Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.799
Filtrar
Más filtros

Intervalo de año de publicación
1.
Circulation ; 147(8): 669-685, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36591786

RESUMEN

BACKGROUND: Epsin endocytic adaptor proteins are implicated in the progression of atherosclerosis; however, the underlying molecular mechanisms have not yet been fully defined. In this study, we determined how epsins enhance endothelial-to-mesenchymal transition (EndoMT) in atherosclerosis and assessed the efficacy of a therapeutic peptide in a preclinical model of this disease. METHODS: Using single-cell RNA sequencing combined with molecular, cellular, and biochemical analyses, we investigated the role of epsins in stimulating EndoMT using knockout in Apoe-/- and lineage tracing/proprotein convertase subtilisin/kexin type 9 serine protease mutant viral-induced atherosclerotic mouse models. The therapeutic efficacy of a synthetic peptide targeting atherosclerotic plaques was then assessed in Apoe-/- mice. RESULTS: Single-cell RNA sequencing and lineage tracing revealed that epsins 1 and 2 promote EndoMT and that the loss of endothelial epsins inhibits EndoMT marker expression and transforming growth factor-ß signaling in vitro and in atherosclerotic mice, which is associated with smaller lesions in the Apoe-/- mouse model. Mechanistically, the loss of endothelial cell epsins results in increased fibroblast growth factor receptor-1 expression, which inhibits transforming growth factor-ß signaling and EndoMT. Epsins directly bind ubiquitinated fibroblast growth factor receptor-1 through their ubiquitin-interacting motif, which results in endocytosis and degradation of this receptor complex. Consequently, administration of a synthetic ubiquitin-interacting motif-containing peptide atheroma ubiquitin-interacting motif peptide inhibitor significantly attenuates EndoMT and progression of atherosclerosis. CONCLUSIONS: We conclude that epsins potentiate EndoMT during atherogenesis by increasing transforming growth factor-ß signaling through fibroblast growth factor receptor-1 internalization and degradation. Inhibition of EndoMT by reducing epsin-fibroblast growth factor receptor-1 interaction with a therapeutic peptide may represent a novel treatment strategy for atherosclerosis.


Asunto(s)
Aterosclerosis , Factor de Crecimiento Transformador beta , Ratones , Animales , Factores de Crecimiento de Fibroblastos , Apolipoproteínas E , Aterosclerosis/genética , Receptores de Factores de Crecimiento de Fibroblastos , Factores de Crecimiento Transformadores , Ubiquitinas
2.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L111-L123, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084409

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-ß (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and 2) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-ß (TGF-ß) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.


Asunto(s)
Fibrosis Pulmonar Idiopática , Miofibroblastos , Humanos , Anoctamina-1/metabolismo , Diferenciación Celular , Cloruros/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Miofibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Factores de Crecimiento Transformadores/farmacología
3.
Cancer Sci ; 115(1): 211-226, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972575

RESUMEN

The tumor microenvironment (TME) consists of cancer cells surrounded by stromal components including tumor vessels. Transforming growth factor-ß (TGF-ß) promotes tumor progression by inducing epithelial-mesenchymal transition (EMT) in cancer cells and stimulating tumor angiogenesis in the tumor stroma. We previously developed an Fc chimeric TGF-ß receptor containing both TGF-ß type I (TßRI) and type II (TßRII) receptors (TßRI-TßRII-Fc), which trapped all TGF-ß isoforms and suppressed tumor growth. However, the precise mechanisms underlying this action have not yet been elucidated. In the present study, we showed that the recombinant TßRI-TßRII-Fc protein effectively suppressed in vitro EMT of oral cancer cells and in vivo tumor growth in a human oral cancer cell xenograft mouse model. Tumor cell proliferation and angiogenesis were suppressed in tumors treated with TßRI-TßRII-Fc. Molecular profiling of human cancer cells and mouse stroma revealed that K-Ras signaling and angiogenesis were suppressed. Administration of TßRI-TßRII-Fc protein decreased the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), interleukin-1ß (IL-1ß) and epiregulin (EREG) in the TME of oral cancer tumor xenografts. HB-EGF increased proliferation of human oral cancer cells and mouse endothelial cells by activating ERK1/2 phosphorylation. HB-EGF also promoted oral cancer cell-derived tumor formation by enhancing cancer cell proliferation and tumor angiogenesis. In addition, increased expressions of IL-1ß and EREG in oral cancer cells significantly enhanced tumor formation. These results suggest that TGF-ß signaling in the TME controls cancer cell proliferation and angiogenesis by activating HB-EGF/IL-1ß/EREG pathways and that TßRI-TßRII-Fc protein is a promising tool for targeting the TME networks.


Asunto(s)
Neoplasias de la Boca , Proteínas Serina-Treonina Quinasas , Humanos , Ratones , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina , Células Endoteliales/metabolismo , Microambiente Tumoral , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta1 , Neoplasias de la Boca/genética , Factores de Crecimiento Transformadores
4.
J Hepatol ; 80(5): 753-763, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38244845

RESUMEN

BACKGROUND & AIMS: Ectopic liver regeneration in the spleen is a promising alternative to organ transplantation for treating liver failure. To accommodate transplanted liver cells, the splenic tissue must undergo structural changes to increase extracellular matrix content, demanding a safe and efficient approach for tissue remodelling. METHODS: We synthesised sulphated hyaluronic acid (sHA) with an affinity for the latent complex of transforming growth factor-ß (TGF-ß) and cross-linked it into a gel network (sHA-X) via click chemistry. We injected this glycan into the spleens of mice to induce splenic tissue remodelling via supraphysiological activation of endogenous TGF-ß. RESULTS: sHA-X efficiently bound to the abundant latent TGF-ß in the spleen. It provided the molecular force to liberate the active TGF-ß dimers from their latent complex, mimicking the 'bind-and-pull' mechanism required for physiological activation of TGF-ß and reshaping the splenic tissue to support liver cell growth. Hepatocytes transplanted into the remodelled spleen developed into liver tissue with sufficient volume to rescue animals with a metabolic liver disorder (Fah-/- transgenic model) or following 90% hepatectomy, with no adverse effects observed and no additional drugs required. CONCLUSION: Our findings highlight the efficacy and translational potential of using sHA-X to remodel a specific organ by mechanically activating one single cytokine, representing a novel strategy for the design of biomaterials-based therapies for organ regeneration. IMPACT AND IMPLICATIONS: Cell transplantation may provide a lifeline to millions of patients with end-stage liver diseases, but their severely damaged livers being unable to accommodate the transplanted cells is a crucial hurdle. Herein, we report an approach to restore liver functions in another organ - the spleen - by activating one single growth factor in situ. This approach, based on a chemically designed polysaccharide that can mechanically liberate the active transforming growth factor-ß to an unusually high level, promotes the function of abundant allogenic liver cells in the spleen, rescuing animals from lethal models of liver diseases and showing a high potential for clinical translation.


Asunto(s)
Hiperplasia Nodular Focal , Hepatopatías , Humanos , Ratones , Animales , Regeneración Hepática/fisiología , Bazo , Factor de Crecimiento Transformador beta/metabolismo , Hígado/metabolismo , Hepatopatías/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Factores de Crecimiento Transformadores/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
5.
Gastroenterology ; 165(4): 874-890.e10, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37263309

RESUMEN

BACKGROUND & AIMS: Transforming growth factor-b (TGFb) plays pleiotropic roles in pancreatic cancer, including promoting metastasis, attenuating CD8 T-cell activation, and enhancing myofibroblast differentiation and deposition of extracellular matrix. However, single-agent TGFb inhibition has shown limited efficacy against pancreatic cancer in mice or humans. METHODS: We evaluated the TGFß-blocking antibody NIS793 in combination with gemcitabine/nanoparticle (albumin-bound)-paclitaxel or FOLFIRINOX (folinic acid [FOL], 5-fluorouracil [F], irinotecan [IRI] and oxaliplatin [OX]) in orthotopic pancreatic cancer models. Single-cell RNA sequencing and immunofluorescence were used to evaluate changes in tumor cell state and the tumor microenvironment. RESULTS: Blockade of TGFß with chemotherapy reduced tumor burden in poorly immunogenic pancreatic cancer, without affecting the metastatic rate of cancer cells. Efficacy of combination therapy was not dependent on CD8 T cells, because response to TGFß blockade was preserved in CD8-depleted or recombination activating gene 2 (RAG2-/-) mice. TGFß blockade decreased total α-smooth muscle actin-positive fibroblasts but had minimal effect on fibroblast heterogeneity. Bulk RNA sequencing on tumor cells sorted ex vivo revealed that tumor cells treated with TGFß blockade adopted a classical lineage consistent with enhanced chemosensitivity, and immunofluorescence for cleaved caspase 3 confirmed that TGFß blockade increased chemotherapy-induced cell death in vivo. CONCLUSIONS: TGFß regulates pancreatic cancer cell plasticity between classical and basal cell states. TGFß blockade in orthotropic models of pancreatic cancer enhances sensitivity to chemotherapy by promoting a classical malignant cell state. This study provides scientific rationale for evaluation of NIS793 with FOLFIRINOX or gemcitabine/nanoparticle (albumin-bound) paclitaxel chemotherapy backbone in the clinical setting and supports the concept of manipulating cancer cell plasticity to increase the efficacy of combination therapy regimens.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Factor de Crecimiento Transformador beta/metabolismo , Antineoplásicos/uso terapéutico , Gemcitabina , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Albúminas , Factores de Crecimiento Transformadores/uso terapéutico , Microambiente Tumoral , Neoplasias Pancreáticas
6.
Biochem Biophys Res Commun ; 703: 149611, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38354463

RESUMEN

Uterine fibroid is the most common non-cancerous tumor with no satisfactory options for long-term pharmacological treatment. Fibroblast activation protein-α (FAP) is one of the critical enzymes that enhances the fibrosis in uterine fibroids. Through STITCH database mining, we found that dipeptidyl peptidase-4 inhibitors (DPP4i) have the potential to inhibit the activity of FAP. Both DPP4 and FAP belong to the dipeptidyl peptidase family and share a similar catalytic domain. Hence, ligands which have a binding affinity with DPP4 could also bind with FAP. Among the DPP4i, linagliptin exhibited the highest binding affinity (Dock score = -8.562 kcal/mol) with FAP. Our study uncovered that the differences in the S2 extensive-subsite residues between DPP4 and FAP could serve as a basis for designing selective inhibitors specifically targeting FAP. Furthermore, in a dynamic environment, linagliptin was able to destabilize the dimerization interface of FAP, resulting in potential inhibition of its biological activity. True to the in-silico results, linagliptin reduced the fibrotic process in estrogen and progesterone-induced fibrosis in rat uterus. Furthermore, linagliptin reduced the gene expression of transforming growth factor-ß (TGF-ß), a critical factor in collagen secretion and fibrotic process. Masson trichrome staining confirmed that the anti-fibrotic effects of linagliptin were due to its ability to reduce collagen deposition in rat uterus. Altogether, our research proposes that linagliptin has the potential to be repurposed for the treatment of uterine fibroids.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Leiomioma , Ratas , Animales , Femenino , Linagliptina/farmacología , Linagliptina/uso terapéutico , Factor de Crecimiento Transformador beta , Dipeptidil Peptidasa 4/metabolismo , Reposicionamiento de Medicamentos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Fibrosis , Leiomioma/tratamiento farmacológico , Colágeno , Factores de Crecimiento Transformadores
7.
J Pharmacol Exp Ther ; 389(2): 208-218, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38453525

RESUMEN

Renal fibrosis is distinguished by the abnormal deposition of extracellular matrix and progressive loss of nephron function, with a lack of effective treatment options in clinical practice. In this study, we discovered that the Beclin-1-derived peptide MP1 significantly inhibits the abnormal expression of fibrosis and epithelial-mesenchymal transition-related markers, including α-smooth muscle actin, fibronectin, collagen I, matrix metallopeptidase 2, Snail1, and vimentin both in vitro and in vivo. H&E staining was employed to evaluate renal function, while serum creatinine (Scr) and blood urea nitrogen (BUN) were used as main indices to assess pathologic changes in the obstructed kidney. The results demonstrated that daily treatment with MP1 during the 14-day experiment significantly alleviated renal dysfunction and changes in Scr and BUN in mice with unilateral ureteral obstruction. Mechanistic research revealed that MP1 was found to have a significant inhibitory effect on the expression of crucial components involved in both the Wnt/ß-catenin and transforming growth factor (TGF)-ß/Smad pathways, including ß-catenin, C-Myc, cyclin D1, TGF-ß1, and p-Smad/Smad. However, MP1 exhibited no significant impact on either the LC3II/LC3I ratio or P62 levels. These findings indicate that MP1 improves renal physiologic function and mitigates the fibrosis progression by inhibiting the Wnt/ß-catenin pathway. Our study suggests that MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis. SIGNIFICANCE STATEMENT: This study indicated that the Beclin-1-derived peptide MP1 effectively mitigated renal fibrosis induced by unilateral ureteral obstruction through inhibiting the Wnt/ß-catenin pathway and transforming growth factor-ß/Smad pathway, thereby improving renal physiological function. Importantly, unlike other Beclin-1-derived peptides, MP1 exhibited no significant impact on autophagy in normal cells. MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis focusing on Beclin-1 derivatives and Wnt/ß-catenin pathway.


Asunto(s)
Enfermedades Renales , Profármacos , Obstrucción Ureteral , Animales , Ratones , Beclina-1/metabolismo , Beclina-1/farmacología , beta Catenina/metabolismo , beta Catenina/farmacología , Fibrosis , Riñón , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/prevención & control , Enfermedades Renales/metabolismo , Profármacos/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Factores de Crecimiento Transformadores/farmacología , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/metabolismo
8.
Am J Pathol ; 193(8): 1029-1045, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37236504

RESUMEN

IL-33, a member of the IL-1 family, acts as an alarmin in immune response. Epithelial-mesenchymal transition and transforming growth factor-ß (TGF-ß)­induced fibroblast activation are key events in the development of renal interstitial fibrosis. The current study found increased expression of IL-33 and interleukin-1 receptor-like 1 (IL1RL1, alias ST2), the receptor for IL-33, in human fibrotic renal tissues. In addition, IL-33­ or ST2-deficient mice showed significantly reduced levels of fibronectin, α-smooth muscle actin, and vimentin, and increased E-cadherin levels. In HK-2 cells, IL-33 promotes the phosphorylation of the TGF-ß receptor (TGF-ßR), Smad2, and Smad3, and the production of extracellular matrix (ECM), with reduced expression of E-cadherin. Blocking TGF-ßR signaling or suppressing ST2 expression impeded Smad2 and Smad3 phosphorylation, thereby reducing ECM production, suggesting that IL-33­induced ECM synthesis requires cooperation between the two pathways. Mechanistically, IL-33 treatment induced a proximate interaction between ST2 and TGF-ßRs, activating downstream Smad2 and Smad3 for ECM production in renal epithelial cells. Collectively, this study identified a novel and essential role for IL-33 in promoting TGF-ß signaling and ECM production in the development of renal fibrosis. Therefore, targeting IL-33/ST2 signaling may be an effective therapeutic strategy for renal fibrosis.


Asunto(s)
Interleucina-33 , Enfermedades Renales , Ratones , Humanos , Animales , Interleucina-33/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/uso terapéutico , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Enfermedades Renales/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína smad3/metabolismo , Fibrosis , Cadherinas/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Factores de Crecimiento Transformadores/farmacología , Factores de Crecimiento Transformadores/uso terapéutico , Factor de Crecimiento Transformador beta1/metabolismo , Transición Epitelial-Mesenquimal
9.
Am J Pathol ; 193(5): 591-607, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36773783

RESUMEN

α-Klotho is a longevity-related protein. Its deficiency shortens lifespan with prominent senescent phenotypes, including muscle atrophy and weakness in mice. α-Klotho has two forms: membrane α-Klotho and circulating α-Klotho (c-α-Klotho). Loss of membrane α-Klotho impairs a phosphaturic effect, thereby accelerating phosphate-induced aging. However, the mechanisms of senescence on c-α-Klotho loss remain largely unknown. Herein, with the aging of wild-type mice, c-α-Klotho declined, whereas Smad2, an intracellular transforming growth factor (TGF)-ß effector, became activated in skeletal muscle. Moreover, c-α-Klotho suppressed muscle-wasting TGF-ß molecules, including myostatin, growth and differentiation factor 11, activin, and TGF-ß1, through binding to ligands as well as type I and type II serine/threonine kinase receptors. Indeed, c-α-Klotho reversed impaired in vitro myogenesis caused by these TGF-ßs. Oral administration of Ki26894, a small-molecule inhibitor of type I receptors for these TGF-ßs, restored muscle atrophy and weakness in α-Klotho (-/-) mice and in elderly wild-type mice by suppression of activated Smad2 and up-regulated Cdkn1a (p21) transcript, a target of phosphorylated Smad2. Ki26894 also induced the slow to fast myofiber switch. These findings show c-α-Klotho's potential as a circulating inhibitor counteracting TGF-ß-induced sarcopenia. These data highlight the potential of a novel therapy involving TGF-ß blockade to prevent sarcopenia.


Asunto(s)
Sarcopenia , Factor de Crecimiento Transformador beta , Ratones , Animales , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Sarcopenia/prevención & control , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Crecimiento Transformadores
10.
Am J Obstet Gynecol ; 230(2): 251.e1-251.e17, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37598997

RESUMEN

BACKGROUND: Zika virus congenital infection evades double-stranded RNA detection and may persist in the placenta for the duration of pregnancy without accompanying overt histopathologic inflammation. Understanding how viruses can persist and replicate in the placenta without causing overt cellular or tissue damage is fundamental to deciphering mechanisms of maternal-fetal vertical transmission. OBJECTIVE: Placenta-specific microRNAs are believed to be a tenet of viral resistance at the maternal-fetal interface. We aimed to test the hypothesis that the Zika virus functionally disrupts placental microRNAs, enabling viral persistence and fetal pathogenesis. STUDY DESIGN: To test this hypothesis, we used orthogonal approaches in human and murine experimental models. In primary human trophoblast cultures (n=5 donor placentae), we performed Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation to identify any significant alterations in the functional loading of microRNAs and their targets onto the RNA-induced silencing complex. Trophoblasts from same-donors were split and infected with a contemporary first-passage Zika virus strain HN16 (multiplicity of infection=1 plaque forming unit per cell) or mock infected. To functionally cross-validate microRNA-messenger RNA interactions, we compared our Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation results with an independent analysis of published bulk RNA-sequencing data from human placental disk specimens (n=3 subjects; Zika virus positive in first, second, or third trimester, CD45- cells sorted by flow cytometry) and compared it with uninfected controls (n=2 subjects). To investigate the importance of these microRNA and RNA interference networks in Zika virus pathogenesis, we used a gnotobiotic mouse model uniquely susceptible to the Zika virus. We evaluated if small-molecule enhancement of microRNA and RNA interference pathways with enoxacin influenced Zika virus pathogenesis (n=20 dams total yielding 187 fetal specimens). Lastly, placentae (n=14 total) from this mouse model were analyzed with Visium spatial transcriptomics (9743 spatial transcriptomes) to identify potential Zika virus-associated alterations in immune microenvironments. RESULTS: We found that Zika virus infection of primary human trophoblast cells led to an unexpected disruption of placental microRNA regulation networks. When compared with uninfected controls, Zika virus-infected placentae had significantly altered SLC12A8, SDK1, and VLDLR RNA-induced silencing complex loading and transcript levels (-22; adjusted P value <.05; Wald-test with false discovery rate correction q<0.05). In silico microRNA target analyses revealed that 26 of 119 transcripts (22%) in the transforming growth factor-ß signaling pathway were targeted by microRNAs that were found to be dysregulated following Zika virus infection in trophoblasts. In gnotobiotic mice, relative to mock controls, Zika virus-associated fetal pathogenesis included fetal growth restriction (P=.036) and viral persistence in placental tissue (P=.011). Moreover, spatial transcriptomics of murine placentae revealed that Zika virus-specific placental niches were defined by significant up-regulation of complement cascade components and coordinated changes in transforming growth factor-ß gene expression. Finally, treatment of Zika virus-infected mice with enoxacin abolished placental Zika virus persistence, rescued the associated fetal growth restriction, and the Zika virus-associated transcriptional changes in placental immune microenvironments were no longer observed. CONCLUSION: These results collectively suggest that (1) Zika virus infection and persistence is associated with functionally perturbed microRNA and RNA interference pathways specifically related to immune regulation in placental microenvironments and (2) enhancement of placental microRNA and RNA interference pathways in mice rescued Zika virus-associated pathogenesis, specifically persistence of viral transcripts in placental microenvironments and fetal growth restriction.


Asunto(s)
MicroARNs , Infección por el Virus Zika , Virus Zika , Embarazo , Humanos , Femenino , Animales , Ratones , Virus Zika/genética , Infección por el Virus Zika/genética , MicroARNs/genética , MicroARNs/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Enoxacino/metabolismo , Placenta/metabolismo , Perfilación de la Expresión Génica , Complejo Silenciador Inducido por ARN/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Trofoblastos/metabolismo
11.
Circ Res ; 131(10): 807-824, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36200440

RESUMEN

BACKGROUND: Phenotypic transition of vascular smooth muscle cells (VSMCs) accounts for the pathogenesis of a variety of vascular diseases during the early stage. Recent studies indicate the metabolic reprogramming may be involved in VSMC phenotypic transition. However, the definite molecules that link energy metabolism to distinct VSMC phenotype remain elusive. METHODS: A carotid artery injury model was used to study postinjury neointima formation as well as VSMC phenotypic transition in vivo. RNA-seq analysis, cell migration assay, collagen gel contraction assay, wire myography assay, immunoblotting, protein interactome analysis, co-immunoprecipitation, and mammalian 2-hybrid assay were performed to clarify the phenotype and elucidate the molecular mechanisms. RESULTS: We collected cell energy-regulating genes by using Gene Ontology annotation and applied RNA-Seq analysis of transforming growth factor-ß or platelet-derived growth factor BB stimulated VSMCs. Six candidate genes were overlapped from energy metabolism-related genes and genes reciprocally upregulated by transforming growth factor-ß and downregulated by platelet-derived growth factor BB. Among them, prohibitin 2 has been reported to regulate mitochondrial oxidative phosphorylation. Indeed, prohibitin 2-deficient VSMCs lost the contractile phenotype as evidenced by reduced contractile proteins. Consistently, Phb2SMCKO mice were more susceptible to postinjury VSMC proliferation and neointima formation compared with Phb2flox/flox mice. Further protein interactome analysis, co-immunoprecipitation, and mammalian 2-hybrid assay revealed that prohibitin 2, through its C-terminus, directly interacts with hnRNPA1, a key modulator of pyruvate kinase M1/2 (PKM) mRNA splicing that promotes PKM2 expression and glycolysis. Prohibitin 2 deficiency facilitated PKM1/2 mRNA splicing and reversion from PKM1 to PKM2, and enhanced glycolysis in VSMCs. Blocking prohibitin 2-hnRNPA1 interaction resulted in increased PKM2 expression, enhanced glycolysis, repressed contractile marker genes expression in VSMCs, as well as aggravated postinjury neointima formation in vivo. CONCLUSIONS: Prohibitin 2 maintains VSMC contractile phenotype by interacting with hnRNPA1 to counteract hnRNPA1-mediated PKM alternative splicing and glucose metabolic reprogramming.


Asunto(s)
Músculo Liso Vascular , Neointima , Animales , Ratones , Becaplermina/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Mamíferos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/patología , Fenotipo , ARN Mensajero/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Prohibitinas/genética
12.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 143-149, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38430028

RESUMEN

To explore the action and mechanism in which circular RNA (circRNA) mitofusin 2 (MFN2) repressed the malignant proliferation of Wilms tumor (WT) via modulating microRNA (miR)-372-3p/transforming growth factor-ß receptor type 2 (TGFBR2) axis. CircRNA MFN2 was distinctly elevated in the tissues and cells of WT patients, while miR-372-3p was silenced in the tissues and cells of WT. Test of TGFBR2, PCNA and Bax was implemented. Transfection with si-circRNA MFN2 or miR-372-3p-mimic restrained cancer cell advancement and the number of PCNA content was declined, while transfection with miR-372-3p-inhibitor was opposite, and PCNA content was augmented. MiR-372-3p-inhibitor turned around si-circRNA MFN2's therapeutic action after co-transfection with si-circRNA MFN2 + miR-372-3p-inhibitor. Ultimately, it was verified that circRNA MFN2 was negatively associated with miR-372-3p, which was negatively linked with TGFBR2, and circRNA MFN2 was positively associated with TGFBR2. To sum up, the results of this research illuminated circRNA MFN2 repressed WT's malignant proliferation via modulating miR-372-3p/TGFBR2 axis.


Asunto(s)
MicroARNs , ARN Circular , Receptor Tipo II de Factor de Crecimiento Transformador beta , Tumor de Wilms , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , MicroARNs/genética , Antígeno Nuclear de Célula en Proliferación , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , ARN Circular/genética , Factores de Crecimiento Transformadores , Tumor de Wilms/genética
13.
J Nanobiotechnology ; 22(1): 177, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609995

RESUMEN

The current first-line treatment for repairing cartilage defects in clinical practice is the creation of microfractures (MF) to stimulate the release of mesenchymal stem cells (MSCs); however, this method has many limitations. Recent studies have found that MSC-derived extracellular vesicles (MSC-EVs) play an important role in tissue regeneration. This study aimed to verify whether MSC-EVs promote cartilage damage repair mediated by MFs and to explore the repair mechanisms. In vitro experiments showed that human umbilical cord Wharton's jelly MSC-EVs (hWJMSC-EVs) promoted the vitality of chondrocytes and the proliferation and differentiation ability of bone marrow-derived MSCs. This was mainly because hWJMSC-EVs carry integrin beta-1 (ITGB1), and cartilage and bone marrow-derived MSCs overexpress ITGB1 after absorbing EVs, thereby activating the transforming growth factor-ß/Smad2/3 axis. In a rabbit knee joint model of osteochondral defect repair, the injection of different concentrations of hWJMSC-EVs into the joint cavity showed that a concentration of 50 µg/ml significantly improved the formation of transparent cartilage after MF surgery. Extraction of regenerated cartilage revealed that the changes in ITGB1, transforming growth factor-ß, and Smad2/3 were directly proportional to the repair of regenerated cartilage. In summary, this study showed that hWJMSC-EVs promoted cartilage repair after MF surgery.


Asunto(s)
Fracturas por Estrés , Humanos , Animales , Conejos , Cartílago , Condrocitos , Factor de Crecimiento Transformador beta , Factores de Crecimiento Transformadores
14.
Nucleic Acids Res ; 50(17): 9632-9646, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36043443

RESUMEN

Adenine base editors (ABEs) catalyze A-to-G conversions, offering therapeutic options to treat the major class of human pathogenic single nucleotide polymorphisms (SNPs). However, robust and precise editing at diverse genome loci remains challenging. Here, using high-throughput chemical screening, we identified and validated SB505124, a selective ALK5 inhibitor, as an ABE activator. Treating cells with SB505124 enhanced on-target editing at multiple genome loci, including epigenetically refractory regions, and showed little effect on off-target conversion on the genome. Furthermore, SB505124 facilitated the editing of disease-associated genes in vitro and in vivo. Intriguingly, SB505124 served as a specific activator by selectively promoting ABE activity. Mechanistically, SB505124 promotes ABE editing, at least in part, by enhancing ABE expression and modulating DNA repair-associated genes. Our findings reveal the role of the canonical transforming growth factor-ß pathway in gene editing and equip ABEs with precise chemical control.


Asunto(s)
Adenina , Factor de Crecimiento Transformador beta , Adenina/química , Sistemas CRISPR-Cas , Edición Génica , Genoma , Humanos , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factores de Crecimiento Transformadores/metabolismo
15.
Gynecol Endocrinol ; 40(1): 2325000, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38477938

RESUMEN

OBJECTIVE: To investigate the target and mechanism of action of Bushen Huoxue Recipe (BSHX) for the treatment of infertility in polycystic ovary syndrome (PCOS), to provide a basis for the development and clinical application of herbal compounds. METHODS: Prediction and validation of active ingredients and targets of BSHX for the treatment of PCOS by using network pharmacology-molecular docking technology. In an animal experiment, the rats were randomly divided into four groups (control group, model group, BSHX group, metformin group, n = 16 in each group), and letrozole combined with high-fat emulsion gavage was used to establish a PCOS rat model. Body weight, vaginal smears, and number of embryos were recorded for each group of rats. Hematoxylin-eosin (HE) staining was used to observe the morphological changes of ovarian and endometrial tissues, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the serum inflammatory factor levels. Expression levels of transforming growth factor-ß (TGF-ß), transforming growth factor beta activated kinase 1 (TAK1), nuclear factor kappa-B (NF-κB), Vimentin, and E-cadherin proteins were measured by western blot (WB). RESULTS: Ninety active pharmaceutical ingredients were obtained from BSHX, involving 201 protein targets, of which 160 were potential therapeutic targets. The active ingredients of BSHX exhibited lower binding energy with tumor necrosis factor-α (TNF-α), TGF-ß, TAK1, and NF-κB protein receptors (< -5.0 kcal/mol). BSHX significantly reduced serum TNF-α levels in PCOS rats (p < .01), effectively regulated the estrous cycle, restored the pathological changes in the ovary and endometrium, improved the pregnancy rate, and increased the number of embryos. The results of WB suggested that BSHX can down-regulate protein expression levels of TGF-ß and NF-κB in endometrial tissue (p < .05), promote the expression level of E-cadherin protein (p < .001), intervene in the endometrial epithelial-mesenchymal transition (EMT) process. CONCLUSIONS: TGF-ß, TAK1, NF-κB, and TNF-α are important targets of BSHX for treating infertility in PCOS. BSHX improves the inflammatory state of PCOS, intervenes in the endometrial EMT process through the TGF-ß/NF-κB pathway, and restores endometrial pathological changes, further improving the pregnancy outcome in PCOS.


Asunto(s)
Medicamentos Herbarios Chinos , Infertilidad , Síndrome del Ovario Poliquístico , Femenino , Humanos , Animales , Embarazo , Ratas , FN-kappa B , Simulación del Acoplamiento Molecular , Factor de Necrosis Tumoral alfa , Factores de Transcripción , Cadherinas , Endometrio , Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta , Factores de Crecimiento Transformadores
16.
World J Surg Oncol ; 22(1): 22, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245723

RESUMEN

BACKGROUND: Transforming growth factor ß (TGFß) is a critical regulator of lung metastasis of breast cancer and is correlated with the prognosis of breast cancer. However, not all TGFß stimulated genes were functional and prognostic in breast cancer lung metastatic progress. In this study, we tried to determine the prognosis of TGFß stimulated genes in breast cancer. METHODS: TGFß stimulated genes in MDA-MB-231 cells and lung metastasis-associated genes in LM2-4175 cells were identified through gene expression microarray. The prognosis of the induced gene (TGFBI) in breast cancer was determined through bioinformatics analysis and validated using tissue microarray. The immune infiltrations of breast cancer were determined through "ESTIMATE" and "TIMER". RESULTS: TGFBI was up-regulated by TGFß treatment and over-expressed in LM2-4175 cells. Through bioinformatics analysis, we found that higher expression of TGFBI was associated with shorted lung metastasis-free survival, relapse-free survival, disease-free survival, and overall survival of breast cancer. Moreover, the prognosis of TGFBI was validated in 139 Chinese breast cancer patients. Chinese breast cancer patients with higher TGFBI expression had lower overall survival. Correspondingly, breast cancer patients with higher TGFBI methylation had higher overall survival. TGFBI was correlated with the score of the TGFß signaling pathway and multiple immune-related signaling pathways in breast cancer. The stromal score, immune score, and the infiltrations of immune cells were also correlated with TGFBI expression in breast cancer. CONCLUSIONS: TGFß-induced gene TGFBI was correlated with the prognosis and immune infiltrations of breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Recurrencia Local de Neoplasia , Pronóstico , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias Pulmonares/patología , Factores de Crecimiento Transformadores , Línea Celular Tumoral
17.
BMC Musculoskelet Disord ; 25(1): 206, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454404

RESUMEN

BACKGROUND: Osteoporosis is a genetic disease caused by the imbalance between osteoblast-led bone formation and osteoclast-induced bone resorption. However, further gene-related pathogenesis remains to be elucidated. METHODS: The aberrant expressed genes in osteoporosis was identified by analyzing the microarray profile GSE100609. Serum samples of patients with osteoporosis and normal group were collected, and the mRNA expression of candidate genes was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The mouse cranial osteoblast MC3T3-E1 cells were treated with dexamethasone (DEX) to mimic osteoporosis in vitro. Alizarin Red staining and alkaline phosphatase (ALP) staining methods were combined to measure matrix mineralization deposition of MC3T3-E1 cells. Meanwhile, the expression of osteogenesis related genes including alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), Osterix, and bone morphogenetic protein 2 (BMP2) were evaluated by qRT-PCR and western blotting methods. Then the effects of candidate genes on regulating impede bone loss caused by ovariectomy (OVX) in mice were studied. RESULTS: Cyclin A1 (CCNA1) was found to be significantly upregulated in serum of osteoporosis patients and the osteoporosis model cells, which was in line with the bioinformatic analysis. The osteogenic differentiation ability of MC3T3-E1 cells was inhibited by DEX treatment, which was manifested by decreased Alizarin Red staining intensity, ALP staining intensity, and expression levels of ALP, OCN, OPN, Osterix, and BMP2. The effects of CCNA1 inhibition on regulating osteogenesis were opposite to that of DEX. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that genes negatively associated with CCNA1 were enriched in the TGF-beta signaling pathway. Inhibitor of TGF-beta signaling pathway partly reversed osteogenesis induced by suppressed CCNA1. Furthermore, suppressed CCNA1 relieved bone mass of OVX mice in vivo. CONCLUSION: Downregulation of CCNA1 could activate TGF-beta signaling pathway and promote bone formation, thus playing a role in treatment of osteoporosis.


Asunto(s)
Antraquinonas , Osteoporosis , Factor de Crecimiento Transformador beta , Animales , Femenino , Humanos , Ratones , Fosfatasa Alcalina/metabolismo , Diferenciación Celular , Ciclina A1/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Osteoporosis/inducido químicamente , Factor de Crecimiento Transformador beta/metabolismo , Factores de Crecimiento Transformadores/efectos adversos , Factores de Crecimiento Transformadores/metabolismo
18.
Pestic Biochem Physiol ; 200: 105831, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582594

RESUMEN

Paraquat (PQ) causes fatal poisoning that leads to systemic multiple organ fibrosis, and transforming growth factor (TGF)-ß1 plays a critical role in this process. In this study, we aimed to investigate the effects of AZ12601011 (a small molecular inhibitor of TGFßRI) on PQ-induced multiple organ fibrosis. We established a mouse model of PQ in vivo and used PQ-treated lung epithelial cell (A549) and renal tubular epithelial cells (TECs) in vitro. Haematoxylin-eosin and Masson staining revealed that AZ12601011 ameliorated pulmonary, hepatic, and renal fibrosis, consistent with the decrease in the levels of fibrotic indicators, alpha-smooth muscle actin (α-SMA) and collagen-1, in the lungs and kidneys of PQ-treated mice. In vitro data showed that AZ12601011 suppressed the induction of α-SMA and collagen-1 in PQ-treated A549 cells and TECs. In addition, AZ12601011 inhibited the release of inflammatory factors, interleukin (IL)-1ß, IL-6, and tumour necrosis factor-α. Mechanistically, TGF-ß and TGFßRI levels were significantly upregulated in the lungs and kidneys of PQ-treated mice. Cellular thermal shift assay and western blotting revealed that AZ12601011 directly bound with TGFßRI and blocked the activation of Smad3 downstream. In conclusion, our findings revealed that AZ12601011 attenuated PQ-induced multiple organ fibrosis by blocking the TGF-ß/Smad3 signalling pathway, suggesting its potential for PQ poisoning treatment.


Asunto(s)
Lesión Pulmonar Aguda , Paraquat , Fibrosis Pulmonar , Ratones , Animales , Paraquat/toxicidad , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta/toxicidad , Factor de Crecimiento Transformador beta1/toxicidad , Factor de Crecimiento Transformador beta1/metabolismo , Colágeno/toxicidad , Colágeno/metabolismo , Factores de Crecimiento Transformadores/toxicidad
19.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542077

RESUMEN

Novel technologies such as single-cell RNA and single-nucleus RNA sequencing have shed new light on the complexity of different microglia populations in physiological and pathological states. The transcriptomic profiling of these populations has led to the subclassification of specific disease-associated microglia and microglia clusters in neurodegenerative diseases. A common profile includes the downregulation of homeostasis and the upregulation of inflammatory markers. Furthermore, there is concordance in few clusters between murine and human samples. Apolipoprotein E, which has long been considered a high-risk factor for late-onset Alzheimer's disease, is strongly regulated in both these murine and human clusters. Transforming growth factor-ß plays an essential role during the development and maturation of microglia. In a pathological state, it attenuates their activation and is involved in numerous cell regulatory processes. Transforming growth factor-ß also has an influence on the deposition of amyloid-beta, as it is involved in the regulation of key proteins and molecules. Taken together, this review highlights the complex interaction of apolipoprotein E, the triggering receptor on myeloid cells 2, and transforming growth factor-ß as part of a regulatory axis in microglia at the onset and over the course of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Humanos , Animales , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Receptores Inmunológicos/metabolismo , Péptidos beta-Amiloides/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Modelos Animales de Enfermedad
20.
J Cell Mol Med ; 27(3): 311-321, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36625080

RESUMEN

Low frequency of durable responses in patients treated with immune checkpoint inhibitors (ICIs) demands for taking complementary strategies in order to boost immune responses against cancer. Transforming growth factor-ß (TGF-ß) is a multi-tasking cytokine that is frequently expressed in tumours and acts as a critical promoter of tumour hallmarks. TGF-ß promotes an immunosuppressive tumour microenvironment (TME) and defines a bypass mechanism to the ICI therapy. A number of cells within the stroma of tumour are influenced from TGF-ß activity. There is also evidence of a relation between TGF-ß with programmed death-ligand 1 (PD-L1) expression within TME, and it influences the efficacy of anti-programmed death-1 receptor (PD-1) or anti-PD-L1 therapy. Combination of TGF-ß inhibitors with anti-PD(L)1 has come to the promising outcomes, and clinical trials are under way in order to use agents with bifunctional capacity and fusion proteins for bonding TGF-ß traps with anti-PD-L1 antibodies aiming at reinvigorating immune responses and promoting persistent responses against advanced stage cancers, especially tumours with immunologically cold ecosystem.


Asunto(s)
Neoplasias , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Ecosistema , Neoplasias/tratamiento farmacológico , Transducción de Señal , Factores de Crecimiento Transformadores , Antígeno B7-H1/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA