RESUMEN
Epithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy1-7. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT. Pharmacological inhibition of netrin-1 by administration of NP137, a netrin-1-blocking monoclonal antibody currently used in clinical trials in human cancer (ClinicalTrials.gov identifier NCT02977195 ), decreased the proportion of EMT tumour cells in skin SCC, decreased the number of metastases and increased the sensitivity of tumour cells to chemotherapy. Single-cell RNA sequencing revealed the presence of different EMT states, including epithelial, early and late hybrid EMT, and full EMT states, in control SCC. By contrast, administration of NP137 prevented the progression of cancer cells towards a late EMT state and sustained tumour epithelial states. Short hairpin RNA knockdown of netrin-1 and its receptor UNC5B in EPCAM+ tumour cells inhibited EMT in vitro in the absence of stromal cells and regulated a common gene signature that promotes tumour epithelial state and restricts EMT. To assess the relevance of these findings to human cancers, we treated mice transplanted with the A549 human cancer cell line-which undergoes EMT following TGFß1 administration8,9-with NP137. Netrin-1 inhibition decreased EMT in these transplanted A549 cells. Together, our results identify a pharmacological strategy for targeting EMT in cancer, opening up novel therapeutic interventions for anti-cancer therapy.
Asunto(s)
Anticuerpos Monoclonales , Carcinoma de Células Escamosas , Transición Epitelial-Mesenquimal , Netrina-1 , Neoplasias Cutáneas , Animales , Humanos , Ratones , Células A549 , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Receptores de Netrina/antagonistas & inhibidores , Receptores de Netrina/deficiencia , Receptores de Netrina/genética , Netrina-1/antagonistas & inhibidores , Netrina-1/deficiencia , Netrina-1/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Modelos Animales de Enfermedad , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Metástasis de la Neoplasia/tratamiento farmacológico , Análisis de Expresión Génica de una Sola Célula , RNA-Seq , Molécula de Adhesión Celular Epitelial/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Factor de Crecimiento Transformador beta1/farmacologíaRESUMEN
The non-receptor tyrosine kinase SRC is overexpressed and/or hyperactivated in various human cancers, and facilitates cancer progression by promoting invasion and metastasis. However, the mechanisms underlying SRC upregulation are poorly understood. In this study, we demonstrate that transforming growth factor-ß (TGF-ß) induces SRC expression at the transcriptional level by activating an intragenic the SRC enhancer. In the human breast epithelial cell line MCF10A, TGF-ß1 stimulation upregulated one of the SRC promotors, the 1A promoter, resulting in increased SRC mRNA and protein levels. Chromatin immunoprecipitation (ChIP)-sequencing analysis revealed that the SMAD complex is recruited to three enhancer regions â¼15â kb upstream and downstream of the SRC promoter, and one of them is capable of activating the SRC promoter in response to TGF-ß. JUN, a member of the activator protein (AP)-1 family, localises to the enhancer and regulates TGF-ß-induced SRC expression. Furthermore, TGF-ß-induced SRC upregulation plays a crucial role in epithelial-mesenchymal transition (EMT)-associated cell migration by activating the SRC-focal adhesion kinase (FAK) circuit. Overall, these results suggest that TGF-ß-induced SRC upregulation promotes cancer cell invasion and metastasis in a subset of human malignancies.
Asunto(s)
Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Transición Epitelial-Mesenquimal/genética , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Línea Celular , Proteína-Tirosina Quinasas de Adhesión Focal , Movimiento Celular/fisiología , Línea Celular TumoralRESUMEN
Branched epithelial networks are generated through an iterative process of elongation and bifurcation. We sought to understand bifurcation of the mammary epithelium. To visualize this process, we utilized three-dimensional (3D) organotypic culture and time-lapse confocal microscopy. We tracked cell migration during bifurcation and observed local reductions in cell speed at the nascent bifurcation cleft. This effect was proximity dependent, as individual cells approaching the cleft reduced speed, whereas cells exiting the cleft increased speed. As the cells slow down, they orient both migration and protrusions towards the nascent cleft, while cells in the adjacent branches orient towards the elongating tips. We next tested the hypothesis that TGF-ß signaling controls mammary branching by regulating cell migration. We first validated that addition of TGF-ß1 (TGFB1) protein increased cleft number, whereas inhibition of TGF-ß signaling reduced cleft number. Then, consistent with our hypothesis, we observed that pharmacological inhibition of TGF-ß1 signaling acutely decreased epithelial migration speed. Our data suggest a model for mammary epithelial bifurcation in which TGF-ß signaling regulates cell migration to determine the local sites of bifurcation and the global pattern of the tubular network.
Asunto(s)
Glándulas Mamarias Animales , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Morfogénesis , Epitelio/metabolismo , Movimiento Celular , Células Epiteliales/metabolismoRESUMEN
Epithelial-mesenchymal transition (EMT) is an important biological process contributing to kidney fibrosis and chronic kidney disease. This process is characterized by decreased epithelial phenotypes/markers and increased mesenchymal phenotypes/markers. Tubular epithelial cells (TECs) are commonly susceptible to EMT by various stimuli, for example, transforming growth factor-ß (TGF-ß), cellular communication network factor 2, angiotensin-II, fibroblast growth factor-2, oncostatin M, matrix metalloproteinase-2, tissue plasminogen activator (t-PA), plasmin, interleukin-1ß, and reactive oxygen species. Similarly, glomerular podocytes can undergo EMT via these stimuli and by high glucose condition in diabetic kidney disease. EMT of TECs and podocytes leads to tubulointerstitial fibrosis and glomerulosclerosis, respectively. Signaling pathways involved in EMT-mediated kidney fibrosis are diverse and complex. TGF-ß1/Smad and Wnt/ß-catenin pathways are the major venues triggering EMT in TECs and podocytes. These two pathways thus serve as the major therapeutic targets against EMT-mediated kidney fibrosis. To date, a number of EMT inhibitors have been identified and characterized. As expected, the majority of these EMT inhibitors affect TGF-ß1/Smad and Wnt/ß-catenin pathways. In addition to kidney fibrosis, these EMT-targeted antifibrotic inhibitors are expected to be effective for treatment against fibrosis in other organs/tissues.
Asunto(s)
Factor de Crecimiento Transformador beta1 , beta Catenina , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , beta Catenina/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/farmacología , Activador de Tejido Plasminógeno/metabolismo , Activador de Tejido Plasminógeno/farmacología , Células Epiteliales/metabolismo , Vía de Señalización Wnt , Transición Epitelial-Mesenquimal , Riñón , FibrosisRESUMEN
Epigenetic modifications are involved in fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and contribute to the silencing of anti-fibrotic genes. H3K27me3, a key repressive histone mark, is catalysed by the methyltransferase enhancer of Zeste homologue 2 (EZH2), which is regulated by the post-translational modification, O-linked N-Acetylglucosamine (O-GlcNAc). In this study, we explored the effects of O-GlcNAc and EZH2 on the expression of antifibrotic genes, cyclooxygenase-2 (Cox2) and Heme Oxygenase (Homx1). The expression of Cox2 and Hmox1 was examined in primary IPF or non-IPF lung fibroblasts with or without EZH2 inhibitor EZP6438, O-GlcNAc transferase (OGT) inhibitor (OSMI-1) or O-GlcNAcase (OGA) inhibitor (thiamet G). Non-IPF cells were also subjected to TGF-ß1 with or without OGT inhibition. The reduced expression of Cox2 and Hmox1 in IPF lung fibroblasts is restored by OGT inhibition. In non-IPF fibroblasts, TGF-ß1 treatment reduces Cox2 and Hmox1 expression, which was restored by OGT inhibition. ChIP assays demonstrated that the association of H3K27me3 is reduced at the Cox2 and Hmox1 promoter regions following OGT or EZH2 inhibition. EZH2 levels and stability were decreased by reducing O-GlcNAc. Our study provided a novel mechanism of O-GlcNAc modification in regulating anti-fibrotic genes in lung fibroblasts and in the pathogenesis of IPF.
Asunto(s)
Histonas , Fibrosis Pulmonar Idiopática , Humanos , Histonas/metabolismo , Acetilglucosamina/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Pulmón/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismoRESUMEN
Transforming growth factor (TGF)-ß1 is a multifunctional cytokine that plays important roles in health and disease. Previous studies have revealed that TGFß1 activation, signaling, and downstream cell responses including epithelial-mesenchymal transition (EMT) and apoptosis are regulated by the elasticity or stiffness of the extracellular matrix. However, tissues within the body are not purely elastic, rather they are viscoelastic. How matrix viscoelasticity impacts cell fate decisions downstream of TGFß1 remains unknown. Here, we synthesized polyacrylamide hydrogels that mimic the viscoelastic properties of breast tumor tissue. We found that increasing matrix viscous dissipation reduces TGFß1-induced cell spreading, F-actin stress fiber formation, and EMT-associated gene expression changes, and promotes TGFß1-induced apoptosis in mammary epithelial cells. Furthermore, TGFß1-induced expression of integrin linked kinase (ILK) and colocalization of ILK with vinculin at cell adhesions is attenuated in mammary epithelial cells cultured on viscoelastic substrata in comparison to cells cultured on nearly elastic substrata. Overexpression of ILK promotes TGFß1-induced EMT and reduces apoptosis in cells cultured on viscoelastic substrata, suggesting that ILK plays an important role in regulating cell fate downstream of TGFß1 in response to matrix viscoelasticity.
Asunto(s)
Matriz Extracelular , Transducción de Señal , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Ratones , Línea Celular , Elasticidad , ViscosidadRESUMEN
Arthrofibrosis, which causes joint motion restrictions, is a common complication following total knee arthroplasty (TKA). Key features associated with arthrofibrosis include myofibroblast activation, knee stiffness, and excessive scar tissue formation. We previously demonstrated that adiponectin levels are suppressed within the knee tissues of patients affected by arthrofibrosis and showed that AdipoRon, an adiponectin receptor agonist, exhibited anti-fibrotic properties in human mesenchymal stem cells. In this study, the therapeutic potential of AdipoRon was evaluated on TGFß1-mediated myofibroblast differentiation of primary human knee fibroblasts and in a mouse model of knee stiffness. Picrosirius red staining revealed that AdipoRon reduced TGFß1-induced collagen deposition in primary knee fibroblasts derived from patients undergoing primary TKA and revision TKA for arthrofibrosis. AdipoRon also reduced mRNA and protein levels of ACTA2, a key myofibroblast marker. RNA-seq analysis corroborated the anti-myofibrogenic effects of AdipoRon. In our knee stiffness mouse model, 6 weeks of knee immobilization, to induce a knee contracture, in conjunction with daily vehicle (DMSO) or AdipoRon (1, 5, and 25 mg/kg) via intraperitoneal injections were well tolerated based on animal behavior and weight measurements. Biomechanical testing demonstrated that passive extension angles (PEAs) of experimental knees were similar between vehicle and AdipoRon treatment groups in mice evaluated immediately following immobilization. Interestingly, relative to vehicle-treated mice, 5 mg/kg AdipoRon therapy improved the PEA of the experimental knees in mice that underwent 4 weeks of knee remobilization following the immobilization and therapy. Together, these studies revealed that AdipoRon may be an effective therapeutic modality for arthrofibrosis.
Asunto(s)
Artroplastia de Reemplazo de Rodilla , Artropatías , Animales , Humanos , Ratones , Colágeno/metabolismo , Artropatías/tratamiento farmacológico , Artropatías/metabolismo , Articulación de la Rodilla/metabolismo , Piperidinas/farmacología , Femenino , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/farmacologíaRESUMEN
Transforming growth factor (TGF)-ß1 is a multifunctional protein that is essential in many cellular processes that include fibrosis, inflammation, chondrogenesis, and cartilage repair. In particular, cartilage repair is important to avoid physical disability since this tissue does not have the inherent capacity to regenerate beyond full development. We report here on supramolecular coassemblies of two peptide amphiphile molecules, one containing a TGF-ß1 mimetic peptide, and another which is one of two constitutional isomers lacking bioactivity. Using human articular chondrocytes, we investigated the bioactivity of the supramolecular copolymers of each isomer displaying either the previously reported linear form of the mimetic peptide or a novel cyclic analogue. Based on fluorescence depolarization and 1H NMR spin-lattice relaxation times, we found that coassemblies containing the cyclic compound and the most dynamic isomer exhibited the highest intracellular TGF-ß1 signaling and gene expression of cartilage extracellular matrix components. We conclude that control of supramolecular motion is emerging as an important factor in the binding of synthetic molecules to receptors that can be tuned through chemical structure.
Asunto(s)
Condrocitos , Condrogénesis , Péptidos Cíclicos , Factor de Crecimiento Transformador beta1 , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/química , Factor de Crecimiento Transformador beta1/farmacología , Humanos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/citología , Condrogénesis/efectos de los fármacosRESUMEN
Establishing the molecular and cellular mechanisms of fibrosis requires the development of validated and reproducible models. The complexity of in vivo models challenges the monitoring of an individual cell fate, in some cases making it impossible. However, the set of factors affecting cells in vitro culture systems differ significantly from in vivo conditions, insufficiently reproducing living systems. Thus, to model profibrotic conditions in vitro, usually the key profibrotic factor, transforming growth factor beta (TGFß-1) is used as a single factor. TGFß-1 stimulates the differentiation of fibroblasts into myofibroblasts, the main effector cells promoting the development and progression of fibrosis. However, except for soluble factors, the rigidity and composition of the extracellular matrix (ECM) play a critical role in the differentiation process. To develop the model of more complex profibrotic microenvironment in vitro, we used a combination of factors: decellularized ECM synthesized by human dermal fibroblasts in the presence of ascorbic acid if cultured as cell sheets and recombinant TGFß-1 as a supplement. When culturing human mesenchymal stromal cells derived from adipose tissue (MSCs) under described conditions, we observed differentiation of MSCs into myofibroblasts due to increased number of cells with stress fibrils with alpha-smooth muscle actin (αSMA), and increased expression of myofibroblast marker genes such as collagen I, EDA-fibronectin and αSMA. Importantly, secretome of MSCs changed in these profibrotic microenvironment: the secretion of the profibrotic proteins SPARC and fibulin-2 increased, while the secretion of the antifibrotic hepatocyte growth factor (HGF) decreased. Analysis of transciptomic pattern of regulatory microRNAs in MSCs revealed 49 miRNAs with increased expression and 3 miRNAs with decreased expression under profibrotic stimuli. Bioinformatics analysis confirmed that at least 184 gene targets of the differently expressed miRNAs genes were associated with fibrosis. To further validate the developed model of profibrotic microenvironment, we cultured human dermal fibroblasts in these conditions and observed increased expression of fibroblast activation protein (FAPa) after 12 h of cultivation as well as increased level of αSMA and higher number of αSMA + stress fibrils after 72 h. The data obtained allow us to conclude that the conditions formed by the combination of profibrotic ECM and TGFß-1 provide a complex profibrotic microenvironment in vitro. Thus, this model can be applicable in studying the mechanism of fibrosis development, as well as for the development of antifibrotic therapy.
Asunto(s)
Diferenciación Celular , Microambiente Celular , Matriz Extracelular , Fibroblastos , Fibrosis , Humanos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Células Cultivadas , Miofibroblastos/metabolismo , Miofibroblastos/patología , Miofibroblastos/citología , Modelos Biológicos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Osteonectina/metabolismo , Osteonectina/genética , MicroARNs/genética , MicroARNs/metabolismoRESUMEN
In brief: Oogonial stem cells in the adult ovary can generate oocytes, but they are usually quiescent. TGFB1 is key in stimulating the proliferation of OSC, thereby ensuring the sustained reproductive potential in poultry species. Abstract: Oogonial stem cells (OSCs) are a type of germ stem cell present in the adult ovary. They have the ability to self-renew through mitosis and differentiate into oocytes through meiosis. We have previously identified a population of OSCs in the chicken ovary, but the underlying mechanisms controlling their activation and proliferation were unclear. In this study, we observed that OSCs showed robust proliferation when cultured on a layer of chicken embryo fibroblasts (CEF), suggesting that CEF may secrete certain crucial factors that activate OSC proliferation. We further detected TGFB1 as a potent signaling molecule to promote OSC proliferation. Additionally, we revealed the signaling pathways that play important roles downstream of TGFB1-induced OSC proliferation. These findings provide insights into the mechanisms underlying OSC proliferation in chickens and offer a foundation for future research on in situ activation of OSC proliferation in ovary and improvement of egg-laying performance in chickens.
Asunto(s)
Proliferación Celular , Pollos , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Femenino , Células Cultivadas , Embrión de Pollo , Oogonios/citología , Oogonios/metabolismo , Oogonios/fisiología , Ovario/citología , Ovario/metabolismo , Transducción de Señal , Fibroblastos/citología , Fibroblastos/metabolismo , Células Madre Germinales Adultas/citología , Células Madre Germinales Adultas/metabolismo , Células Madre Germinales Adultas/fisiologíaRESUMEN
BACKGROUND: Transforming growth factor beta (TGFß) is important for the morphogenesis and secretory function of the mammary gland. It is one of the main activators of the epithelial-mesenchymal transition (EMT), a process important for tissue remodeling and regeneration. It also provides cells with the plasticity to form metastases during tumor progression. Noncancerous and cancer cells respond differently to TGFß. However, knowledge of the cellular signaling cascades triggered by TGFß in various cell types is still limited. METHODS: MCF10A (noncancerous, originating from fibrotic breast tissue) and MCF7 (cancer, estrogen receptor-positive) breast epithelial cells were treated with TGFB1 directly or through conditioned media from stimulated cells. Transcriptional changes (via RNA-seq) were assessed in untreated cells and after 1-6 days of treatment. Differentially expressed genes were detected with DESeq2 and the hallmark collection was selected for gene set enrichment analysis. RESULTS: TGFB1 induces EMT in both the MCF10A and MCF7 cell lines but via slightly different mechanisms (signaling through SMAD3 is more active in MCF7 cells). Many EMT-related genes are expressed in MCF10A cells at baseline. Both cell lines respond to TGFB1 by decreasing the expression of genes involved in cell proliferation: through the repression of MYC (and the protein targets) in MCF10A cells and the activation of p63-dependent signaling in MCF7 cells (CDKN1A and CDKN2B, which are responsible for the inhibition of cyclin-dependent kinases, are upregulated). In addition, estrogen receptor signaling is inhibited and caspase-dependent cell death is induced only in MCF7 cells. Direct incubation with TGFB1 and treatment of cells with conditioned media similarly affected transcriptional profiles. However, TGFB1-induced protein secretion is more pronounced in MCF10A cells; therefore, the signaling is propagated through conditioned media (bystander effect) more effectively in MCF10A cells than in MCF7 cells. CONCLUSIONS: Estrogen receptor-positive breast cancer patients may benefit from high levels of TGFB1 expression due to the repression of estrogen receptor signaling, inhibition of proliferation, and induction of apoptosis in cancer cells. However, some TGFB1-stimulated cells may undergo EMT, which increases the risk of metastasis.
Transforming growth factor beta (TGFß) is a multifaceted cytokine that controls numerous physiological and pathological processes during development and carcinogenesis. Its best-known function is the activation of epithelialmesenchymal transition (EMT), a process crucial for tissue remodeling and regeneration. During EMT, epithelial cells lose their connections to adjacent cells and acquire mesenchymal characteristics, such as migratory ability. Compared with cancer cells, normal (nontumorigenic) cells usually respond differently to TGFß stimulation. Typically, TGFß inhibits the proliferation of epithelial cells and may promote cell death. In cancer cells, TGFß often promotes tumor progression. TheTGFß-mediated induction of EMT increases cell mobility, which is associated with the formation of metastases and tumor invasion.In this work, we compared the transcriptional response of noncancerous (MCF10A) and cancerous (MCF7; estrogen receptor-positive) breast epithelial cells to direct stimulation by TGFB1 and its indirect effect through conditioned media. Some of TGFB1-induced changes, including inhibition of proliferation and induction of EMT, were similar in both cell lines. However, these changes were associated with different upstream signaling pathways. Other changes were more specific, such as disruption of estrogen-related signaling or induction of cell death in MCF7 cells. Direct incubation with TGFB1 and treatment of cells with conditioned media similarly affected target cells, indicating the presence of a bystander effect. Moreover, transcript profiling by RNA-seq revealed that the TGFß signaling pathway is already active in untreated MCF10A cells, which may be due to their origination from a fibrotic lesion.
Asunto(s)
Neoplasias de la Mama , Células Epiteliales , Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células MCF-7 , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Glándulas Mamarias Humanas/patología , Glándulas Mamarias Humanas/metabolismoRESUMEN
Fibrotic scars play important roles in tissue reconstruction and functional recovery in the late stage of nervous system injury. However, the mechanisms underlying fibrotic scar formation and regulation remain unclear. Casein kinase II (CK2) is a protein kinase that regulates a variety of cellular functions through the phosphorylation of proteins, including bromodomain-containing protein 4 (BRD4). CK2 and BRD4 participate in fibrosis formation in a variety of tissues. However, whether CK2 affects fibrotic scar formation remains unclear, as do the mechanisms of signal regulation after cerebral ischemic injury. In this study, we assessed whether CK2 could modulate fibrotic scar formation after cerebral ischemic injury through BRD4. Primary meningeal fibroblasts were isolated from neonatal rats and treated with transforming growth factor-ß1 (TGF-ß1), SB431542 (a TGF-ß1 receptor kinase inhibitor) or TBB (a highly potent CK2 inhibitor). Adult SD rats were intraperitoneally injected with TBB to inhibit CK2 after MCAO/R. We found that CK2 expression was increased in vitro in the TGF-ß1-induced fibrosis model and in vivo in the MCAO/R injury model. The TGF-ß1 receptor kinase inhibitor SB431542 decreased CK2 expression in fibroblasts. The CK2 inhibitor TBB reduced the increases in proliferation, migration and activation of fibroblasts caused by TGF-ß1 in vitro, and it inhibited fibrotic scar formation, ameliorated histopathological damage, protected Nissl bodies, decreased infarct volume and alleviated neurological deficits after MCAO/R injury in vivo. Furthermore, CK2 inhibition decreased BRD4 phosphorylation both in vitro and in vivo. The findings of the present study suggested that CK2 may control BRD4 phosphorylation to regulate fibrotic scar formation, to affecting outcomes after ischemic stroke.
Asunto(s)
Benzamidas , Proteínas que Contienen Bromodominio , Quinasa de la Caseína II , Cicatriz , Dioxoles , Accidente Cerebrovascular Isquémico , Animales , Ratas , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Cicatriz/metabolismo , Cicatriz/patología , Fibroblastos/metabolismo , Fibrosis , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Proteínas Nucleares , Fosforilación , Ratas Sprague-Dawley , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Proteínas que Contienen Bromodominio/efectos de los fármacos , Proteínas que Contienen Bromodominio/metabolismoRESUMEN
OBJECTIVE: The COL1A1 proximal promoter contains two GC-rich regions and two inverted CCAAT boxes. The transcription factors Sp1 and CBF bind to the GC sequence at -122 to -115 bp and the inverted CCAAT box at -101 to -96 bp, respectively, and stimulate COL1A1 transcriptional activity. METHODS: To further define the regulatory mechanisms controlling COL1A1 expression by Sp1 and CBF, we introduced 2, 4, 6, or 8 thymidine nucleotides (T-tracts) at position -111 bp of the COL1A1 gene promoter to increase the physical distance between these two binding sites and examined in vitro the transcriptional activities of the resulting constructs and their response to TGF-ß1.`. RESULTS: Insertion of 2 or 4 nucleotides decreased COL1A1 promoter activity by up to 70%. Furthermore, the expected increase in COL1A1 transcription in response to TGF-ß1 was abolished. Computer modeling of the modified DNA structure indicated that increasing the physical distance between the Sp1 and CBF binding sites introduces a rotational change in the DNA topology that disrupts the alignment of Sp1 and CBF binding sites and likely alters protein-protein interactions among these transcription factors or their associated co-activators. CONCLUSION: The topology of the COL1A1 proximal promoter is crucial in determining the transcriptional activity of the gene and its response to the stimulatory effects of TGF-ß1.
Asunto(s)
Factor de Crecimiento Transformador beta1 , Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , ADN , NucleótidosRESUMEN
This study is aimed to evaluate the effect and underling mechanism of dietary supplementation with pyrroloquinoline quinone (PQQ) disodium on improving inflammatory liver injury in piglets challenged with lipopolysaccharide (LPS). A total of seventy-two crossbred barrows were allotted into four groups as follows: the CTRL group (basal diet + saline injection); the PQQ group (3 mg/kg PQQ diet + saline injection); the CTRL + LPS group (basal diet + LPS injection) and the PQQ + LPS group (3 mg/kg PQQ diet + LPS injection). On days 7, 11 and 14, piglets were challenged with LPS or saline. Blood was sampled at 4 h after the last LPS injection (day 14), and then the piglets were slaughtered and liver tissue was harvested. The results showed that the hepatic morphology was improved in the PQQ + LPS group compared with the CTRL + LPS group. PQQ supplementation decreased the level of serum inflammatory factors, aspartate aminotransferase and alanine transaminase, and increased the HDL-cholesterol concentration in piglets challenged with LPS; piglets in the PQQ + LPS group had lower liver mRNA level of inflammatory factors and protein level of α-smooth muscle actin than in the CTRL + LPS group. Besides, mRNA expression of STAT3/TGF-ß1 pathway and protein level of p-STAT3(Tyr 705) were decreased, and mRNA level of PPARα and protein expression of p-AMPK in liver were increased in the PQQ + LPS group compared with the CTRL + LPS group (P < 0·05). In conclusion, dietary supplementation with PQQ alleviated inflammatory liver injury might partly via inhibition of the STAT3/TGF-ß1 pathway in piglets challenged with LPS.
Asunto(s)
Suplementos Dietéticos , Lipopolisacáridos , Animales , Porcinos , Cofactor PQQ/farmacología , Cofactor PQQ/uso terapéutico , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Hígado/metabolismo , ARN Mensajero/metabolismoRESUMEN
Airway fibrosis is among the pathological manifestations of benign central airway obstruction noted in the absence of effective treatments and requires new drug targets to be developed. Slit guidance ligand 2-roundabout guidance receptor 1 (Slit2-Robo1) is involved in fibrosis and organ development. However, its significance in airway fibrosis has not yet been reported. The study explored how the recombinant protein Slit2 functions in transforming growth factor-ß1 (TGF-ß1)-mediated airway fibrosis in vivo and in vitro. In this study, Slit2 expression initially increased in the tracheal granulation tissues of patients with tracheobronchial stenosis but decreased in the fibrotic tissue. In primary rat tracheal fibroblasts (RTFs), recombinant Slit2 inhibited the expression of extracellular matrices such as Timp1, α-SMA, and COL1A2, whereas recombinant TGF-ß1 promoted the expression of Robo1, α-SMA, and COL1A2. Slit2 and TGF-ß1 played a mutual inhibitory role in RTFs. Slit2 supplementation and Robo1 downregulation inhibited excessive extracellular matrix (ECM) deposition induced by TGF-ß1 in RTFs via the TGF-ß1/Smad3 pathway. Ultimately, exogenous Slit2 and Robo1 knockdown-mediated attenuation of airway fibrosis were validated in a trauma-induced rat airway obstruction model. These findings demonstrate that recombinant Slit2 alleviated pathologic tracheobronchial healing by attenuating excessive ECM deposition. Slit2-Robo1 is an attractive target for further exploring the mechanisms and treatment of benign central airway obstruction.
Asunto(s)
Obstrucción de las Vías Aéreas , Fibrosis Pulmonar , Animales , Humanos , Ratas , Obstrucción de las Vías Aéreas/metabolismo , Fibroblastos/metabolismo , Fibrosis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/farmacologíaRESUMEN
Lactate extensively involves in gastric cancer (GC) progression, such as suppressing immune cells function and facilitating tumor angiogenesis. However, it remains unclear whether lactate promotes tumor progression by interacting with mesenchymal stem cells (MSCs), one of the major stroma components in GC. Here, we investigated the influence of lactate on the phenotype and function of MSCs. The migration of MSCs and the expression of several CAF markers in MSCs after lactate treatment were detected. We also evaluated the effect of lactate-primed MSCs on GC cells migration, proliferation, and programmed death ligand 1 (PD-L1) expression. It was found that lactate significantly activated MSCs, and increased fibroblast activation protein (FAP) expression via monocarboxylate transporter 1 (MCT1)/transforming growth factor-beta 1 (TGF-ß1) signaling. In addition, lactate-primed MSCs promoted GC cells migration and proliferation via PD-L1. Inhibiting MCT1 by AZD3965 abrogated lactate induced FAP expression and tumor-promoting potential of MSCs. Therefore, targeting MCT1/TGF-ß1/FAP axis in MSCs may serve as a potential strategy to restrain GC development.
Asunto(s)
Células Madre Mesenquimatosas , Neoplasias Gástricas , Humanos , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Antígeno B7-H1/metabolismo , Neoplasias Gástricas/patología , Ácido Láctico/farmacología , Ácido Láctico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proliferación CelularRESUMEN
Epigenetic inactivation of the Hippo pathway scaffold RASSF1A is associated with poor prognosis in a wide range of sporadic human cancers. Loss of expression reduces tumor suppressor activity and promotes genomic instability, but how this pleiotropic biomarker is regulated at the protein level is unknown. Here we show that TGF-ß is the physiological signal that stimulates RASSF1A degradation by the ubiquitin-proteasome pathway. In response to TGF-ß, RASSF1A is recruited to TGF-ß receptor I and targeted for degradation by the co-recruited E3 ubiquitin ligase ITCH. RASSF1A degradation is necessary to permit Hippo pathway effector YAP1 association with SMADs and subsequent nuclear translocation of receptor-activated SMAD2. We find that RASSF1A expression regulates TGF-ß-induced YAP1/SMAD2 interaction and leads to SMAD2 cytoplasmic retention and inefficient transcription of TGF-ß targets genes. Moreover, RASSF1A limits TGF-ß induced invasion, offering a new framework on how RASSF1A affects YAP1 transcriptional output and elicits its tumor-suppressive function.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfoproteínas/metabolismo , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Transporte Activo de Núcleo Celular , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular , Metilación de ADN , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Hippo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Invasividad Neoplásica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Interferencia de ARN , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción , Transcripción Genética , Transfección , Factor de Crecimiento Transformador beta1/farmacología , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Señalizadoras YAPRESUMEN
Chronic hepatic diseases often involve fibrosis as a pivotal factor in their progression. This study investigates the regulatory mechanisms of Yin Yang 1 (YY1) in hepatic fibrosis. Our data reveal that YY1 binds to the prolyl hydroxylase domain 1 (PHD1) promoter. Rats treated with carbon tetrachloride (CCl4) display heightened fibrosis in liver tissues, accompanied by increased levels of YY1, PHD1, and the fibrosis marker alpha-smooth muscle actin (α-SMA). Elevated levels of YY1, PHD1, and α-SMA are observed in the liver tissues of CCl4-treated rats, primary hepatic stellate cells (HSCs) isolated from fibrotic liver tissues, and transforming growth factor beta-1 (TGF-ß1)-induced HSCs. The human HSC cell line LX-2, upon YY1 overexpression, exhibits enhanced TGF-ß1-induced activation, leading to increased expression of extracellular matrix (ECM)-related proteins and inflammatory cytokines. YY1 silencing produces the opposite effect. YY1 exerts a positive regulatory effect on the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and PHD1 expression. PHD1 silencing rescues the promotion of YY1 in cell activation, ECM-related protein expression, and inflammatory cytokine production in TGF-ß1-treated LX-2 cells. Overall, our findings propose a model wherein YY1 facilitates TGF-ß1-induced HSC activation, ECM-related protein expression, and inflammatory cytokine production by promoting PHD1 expression and activating the PI3K/AKT signaling pathway. This study positions YY1 as a promising therapeutic target for hepatic fibrosis.
Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Factor de Crecimiento Transformador beta1 , Humanos , Ratas , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/uso terapéutico , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Fosfatidilinositol 3-Quinasas/uso terapéutico , Yin-Yang , Cirrosis Hepática/metabolismo , Matriz Extracelular/metabolismo , Inflamación/metabolismo , Tetracloruro de CarbonoRESUMEN
OBJECTIVES: To explore the role of fibrocytes in the recurrence and calcification of fibrous epulides. METHODS: Different subtypes of fibrous epulides and normal gingival tissue specimens were first collected for histological and immunofluorescence analyses to see if fibrocytes were present and whether they differentiated into myofibroblasts and osteoblasts upon stimulated by transforming growth factor-ß1 (TGF-ß1). Electron microscopy and elemental analysis were used to characterize the extracellular microenvironment in different subtypes of fibrous epulides. Human peripheral blood mononuclear cells (PBMCs) were subsequently isolated from in vitro models to mimic the microenvironment in fibrous epulides to identify whether TGF-ß1 as well as the calcium and phosphorus ion concentration in the extracellular matrix (ECM) of a fibrous epulis trigger fibrocyte differentiation. RESULTS: Fibrous epulides contain fibrocytes that accumulate in the local inflammatory environment and have the ability to differentiate into myofibroblasts or osteoblasts. TGF-ß1 promotes fibrocytes differentiation into myofibroblasts in a concentration-dependent manner, while TGF-ß1 stimulates the fibrocytes to differentiate into osteoblasts when combined with a high calcium and phosphorus environment. CONCLUSIONS: Our study revealed fibrocytes play an important role in the fibrogenesis and osteogenesis in fibrous epulis, and might serve as a therapeutic target for the inhibition of recurrence of fibrous epulides.
Asunto(s)
Diferenciación Celular , Miofibroblastos , Osteoblastos , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Miofibroblastos/patología , Osteoblastos/patología , Calcio/metabolismo , Encía/patología , Encía/citología , Enfermedades de las Encías/patología , Fósforo/análisis , Fibroblastos/patología , Células Cultivadas , Matriz Extracelular/patología , Matriz Extracelular/metabolismo , Leucocitos Mononucleares/patología , OsteogénesisRESUMEN
Despite advancements in elucidating biological mechanisms of cardiovascular remodeling, cardiovascular disease (CVD) remains the leading cause of death worldwide. When stratified by sex, clear differences in CVD prevalence and mortality between males and females emerge. Regional differences in phenotype and biological response of cardiovascular cells are important for localizing the initiation and progression of CVD. Thus, to better understand region and sex differences in CVD presentation, we have focused on characterizing in vitro behaviors of primary vascular smooth muscle cells (VSMCs) from the thoracic and abdominal aorta of male and female mice. VSMC contractility was assessed by traction force microscopy (TFM; single cell) and collagen gel contraction (collective) with and without stimulation by transforming growth factor-beta 1 (TGF-ß1) and cell proliferation was assessed by a colorimetric metabolic assay (MTT). Gene expression and TFM analysis revealed region- and sex-dependent behaviors, whereas collagen gel contraction was consistent across sex and aortic region under baseline conditions. Thoracic VSMCs showed a sex-dependent sensitivity to TGF-ß1-induced collagen gel contraction (female > male; p = 0.025) and a sex-dependent proliferative response (female > male; p < 0.001) that was not apparent in abdominal VSMCs. Although primary VSMCs exhibit intrinsic region and sex differences in biological responses that may be relevant for CVD presentation, several factors-such as inflammation and sex hormones-were not included in this study. Such factors should be included in future studies of in vitro mechanobiological responses relevant to CVD differences in males and females.