RESUMEN
The mechanisms whereby guanine nucleotide exchange factors (GEFs) coordinate their subcellular targeting to their activation of small GTPases remain poorly understood. Here we analyzed how membranes control the efficiency of human BRAG2, an ArfGEF involved in receptor endocytosis, Wnt signaling, and tumor invasion. The crystal structure of an Arf1-BRAG2 complex that mimics a membrane-bound intermediate revealed an atypical PH domain that is constitutively anchored to the catalytic Sec7 domain and interacts with Arf. Combined with the quantitative analysis of BRAG2 exchange activity reconstituted on membranes, we find that this PH domain potentiates nucleotide exchange by about 2,000-fold by cumulative conformational and membrane-targeting contributions. Furthermore, it restricts BRAG2 activity to negatively charged membranes without phosphoinositide specificity, using a positively charged surface peripheral to but excluding the canonical lipid-binding pocket. This suggests a model of BRAG2 regulation along the early endosomal pathway that expands the repertoire of GEF regulatory mechanisms. Notably, it departs from the auto-inhibitory and feedback loop paradigm emerging from studies of SOS and cytohesins. It also uncovers a novel mechanism of unspecific lipid-sensing by PH domains that may allow sustained binding to maturating membranes.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Metabolismo de los Lípidos , Factor 1 de Ribosilacion-ADP/química , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 1 de Ribosilacion-ADP/ultraestructura , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/química , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/ultraestructura , Cristalografía por Rayos X , Endocitosis , Endosomas , Factores de Intercambio de Guanina Nucleótido/ultraestructura , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Conformación Proteica , Estructura Terciaria de Proteína , Vía de Señalización WntRESUMEN
Epac proteins are activated by binding of the second messenger cAMP and then act as guanine nucleotide exchange factors for Rap proteins. The Epac proteins are involved in the regulation of cell adhesion and insulin secretion. Here we have determined the structure of Epac2 in complex with a cAMP analogue (Sp-cAMPS) and RAP1B by X-ray crystallography and single particle electron microscopy. The structure represents the cAMP activated state of the Epac2 protein with the RAP1B protein trapped in the course of the exchange reaction. Comparison with the inactive conformation reveals that cAMP binding causes conformational changes that allow the cyclic nucleotide binding domain to swing from a position blocking the Rap binding site towards a docking site at the Ras exchange motif domain.
Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , AMP Cíclico/análogos & derivados , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Tionucleótidos/química , Tionucleótidos/metabolismo , Proteínas de Unión al GTP rap/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Proteínas Portadoras/ultraestructura , Cristalografía por Rayos X , AMP Cíclico/química , AMP Cíclico/metabolismo , Activación Enzimática , Factores de Intercambio de Guanina Nucleótido/ultraestructura , Humanos , Ratones , Microscopía Electrónica , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas de Unión al GTP rap/química , Proteínas de Unión al GTP rap/ultraestructuraRESUMEN
Legionella pneumophila infects eukaryotic cells by forming a replicative organelle - the Legionella containing vacuole. During this process, the bacterial protein DrrA/SidM is secreted and manipulates the activity and post-translational modification (PTM) states of the vesicular trafficking regulator Rab1. As a result, Rab1 is modified with an adenosine monophosphate (AMP), and this process is referred to as AMPylation. Here, we use a chemical approach to stabilise low-affinity Rab:DrrA complexes in a site-specific manner to gain insight into the molecular basis of the interaction between the Rab protein and the AMPylation domain of DrrA. The crystal structure of the Rab:DrrA complex reveals a previously unknown non-conventional Rab-binding site (NC-RBS). Biochemical characterisation demonstrates allosteric stimulation of the AMPylation activity of DrrA via Rab binding to the NC-RBS. We speculate that allosteric control of DrrA could in principle prevent random and potentially cytotoxic AMPylation in the host, thereby perhaps ensuring efficient infection by Legionella.
Asunto(s)
Adenosina Monofosfato/metabolismo , Proteínas Bacterianas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/patología , Proteínas de Unión al GTP rab1/metabolismo , Regulación Alostérica , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Sitios de Unión/genética , Cristalografía por Rayos X , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/aislamiento & purificación , Factores de Intercambio de Guanina Nucleótido/ultraestructura , Guanosina Trifosfato/metabolismo , Humanos , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/microbiología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Fagocitosis , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Proteínas de Unión al GTP rab1/genética , Proteínas de Unión al GTP rab1/aislamiento & purificación , Proteínas de Unión al GTP rab1/ultraestructuraRESUMEN
Many chaperones promote nascent polypeptide folding followed by substrate release through ATP-dependent conformational changes. Here we show cryoEM structures of Gα subunit folding intermediates in complex with full-length Ric-8A, a unique chaperone-client system in which substrate release is facilitated by guanine nucleotide binding to the client G protein. The structures of Ric-8A-Gαi and Ric-8A-Gαq complexes reveal that the chaperone employs its extended C-terminal region to cradle the Ras-like domain of Gα, positioning the Ras core in contact with the Ric-8A core while engaging its switch2 nucleotide binding region. The C-terminal α5 helix of Gα is held away from the Ras-like domain through Ric-8A core domain interactions, which critically depend on recognition of the Gα C terminus by the chaperone. The structures, complemented with biochemical and cellular chaperoning data, support a folding quality control mechanism that ensures proper formation of the C-terminal α5 helix before allowing GTP-gated release of Gα from Ric-8A.
Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/química , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Subunidades alfa de la Proteína de Unión al GTP/ultraestructura , Factores de Intercambio de Guanina Nucleótido/ultraestructura , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/ultraestructura , Fosforilación , Unión Proteica , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Control de CalidadRESUMEN
Exchange proteins directly activated by cAMP (EPAC1 and EPAC2) are important allosteric regulators of cAMP-mediated signal transduction pathways. To understand the molecular mechanism of EPAC activation, we performed detailed Small-Angle X-ray Scattering (SAXS) analysis of EPAC1 in its apo (inactive), cAMP-bound, and effector (Rap1b)-bound states. Our study demonstrates that we can model the solution structures of EPAC1 in each state using ensemble analysis and homology models derived from the crystal structures of EPAC2. The N-terminal domain of EPAC1, which is not conserved between EPAC1 and EPAC2, appears folded and interacts specifically with another component of EPAC1 in each state. The apo-EPAC1 state is a dynamic mixture of a compact (Rg = 32.9 Å, 86%) and a more extended (Rg = 38.5 Å, 13%) conformation. The cAMP-bound form of EPAC1 in the absence of Rap1 forms a dimer in solution; but its molecular structure is still compatible with the active EPAC1 conformation of the ternary complex model with cAMP and Rap1. Herein, we show that SAXS can elucidate the conformational states of EPAC1 activation as it proceeds from the compact, inactive apo conformation through a previously unknown intermediate-state, to the extended cAMP-bound form, and then binds to its effector (Rap1b) in a ternary complex.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/ultraestructura , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Unión Proteica , Dispersión del Ángulo Pequeño , Transducción de Señal , Relación Estructura-Actividad , Difracción de Rayos X/métodos , Proteínas de Unión al GTP rap/metabolismoRESUMEN
Resistance to inhibitors of cholinesterase 8A (Ric8A) is an essential regulator of G protein α-subunits (Gα), acting as a guanine nucleotide exchange factor and a chaperone. We report two crystal structures of Ric8A, one in the apo form and the other in complex with a tagged C-terminal fragment of Gα. These structures reveal two principal domains of Ric8A: an armadillo-fold core and a flexible C-terminal tail. Additionally, they show that the Gα C-terminus binds to a highly-conserved patch on the concave surface of the Ric8A armadillo-domain, with selectivity determinants residing in the Gα sequence. Biochemical analysis shows that the Ric8A C-terminal tail is critical for its stability and function. A model of the Ric8A/Gα complex derived from crosslinking mass spectrometry and molecular dynamics simulations suggests that the Ric8A C-terminal tail helps organize the GTP-binding site of Gα. This study lays the groundwork for understanding Ric8A function at the molecular level.
Asunto(s)
Proteínas del Dominio Armadillo/ultraestructura , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/ultraestructura , Chaperonas Moleculares/ultraestructura , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Bovinos , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Dispersión del Ángulo Pequeño , Difracción de Rayos XRESUMEN
The GTPase Rab11 plays key roles in receptor recycling, oogenesis, autophagosome formation, and ciliogenesis. However, investigating Rab11 regulation has been hindered by limited molecular detail describing activation by cognate guanine nucleotide exchange factors (GEFs). Here, we present the structure of Rab11 bound to the GEF SH3BP5, along with detailed characterization of Rab-GEF specificity. The structure of SH3BP5 shows a coiled-coil architecture that mediates exchange through a unique Rab-GEF interaction. Furthermore, it reveals a rearrangement of the switch I region of Rab11 compared with solved Rab-GEF structures, with a constrained conformation when bound to SH3BP5. Mutation of switch I provides insights into the molecular determinants that allow for Rab11 selectivity over evolutionarily similar Rab GTPases present on Rab11-positive organelles. Moreover, we show that GEF-deficient mutants of SH3BP5 show greatly decreased Rab11 activation in cellular assays of active Rab11. Overall, our results give molecular insight into Rab11 regulation, and how Rab-GEF specificity is achieved.