, anterior pituitary (APit) as well as plasma corticosterone (CORT) were determined. Furthermore, brain derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR) were examined regarding their possible roles in the regulation of CRH neurons. Data showed that rapid activation of CRH mRNA in the NHpC occurred and preceded a slower gene activation in the PVN, upregulation of proopiomelanocortin (POMC) transcripts in the APit and significant increases of CORT concentrations. Results suggested BDNF's role in negative feedback between CRH and CRHR1 in the NHpC and positive feedback between CRH and CRHR1 in the PVN. In the APit, V1bR activation appeared responsible for sustaining CORT release when stress persisted. Overall, data suggest that the NHpC functions as part of the HPA axis of birds and perhaps a comparable extra-hypothalamic structure occurs in other vertebrates.Lay SummaryThe nucleus of the hippocampal commissure, a structure outside of the hypothalamus, shows rapidly increased neural gene expression that appears to contribute to the early activation of the traditional hypothalamic-pituitary-adrenal (HPA) axis responsible for the production of stress hormones.


Asunto(s)
Hormona Liberadora de Corticotropina , Sistema Hipotálamo-Hipofisario , Animales , Aves/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Fórnix/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Estrés Fisiológico , Estrés Psicológico
20.
Nature ; 526(7573): 430-4, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26469053

RESUMEN

Deep brain stimulation (DBS) has improved the prospects for many individuals with diseases affecting motor control, and recently it has shown promise for improving cognitive function as well. Several studies in individuals with Alzheimer disease and in amnesic rats have demonstrated that DBS targeted to the fimbria-fornix, the region that appears to regulate hippocampal activity, can mitigate defects in hippocampus-dependent memory. Despite these promising results, DBS has not been tested for its ability to improve cognition in any childhood intellectual disability disorder. Such disorders are a pressing concern: they affect as much as 3% of the population and involve hundreds of different genes. We proposed that stimulating the neural circuits that underlie learning and memory might provide a more promising route to treating these otherwise intractable disorders than seeking to adjust levels of one molecule at a time. We therefore studied the effects of forniceal DBS in a well-characterized mouse model of Rett syndrome (RTT), which is a leading cause of intellectual disability in females. Caused by mutations that impair the function of MeCP2 (ref. 6), RTT appears by the second year of life in humans, causing profound impairment in cognitive, motor and social skills, along with an array of neurological features. RTT mice, which reproduce the broad phenotype of this disorder, also show clear deficits in hippocampus-dependent learning and memory and hippocampal synaptic plasticity. Here we show that forniceal DBS in RTT mice rescues contextual fear memory as well as spatial learning and memory. In parallel, forniceal DBS restores in vivo hippocampal long-term potentiation and hippocampal neurogenesis. These results indicate that forniceal DBS might mitigate cognitive dysfunction in RTT.


Asunto(s)
Estimulación Encefálica Profunda , Fórnix/fisiología , Hipocampo/fisiología , Hipocampo/fisiopatología , Memoria/fisiología , Síndrome de Rett/psicología , Síndrome de Rett/terapia , Animales , Cognición/fisiología , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/fisiopatología , Trastornos del Conocimiento/psicología , Trastornos del Conocimiento/terapia , Modelos Animales de Enfermedad , Miedo/fisiología , Miedo/psicología , Femenino , Fórnix/citología , Fórnix/fisiopatología , Hipocampo/citología , Potenciación a Largo Plazo/fisiología , Ratones , Neurogénesis , Síndrome de Rett/genética , Síndrome de Rett/fisiopatología , Aprendizaje Espacial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA