Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(7): e18140, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38494851

RESUMEN

Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), has been identified as a key player in various biological processes, including embryonic development, aging, metabolic disorders and cancers. GDF11 has also emerged as a critical component in liver development, injury and fibrosis. However, the effects of GDF11 on liver physiology and pathology have been a subject of debate among researchers due to conflicting reported outcomes. While some studies suggest that GDF11 has anti-aging properties, others have documented its senescence-inducing effects. Similarly, while GDF11 has been implicated in exacerbating liver injury, it has also been shown to have the potential to reduce liver fibrosis. In this narrative review, we present a comprehensive report of recent evidence elucidating the diverse roles of GDF11 in liver development, hepatic injury, regeneration and associated diseases such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma. We also explore the therapeutic potential of GDF11 in managing various liver pathologies.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fibrosis , Cirrosis Hepática/patología , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Neoplasias Hepáticas/patología
2.
BMC Genomics ; 25(1): 837, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39237910

RESUMEN

BACKGROUND: Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-ß (TGF-ß) superfamily that has gained considerable attention over the last decade for its observed ability to reverse age-related deterioration of multiple tissues, including the heart. Yet as many researchers have struggled to confirm the cardioprotective and anti-aging effects of GDF11, the topic has grown increasingly controversial, and the field has reached an impasse. We postulated that a clearer understanding of GDF11 could be gained by investigating its health effects at the population level. METHODS AND RESULTS: We employed a comprehensive strategy to interrogate results from genome-wide association studies in population Biobanks. Interestingly, phenome-wide association studies (PheWAS) of GDF11 tissue-specific cis-eQTLs revealed associations with asthma, immune function, lung function, and thyroid phenotypes. Furthermore, PheWAS of GDF11 genetic variants confirmed these results, revealing similar associations with asthma, immune function, lung function, and thyroid health. To complement these findings, we mined results from transcriptome-wide association studies, which uncovered associations between predicted tissue-specific GDF11 expression and the same health effects identified from PheWAS analyses. CONCLUSIONS: In this study, we report novel relationships between GDF11 and disease, namely asthma and hypothyroidism, in contrast to its formerly assumed role as a rejuvenating factor in basic aging and cardiovascular health. We propose that these associations are mediated through the involvement of GDF11 in inflammatory signaling pathways. Taken together, these findings provide new insights into the health effects of GDF11 at the population level and warrant future studies investigating the role of GDF11 in these specific health conditions.


Asunto(s)
Bancos de Muestras Biológicas , Proteínas Morfogenéticas Óseas , Estudio de Asociación del Genoma Completo , Factores de Diferenciación de Crecimiento , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Humanos , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Polimorfismo de Nucleótido Simple , Fenotipo , Sitios de Carácter Cuantitativo , Pleiotropía Genética
3.
Development ; 148(6)2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782043

RESUMEN

Rostro-caudal patterning of vertebrates depends on the temporally progressive activation of HOX genes within axial stem cells that fuel axial embryo elongation. Whether the pace of sequential activation of HOX genes, the 'HOX clock', is controlled by intrinsic chromatin-based timing mechanisms or by temporal changes in extrinsic cues remains unclear. Here, we studied HOX clock pacing in human pluripotent stem cell-derived axial progenitors differentiating into diverse spinal cord motor neuron subtypes. We show that the progressive activation of caudal HOX genes is controlled by a dynamic increase in FGF signaling. Blocking the FGF pathway stalled induction of HOX genes, while a precocious increase of FGF, alone or with GDF11 ligand, accelerated the HOX clock. Cells differentiated under accelerated HOX induction generated appropriate posterior motor neuron subtypes found along the human embryonic spinal cord. The pacing of the HOX clock is thus dynamically regulated by exposure to secreted cues. Its manipulation by extrinsic factors provides synchronized access to multiple human neuronal subtypes of distinct rostro-caudal identities for basic and translational applications.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Relojes Circadianos , Proteínas de Homeodominio/metabolismo , Neuronas Motoras/metabolismo , Células Madre Pluripotentes/metabolismo , Benzamidas/farmacología , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular , Relojes Circadianos/efectos de los fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Factores de Diferenciación de Crecimiento/farmacología , Proteínas de Homeodominio/genética , Humanos , Neuronas Motoras/citología , Células Madre Pluripotentes/citología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Médula Espinal/metabolismo
4.
J Cell Physiol ; 238(12): 2827-2840, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37801347

RESUMEN

Growth differentiation factor 11 (GDF11) is a putative systemic rejuvenation factor. In this study, we characterized the mechanism by which GDF11 reversed aging of mesenchymal stem cells (MSCs). In culture, aged MSCs proliferate slower and are positive for senescence markers senescence-associated ß-galactosidase and P16ink4a . They have shortened telomeres, decreased GDF11 expression, and reduced osteogenic potential. GDF11 can block MSC aging in vitro and reverse age-dependent bone loss in vivo. The antiaging effect of GDF11 is via activation of the Smad2/3-PI3K-AKT-mTOR pathway. Unexpectedly, GDF11 also upregulated a DNA demethylase Tet2, which served as a key mediator for GDF11 to autoregulate itself via demethylation of the GDF11 promoter. Mutation of Tet2 facilitates MSC aging by blocking GDF11 expression. Mutagenesis of Tet2-regulated CpG sites also blocks GDF11 expression, leading to MSC aging. Together, a novel mutual regulatory relationship between GDF11 and an epigenetic factor Tet2 unveiled their antiaging roles.


Asunto(s)
Senescencia Celular , Células Madre Mesenquimatosas , Senescencia Celular/genética , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Humanos
5.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 250-255, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38158658

RESUMEN

Growth differentiation factor 11 (GDF11) is reported as a member of TGF-ß superfamily, which plays a key negative role in various tissue inflammation. However, the specific effect of GDF11 on infectious acute liver injury remains unknown. The current study is designed to certify the role of GDF11 both in LPS-induced RAW 264.7 cell line and rodent model of acute liver injury (ALI) and further investigate its molecular mechanism of inflammatory regulation. In vitro, LPS was used to stimulate the inflammatory activation of RAW 264.7 cells and then recombinant GDF11 (rGDF11) was used to treat the cells. In vivo, we injected LPS and rGDF11 in abdomen of mouse. The inflammatory indexes, GDF11 level, NLRP3 level, liver tissue injury, and liver function were examined using qRT-PCR, western blot, ELISA, IHC, IF and HE staining, respectively. Supplement of GDF11 protected the histology and function of liver tissue in LPS-induced ALI mice, in which the level of AST, ALT and TBiL associated with tissue damage were reduced after ALI. Moreover, increased GDF11 in RAW 264.7 cells and ALI mice reduced the expressions of COX-2, TNF-α, IL-1ß, and IL-6 via inhibiting NLRP3 inflammasome activation, suggesting the anti-inflammatory role of GDF11 in ALI. Besides, owing to the protective role of GDF11, the apoptotic degree in liver after LPS insult was attenuated, such as the reduced c-caspase-3 and annexin-V expressions. The results indicate that overexpression of GDF11 plays an antagonistic role in LPS-induced inflammatory response after ALI. Therefore, GDF11 may become a promising target for preventing infectious acute liver injury.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Factores de Diferenciación de Crecimiento , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Factores de Diferenciación de Crecimiento/genética , Inflamasomas/metabolismo , Inflamación , Lipopolisacáridos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
6.
Kidney Blood Press Res ; 48(1): 209-219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36780878

RESUMEN

INTRODUCTION: Acute kidney injury (AKI) is a clinical emergency caused by the rapid decline of renal function caused by various etiologies. Growth differentiation factor 11 (GDF11) can promote renal tubular regeneration and improve kidney function in AKI, but the specific mechanism remains unclear. Herein, we investigated the effect and mechanisms of GDF11 in ameliorating AKI induced by ischemia-reperfusion (I/R). METHODS: An animal model of AKI was established by I/R method, and the changes of serum urea nitrogen and creatinine were measured to evaluate the AKI. Enzyme-linked immunosorbent assay (ELISA) was used to measure cytokines, malondialdehyde, superoxide dismutase, nitric oxide synthase, and arginase 1 levels. Flow cytometry was used to count the M1/M2 macrophages. IHC, WB, and q-PCR experiments were used to evaluate the expression of GDF11. RESULTS: The changes in serum levels of urea nitrogen and creatinine after I/R suggest that an animal model of AKI induced by I/R was successfully established. AKI caused by I/R significantly changed the M1/M2 macrophage polarization balance, with an increase in M2 being significantly higher than M1 as well as increased oxidative stress. Treatment with GDF11 after I/R significantly increased the differentiation of M2 cells and inhibited the differentiation of M1 macrophages, as well as decreased oxidative stress. CONCLUSION: GDF11 can promote the repair of AKI caused by I/R by regulating the balance of M1/M2 polarization in macrophages and oxidative stress.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Animales , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Creatinina/metabolismo , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Isquemia/complicaciones , Riñón/metabolismo , Macrófagos/metabolismo , Nitrógeno/metabolismo , Reperfusión/efectos adversos , Daño por Reperfusión/complicaciones , Daño por Reperfusión/metabolismo , Urea/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(9): 4910-4920, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071240

RESUMEN

Growth and differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related transforming growth factor ß (TGF-ß) family members, but their biological functions are quite distinct. While MSTN has been widely shown to inhibit muscle growth, GDF11 regulates skeletal patterning and organ development during embryogenesis. Postnatal functions of GDF11, however, remain less clear and controversial. Due to the perinatal lethality of Gdf11 null mice, previous studies used recombinant GDF11 protein to prove its postnatal function. However, recombinant GDF11 and MSTN proteins share nearly identical biochemical properties, and most GDF11-binding molecules have also been shown to bind MSTN, generating the possibility that the effects mediated by recombinant GDF11 protein actually reproduce the endogenous functions of MSTN. To clarify the endogenous functions of GDF11, here, we focus on genetic studies and show that Gdf11 null mice, despite significantly down-regulating Mstn expression, exhibit reduced bone mass through impaired osteoblast (OB) and chondrocyte (CH) maturations and increased osteoclastogenesis, while the opposite is observed in Mstn null mice that display enhanced bone mass. Mechanistically, Mstn deletion up-regulates Gdf11 expression, which activates bone morphogenetic protein (BMP) signaling pathway to enhance osteogenesis. Also, mice overexpressing follistatin (FST), a MSTN/GDF11 inhibitor, exhibit increased muscle mass accompanied by bone fractures, unlike Mstn null mice that display increased muscle mass without fractures, indicating that inhibition of GDF11 impairs bone strength. Together, our findings suggest that GDF11 promotes osteogenesis in contrast to MSTN, and these opposing roles of GDF11 and MSTN must be considered to avoid the detrimental effect of GDF11 inhibition when developing MSTN/GDF11 inhibitors for therapeutic purposes.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Huesos/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Desarrollo de Músculos/fisiología , Miostatina/metabolismo , Osteogénesis/fisiología , Animales , Proteínas Morfogenéticas Óseas/genética , Huesos/patología , Condrocitos/metabolismo , Regulación hacia Abajo , Folistatina , Regulación del Desarrollo de la Expresión Génica , Factores de Diferenciación de Crecimiento/genética , Ratones , Ratones Noqueados , Músculos/patología , Osteoblastos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
8.
Am J Physiol Cell Physiol ; 323(5): C1402-C1409, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094432

RESUMEN

Skeletal muscle mass is negatively regulated by several TGF-ß superfamily members. Myostatin (MSTN) is the most prominent negative regulator of muscle mass. Recent studies show that in addition to MSTN, GDF11, which shares a high sequence identity with MSTN, induces muscle atrophy in vitro and in vivo at supraphysiological levels, whereas controversy regarding its roles exists. Furthermore, higher circulating GDF11 levels associate with frailty in humans. On the other hand, little is known about the effect of pathophysiological levels of GDF11 on muscle atrophy. Here we seek to determine whether pathophysiological levels of GDF11 are sufficient to activate Smad2/Smad3 signaling and induce muscle atrophy using human iPSC-derived myocytes (hiPSC myocytes). We first show that incubating hiPSC myocytes with pathophysiological concentrations of GDF11 significantly reduces myocyte diameters. We next demonstrate that pathophysiological levels of GDF11 are sufficient to activate Smad2/3 signaling. Finally, we show that pathophysiological levels of GDF11 are capable of inducing the expression of Atrogin-1, an atrophy-promoting E3 ubiquitin ligase and that FOXO1 blockage reverses the GDF11-induced Atrogin-1 expression and atrophic phenotype. Collectively, our results suggest that GDF11 induces skeletal muscle atrophy at the pathophysiological levels through the GDF11-FOXO1 axis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miostatina , Humanos , Miostatina/genética , Miostatina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Factores de Diferenciación de Crecimiento/farmacología , Atrofia Muscular/patología , Músculo Esquelético/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células Musculares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína smad3/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Proteína Smad2/genética
9.
Biochem Biophys Res Commun ; 623: 104-110, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35921703

RESUMEN

Protecting dopaminergic neurons is a key approach in the prevention of Parkinson's disease (PD). Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that is widely distributed in the mammalian nervous system. In this study, we designed experiments to investigate the effect and mechanisms of TRPV1 against DA neurons damage of PD. Our results showed that trpv1-deficient mice showed a significant loss of TH + neurons than PD mice after MPTP intraperitoneal injection, in addition, a significant decline in motor function was observed in trpv1-deficient mice versus the MPTP model. In addition, our study indicated that GDF11 overexpression inhibited MPP + - induced oxidative stress, cell senescence, and apoptosis in neurons. Results also showed that TRPV1 prevented the down-regulation of GDF11 expression in PD model, gdf11 knockdown blocks the effects of TRPV1 on the antioxidant, antiaging, and antiapoptotic activities of dopaminergic neurons. Consequently, our findings indicate that TRPV1 protects dopaminergic neurons from injury by promoting GDF11 expression in PD model.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Factores de Diferenciación de Crecimiento/genética , Mamíferos/metabolismo , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
10.
Mol Ther ; 29(4): 1639-1657, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33388417

RESUMEN

Glaucoma is the leading cause of irreversible vision loss, affecting more than 70 million individuals worldwide. Circulatory disturbances of aqueous humor (AH) have long been central pathological contributors to glaucomatous lesions. Thus, targeting the AH outflow is a promising approach to treat glaucoma. However, the epigenetic mechanisms initiating AH outflow disorders and the targeted treatments remain to be developed. Studying glaucoma patients, we identified GDF7 (growth differentiation factor 7) hypomethylation as a crucial event in the onset of AH outflow disorders. Regarding the underlying mechanism, the hypomethylated GDF7 promoter was responsible for the increased GDF7 production and secretion in primary open-angle glaucoma (POAG). Excessive GDF7 protein promoted trabecular meshwork (TM) fibrosis through bone morphogenetic protein receptor type 2 (BMPR2)/Smad signaling and upregulated pro-fibrotic genes, α-smooth muscle actin (α-SMA) and fibronectin (FN). GDF7 protein expression formed a positive feedback loop in glaucomatous TM (GTM). This positive feedback loop was dependent on the activated TET (ten-eleven translocation) enzyme, which kept the GDF7 promoter region hypomethylated. The phenotypic transition in TM fortified the AH outflow resistance, thus elevating the intraocular pressure (IOP) and attenuating the nerve fiber layer. This methylation-dependent mechanism is also confirmed by a machine-learning model in silico with a specificity of 84.38% and a sensitivity of 89.38%. In rhesus monkeys, we developed GDF7 neutralization therapy to inhibit TM fibrosis and consequent AH outflow resistance that contributes to glaucoma. The neutralization therapy achieved high-efficiency control of the IOP (from 21.3 ± 0.3 to 17.6 ± 0.2 mmHg), a three-fold improvement in the outflow facility (from 0.1 to 0.3 µL/min · mmHg), and protection of nerve fibers. This study provides new insights into the epigenetic mechanism of glaucoma and proposes an innovative GDF7 neutralization therapy as a promising intervention.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Proteínas Morfogenéticas Óseas/genética , Fibrosis/terapia , Glaucoma de Ángulo Abierto/terapia , Factores de Diferenciación de Crecimiento/genética , Actinas/genética , Animales , Humor Acuoso/metabolismo , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Metilación de ADN/genética , Modelos Animales de Enfermedad , Fibrosis/genética , Fibrosis/patología , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/patología , Factores de Diferenciación de Crecimiento/antagonistas & inhibidores , Humanos , Macaca mulatta/genética , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética , Transducción de Señal/genética , Proteínas Smad/genética , Malla Trabecular/metabolismo , Malla Trabecular/patología
11.
Oral Dis ; 28(7): 1921-1935, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34061439

RESUMEN

OBJECTIVES: Cleft lip with/without cleft palate and cleft palate only is congenital birth defects where the upper lip and/or palate fail to fuse properly during embryonic facial development. Affecting ~1.2/1000 live births worldwide, these orofacial clefts impose significant social and financial burdens on affected individuals and their families. Orofacial clefts have a complex etiology resulting from genetic variants combined with environmental covariates. Recent genome-wide association studies and whole-exome sequencing for orofacial clefts identified significant genetic associations and variants in several genes. Of these, we investigated the role of common/rare variants in SHH, RORA, MRPL53, ACVR1, and GDF11. MATERIALS AND METHODS: We sequenced these five genes in 1255 multi-ethnic cleft lip with/without palate and cleft palate only samples in order to find variants that may provide potential explanations for the missing heritability of orofacial clefts. Rare and novel variants were further analyzed using in silico predictive tools. RESULTS: Ninteen total variants of interest were found, with variant types including stop-gain, missense, synonymous, intronic, and splice-site variants. Of these, 3 novel missense variants were found, one in SHH, one in RORA, and one in GDF11. CONCLUSION: This study provides evidence that variants in SHH, RORA, MRPL53, ACVR1, and GDF11 may contribute to risk of orofacial clefts in various populations.


Asunto(s)
Labio Leporino , Fisura del Paladar , Proteínas Morfogenéticas Óseas , Labio Leporino/genética , Fisura del Paladar/genética , Estudio de Asociación del Genoma Completo , Factores de Diferenciación de Crecimiento/genética , Humanos
12.
Neoplasma ; 69(6): 1386-1395, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36591801

RESUMEN

Breast cancer (BC) is a prevalent neoplasm that occurs in women all over the world. Growth and differentiation factor 11 (GDF11) plays an essential role in cancer progression. This study focused on investigating the biological role and underlying mechanisms of GDF11 in BC. We detected the expression of GDF11 in 27 patients with BC and BC cell lines. Kaplan-Meier plotter was employed to analyze the relationship between GDF11 expression and overall survival (OS) of BC patients. The proliferative, migratory, invasive, and apoptotic abilities of T47D cells were examined. Correlation analysis of GDF11 with Smad ubiquitination regulatory factor 1 (SMURF1) was conducted. The association between GDF11 and the p53 pathway was analyzed by western blot and PFT-α (a p53 inhibitor)-mediated rescue assays. A brief analysis of the role of estrogen receptor alpha (ERα) signaling in BC progression was performed. The results showed that GDF11 was increased in BC tissues and cell lines, and the high expression of GDF11 was associated with the poor OS of BC patients. GDF11 knockdown inhibited the proliferation, migration, and invasion of T47D cells, but promoted cell apoptosis. Meanwhile, the GDF11 knockdown reduced the SMURF1 expression and invoked the p53 pathway activation. SMURF1 overexpression and PFT-α partially blocked the effects of GDF11 knockdown. In addition, GDF11 knockdown and SMURF1 silencing inhibited the activation of the ERα signaling pathway. In summary, GDF11 was involved in the progression of BC by regulating SMURF1-mediated p53 and ERα pathways, opening up a new way for BC treatment.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Línea Celular Tumoral , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Proteínas Morfogenéticas Óseas/metabolismo , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo
13.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35563408

RESUMEN

Antisense oligonucleotides (ASOs) are agents that modulate gene function. ASO-mediated out-of-frame exon skipping has been employed to suppress gene function. Myostatin, encoded by the MSTN gene, is a potent negative regulator of skeletal muscle growth. ASOs that induce skipping of out-of-frame exon 2 of the MSTN gene have been studied for their use in increasing muscle mass. However, no ASOs are currently available for clinical use. We hypothesized that ASOs against the splicing enhancer sequence within exon 1 of the MSTN gene would inhibit maturation of pre-mRNA, thereby suppressing gene function. To explore this hypothesis, ASOs against sequences of exon 1 of the MSTN gene were screened for their ability to reduce mature MSTN mRNA levels. One screened ASO, named KMM001, decreased MSTN mRNA levels in a dose-dependent manner and reciprocally increased MSTN pre-mRNA levels. Accordingly, KMM001 decreased myostatin protein levels. KMM001 inhibited SMAD-mediated myostatin signaling in rhabdomyosarcoma cells. Remarkably, it did not decrease GDF11 mRNA levels, indicating myostatin-specific inhibition. As expected, KMM001 enhanced the proliferation of human myoblasts. We conclude that KMM001 is a novel myostatin inhibitor that inhibits pre-mRNA maturation. KMM001 has great promise for clinical applications and should be examined for its ability to treat various muscle-wasting conditions.


Asunto(s)
Miostatina , Oligonucleótidos Antisentido , Proteínas Morfogenéticas Óseas/metabolismo , Elementos de Facilitación Genéticos , Exones , Factores de Diferenciación de Crecimiento/genética , Humanos , Músculo Esquelético/metabolismo , Miostatina/antagonistas & inhibidores , Miostatina/genética , Miostatina/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacología , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
J Cell Mol Med ; 25(10): 4623-4636, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33764670

RESUMEN

Thoracic aortic dissection (TAD) is an aortic disease associated with dysregulated extracellular matrix composition and de-differentiation of vascular smooth muscle cells (SMCs). Growth Differentiation Factor 11 (GDF11) is a member of transforming growth factor ß (TGF-ß) superfamily associated with cardiovascular diseases. The present study attempted to investigate the expression of GDF11 in TAD and its effects on aortic SMC phenotype transition. GDF11 level was found lower in the ascending thoracic aortas of TAD patients than healthy aortas. The mouse model of TAD was established by ß-aminopropionitrile monofumarate (BAPN) combined with angiotensin II (Ang II). The expression of GDF11 was also decreased in thoracic aortic tissues accompanied with increased inflammation, arteriectasis and elastin degradation in TAD mice. Administration of GDF11 mitigated these aortic lesions and improved the survival rate of mice. Exogenous GDF11 and adeno-associated virus type 2 (AAV-2)-mediated GDF11 overexpression increased the expression of contractile proteins including ACTA2, SM22α and myosin heavy chain 11 (MYH11) and decreased synthetic markers including osteopontin and fibronectin 1 (FN1), indicating that GDF11 might inhibit SMC phenotype transition and maintain its contractile state. Moreover, GDF11 inhibited the production of matrix metalloproteinase (MMP)-2, 3, 9 in aortic SMCs. The canonical TGF-ß (Smad2/3) signalling was enhanced by GDF11, while its inhibition suppressed the inhibitory effects of GDF11 on SMC de-differentiation and MMP production in vitro. Therefore, we demonstrate that GDF11 may contribute to TAD alleviation via inhibiting inflammation and MMP activity, and promoting the transition of aortic SMCs towards a contractile phenotype, which provides a therapeutic target for TAD.


Asunto(s)
Aorta Torácica/cirugía , Disección Aórtica/prevención & control , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Factores de Diferenciación de Crecimiento/metabolismo , Contracción Muscular , Miocitos del Músculo Liso/fisiología , Disección Aórtica/etiología , Disección Aórtica/metabolismo , Disección Aórtica/patología , Animales , Proteínas Morfogenéticas Óseas/genética , Estudios de Casos y Controles , Proliferación Celular , Femenino , Factores de Diferenciación de Crecimiento/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocitos del Músculo Liso/citología
15.
Genet Med ; 23(10): 1889-1900, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34113007

RESUMEN

PURPOSE: Growth differentiation factor 11 (GDF11) is a key signaling protein required for proper development of many organ systems. Only one prior study has associated an inherited GDF11 variant with a dominant human disease in a family with variable craniofacial and vertebral abnormalities. Here, we expand the phenotypic spectrum associated with GDF11 variants and document the nature of the variants. METHODS: We present a cohort of six probands with de novo and inherited nonsense/frameshift (4/6 patients) and missense (2/6) variants in GDF11. We generated gdf11 mutant zebrafish to model loss of gdf11 phenotypes and used an overexpression screen in Drosophila to test variant functionality. RESULTS: Patients with variants in GDF11 presented with craniofacial (5/6), vertebral (5/6), neurological (6/6), visual (4/6), cardiac (3/6), auditory (3/6), and connective tissue abnormalities (3/6). gdf11 mutant zebrafish show craniofacial abnormalities and body segmentation defects that match some patient phenotypes. Expression of the patients' variants in the fly showed that one nonsense variant in GDF11 is a severe loss-of-function (LOF) allele whereas the missense variants in our cohort are partial LOF variants. CONCLUSION: GDF11 is needed for human development, particularly neuronal development, and LOF GDF11 alleles can affect the development of numerous organs and tissues.


Asunto(s)
Proteínas Morfogenéticas Óseas , Anomalías Craneofaciales/genética , Factores de Diferenciación de Crecimiento , Animales , Proteínas Morfogenéticas Óseas/genética , Factores de Diferenciación de Crecimiento/genética , Humanos , Mutación Missense , Fenotipo , Columna Vertebral , Pez Cebra/genética
16.
Blood ; 134(20): 1712-1716, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31530563

RESUMEN

Tightly regulated production of mature blood cells is essential for health and survival in vertebrates and dependent on discrete populations of blood-forming (hematopoietic) stem and progenitor cells. Prior studies suggested that inhibition of growth differentiation factor 11 (GDF11) through soluble activin receptor type II (ActRII) ligand traps or neutralizing antibodies promotes erythroid precursor cell maturation and red blood cell formation in contexts of homeostasis and anemia. As Gdf11 is expressed by mature hematopoietic cells, and erythroid precursor cell expression of Gdf11 has been implicated in regulating erythropoiesis, we hypothesized that genetic disruption of Gdf11 in blood cells might perturb normal hematopoiesis or recovery from hematopoietic insult. Contrary to these predictions, we found that deletion of Gdf11 in the hematopoietic lineage in mice does not alter erythropoiesis or erythroid precursor cell frequency under normal conditions or during hematopoietic recovery after irradiation and transplantation. In addition, although hematopoietic cell-derived Gdf11 may contribute to the pool of circulating GDF11 protein during adult homeostasis, loss of Gdf11 specifically in the blood system does not impair hematopoietic stem cell function or induce overt pathological consequences. Taken together, these results reveal that hematopoietic cell-derived Gdf11 is largely dispensable for native and transplant-induced blood formation.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Eliminación de Gen , Factores de Diferenciación de Crecimiento/genética , Hematopoyesis , Animales , Células Cultivadas , Femenino , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Masculino , Ratones
17.
Cell Biochem Funct ; 39(4): 496-510, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33527439

RESUMEN

Bone morphogenetic protein-11 (BMP11), also known as growth differentiation factor-11 (GDF11), is implicated in skeletal development and joint morphogenesis in mammals. However, its functions in adipogenesis and energy homeostasis are mostly unknown. The present study investigates crucial roles of BMP11 in cultured 3T3-L1 white and HIB1B brown adipocytes, using Bmp11 gene depletion and pharmacological inhibition of BMP11. The silencing of Bmp11 markedly decreases the expression levels of brown-fat signature proteins and beige-specific genes in white adipocytes and significantly down-regulates the expression levels of brown fat-specific genes in brown adipocytes. The deficiency of Bmp11 reduces the expressions of lipolytic protein markers in white and brown adipocytes. Moreover, BMP11 induces browning of 3T3-L1 adipocytes via coordination of multiple signalling pathways, including mTORC1-COX2 and p38MAPK-PGC-1α as non-canonical pathways, as well as Smad1/5/8 as a canonical pathway. We believe this study is the first to provide evidence of the potential roles of BMP11 for improvement of lipid catabolism in both cultured white and brown adipocytes, as well as the effect on browning of white adipocytes. Taken together, these results demonstrate the therapeutic potential for the treatment of obesity.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Termogénesis , Animales , Proteínas Morfogenéticas Óseas/deficiencia , Proteínas Morfogenéticas Óseas/genética , Células Cultivadas , Factores de Diferenciación de Crecimiento/deficiencia , Factores de Diferenciación de Crecimiento/genética , Ratones , Mitocondrias/metabolismo
18.
J Cell Mol Med ; 24(15): 8703-8717, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32588524

RESUMEN

Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-ß super family. It has multiple effects on development, physiology and diseases. However, the role of GDF11 in the development of mesenchymal stem cells (MSCs) is not clear. To explore the effects of GDF11 on the differentiation and pro-angiogenic activities of MSCs, mouse bone marrow-derived MSCs were engineered to overexpress GDF11 (MSCGDF11 ) and their capacity for differentiation and paracrine actions were examined both in vitro and in vivo. Expression of endothelial markers CD31 and VEGFR2 at the levels of both mRNA and protein was significantly higher in MSCGDF11 than control MSCs (MSCVector ) during differentiation. More tube formation was observed in MSCGDF11 as compared with controls. In an in vivo angiogenesis assay with Matrigel plug, MSCGDF11 showed more differentiation into CD31+ endothelial-like cells and better pro-angiogenic activity as compared with MSCVector . Mechanistically, the enhanced differentiation by GDF11 involved activation of extracellular-signal-related kinase (ERK) and eukaryotic translation initiation factor 4E (EIF4E). Inhibition of either TGF-ß receptor or ERK diminished the effect of GDF11 on MSC differentiation. In summary, our study unveils the function of GDF11 in the pro-angiogenic activities of MSCs by enhancing endothelial differentiation via the TGFß-R/ERK/EIF4E pathway.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular/genética , Células Endoteliales/metabolismo , Factores de Diferenciación de Crecimiento/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica/genética , Animales , Apoptosis/genética , Proteínas Morfogenéticas Óseas/metabolismo , Movimiento Celular , Células Cultivadas , Células Endoteliales/citología , Expresión Génica , Factores de Diferenciación de Crecimiento/metabolismo , Hipoxia , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
J Cell Physiol ; 235(5): 4778-4789, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31637734

RESUMEN

Tendinopathy is a common musculoskeletal system disorder in sports medicine, but regeneration ability of injury tendon is limited. Tendon stem cells (TSCs) have shown the definitive treatment evidence for tendinopathy and tendon injuries due to their tenogenesis capacity. Aspirin, as the representative of nonsteroidal anti-inflammatory drugs for its anti-inflammatory and analgestic actions, has been commonly used in treating tendinopathy in clinical, but the effect of aspirin on tenogenesis of TSCs is unclear. We hypothesized that aspirin could promote injury tendon healing through inducing TSCs tenogenesis. The aim of the present study is to make clear the effect of aspirin on TSC tenogenesis and tendon healing in tendinopathy, and thus provide new treatment evidence and strategy of aspirin for clinical practice. First, TSCs were treated with aspirin under tenogenic medium for 3, 7, and 14 days. Sirius Red staining was performed to observe the TSC differentiation. Furthermore, RNA sequencing was utilized to screen out different genes between the induction group and aspirin treatment group. Then, we identified the filtrated molecules and compared their effect on tenogenesis and related signaling pathway. At last, we constructed the tendinopathy model and compared biomechanical changes after aspirin intake. From the results, we found that aspirin promoted tenogenesis of TSCs. RNA sequencing showed that growth differentiation factor 6 (GDF6), GDF7, and GDF11 were upregulated in induction medium with the aspirin group compared with the induction medium group. GDF7 increased tenogenesis and activated Smad1/5 signaling. In addition, aspirin increased the expression of TNC, TNMD, and Scx and biomechanical properties of the injured tendon. In conclusion, aspirin promoted TSC tenogenesis and tendinopathy healing through GDF7/Smad1/5 signaling, and this provided new treatment evidence of aspirin for tendinopathy and tendon injuries.


Asunto(s)
Tendón Calcáneo/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Factores de Diferenciación de Crecimiento/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Células Madre/efectos de los fármacos , Tendinopatía/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Tendón Calcáneo/metabolismo , Tendón Calcáneo/patología , Animales , Proteínas Morfogenéticas Óseas/genética , Células Cultivadas , Modelos Animales de Enfermedad , Factores de Diferenciación de Crecimiento/genética , Masculino , Ratas Sprague-Dawley , Transducción de Señal , Proteína Smad1/genética , Proteína Smad5/genética , Células Madre/metabolismo , Células Madre/patología , Tendinopatía/genética , Tendinopatía/metabolismo , Tendinopatía/patología
20.
Br J Haematol ; 188(2): 321-331, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31418854

RESUMEN

Hepcidin (HAMP) synthesis is suppressed by erythropoiesis to increase iron availability for red blood cell production. This effect is thought to result from factors secreted by erythroid precursors. Growth differentiation factor 11 (GDF11) expression was recently shown to increase in erythroid cells of ß-thalassaemia, and decrease with improvement in anaemia. Whether GDF11 regulates hepatic HAMP production has never been experimentally studied. Here, we explore GDF11 function during erythropoiesis-triggered HAMP suppression. Our results confirm that exogenous erythropoietin significantly increases Gdf11 as well as Erfe (erythroferrone) expression, and Gdf11 is also increased, albeit at a lower degree than Erfe, in phlebotomized wild type and ß-thalassaemic mice. GDF11 is expressed predominantly in erythroid burst forming unit- and erythroid colony-forming unit- cells during erythropoiesis. Exogeneous GDF11 administration results in HAMP suppression in vivo and in vitro. Furthermore, exogenous GDF11 decreases BMP-SMAD signalling, enhances SMAD ubiquitin regulatory factor 1 (SMURF1) expression and induces ERK1/2 (MAPK3/1) signalling. ERK1/2 signalling activation is required for GDF11 or SMURF1-mediated suppression in BMP-SMAD signalling and HAMP expression. This research newly characterizes GDF11 in erythropoiesis-mediated HAMP suppression, in addition to ERFE.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Hepcidinas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas Morfogenéticas Óseas/biosíntesis , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/farmacología , Eritropoyesis/fisiología , Eritropoyetina/farmacología , Factores de Diferenciación de Crecimiento/biosíntesis , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/farmacología , Células Hep G2 , Hepatocitos/metabolismo , Hepcidinas/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Hormonas Peptídicas/biosíntesis , Hormonas Peptídicas/genética , Proteínas Recombinantes/farmacología , Proteínas Smad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA