RESUMEN
The interaction of RB with chromatin is key to understanding its molecular functions. Here, for first time, we identify the full spectrum of chromatin-bound RB. Rather than exclusively binding promoters, as is often described, RB targets three fundamentally different types of loci (promoters, enhancers, and insulators), which are largely distinguishable by the mutually exclusive presence of E2F1, c-Jun, and CTCF. While E2F/DP facilitates RB association with promoters, AP-1 recruits RB to enhancers. Although phosphorylation in CDK sites is often portrayed as releasing RB from chromatin, we show that the cell cycle redistributes RB so that it enriches at promoters in G1 and at non-promoter sites in cycling cells. RB-bound promoters include the classic E2F-targets and are similar between lineages, but RB-bound enhancers associate with different categories of genes and vary between cell types. Thus, RB has a well-preserved role controlling E2F in G1, and it targets cell-type-specific enhancers and CTCF sites when cells enter S-phase.
Asunto(s)
Cromatina , Proteína de Retinoblastoma , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Regiones Promotoras Genéticas , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Factor de Transcripción AP-1/genéticaRESUMEN
Hyper-phosphorylation of RB controls its interaction with E2F and inhibits its tumor suppressor properties. However, during G1 active RB can be mono-phosphorylated on any one of 14 CDK phosphorylation sites. Here, we used quantitative proteomics to profile protein complexes formed by each mono-phosphorylated RB isoform (mP-RB) and identified the associated transcriptional outputs. The results show that the 14 sites of mono-phosphorylation co-ordinate RB's interactions and confer functional specificity. All 14 mP-RBs interact with E2F/DP proteins, but they provide different shades of E2F regulation. RB mono-phosphorylation at S811, for example, alters RB transcriptional activity by promoting its association with NuRD complexes. The greatest functional differences between mP-RBs are evident beyond the cell cycle machinery. RB mono-phosphorylation at S811 or T826 stimulates the expression of oxidative phosphorylation genes, increasing cellular oxygen consumption. These results indicate that RB activation signals are integrated in a phosphorylation code that determines the diversity of RB activity.
Asunto(s)
Neoplasias de la Mama/metabolismo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Neoplasias de la Mama/genética , Línea Celular Tumoral , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Mutación , Fosforilación Oxidativa , Fosforilación , Unión Proteica , Proteómica/métodos , Proteína de Retinoblastoma/genética , Transducción de Señal/genética , Transcripción GenéticaRESUMEN
Regulated cell cycle progression ensures homeostasis and prevents cancer. In proliferating cells, premature S phase entry is avoided by the E3 ubiquitin ligase anaphasepromoting complex/cyclosome (APC/C), although the APC/C substrates whose degradation restrains G1-S progression are not fully known. The APC/C is also active in arrested cells that exited the cell cycle, but it is not clear whether APC/C maintains all types of arrest. Here, by expressing the APC/C inhibitor, EMI1, we show that APC/C activity is essential to prevent S phase entry in cells arrested by pharmacological cyclin-dependent kinases 4 and 6 (CDK4/6) inhibition (Palbociclib). Thus, active protein degradation is required for arrest alongside repressed cell cycle gene expression. The mechanism of rapid and robust arrest bypass from inhibiting APC/C involves CDKs acting in an atypical order to inactivate retinoblastoma-mediated E2F repression. Inactivating APC/C first causes mitotic cyclin B accumulation which then promotes cyclin A expression. We propose that cyclin A is the key substrate for maintaining arrest because APC/C-resistant cyclin A, but not cyclin B, is sufficient to induce S phase entry. Cells bypassing arrest from CDK4/6 inhibition initiate DNA replication with severely reduced origin licensing. The simultaneous accumulation of S phase licensing inhibitors, such as cyclin A and geminin, with G1 licensing activators disrupts the normal order of G1-S progression. As a result, DNA synthesis and cell proliferation are profoundly impaired. Our findings predict that cancers with elevated EMI1 expression will tend to escape CDK4/6 inhibition into a premature, underlicensed S phase and suffer enhanced genome instability.
Asunto(s)
Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Humanos , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Línea Celular Tumoral , Fase S/efectos de los fármacos , Piridinas/farmacología , Piperazinas/farmacología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Factores de Transcripción E2F/metabolismo , Factores de Transcripción E2F/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Ciclinas/metabolismo , Ciclinas/genética , Proteínas F-BoxRESUMEN
The canonical role of the transcription factor E2F is to control the expression of cell cycle genes by binding to the E2F sites in their promoters. However, the list of putative E2F target genes is extensive and includes many metabolic genes, yet the significance of E2F in controlling the expression of these genes remains largely unknown. Here, we used the CRISPR/Cas9 technology to introduce point mutations in the E2F sites upstream of five endogenous metabolic genes in Drosophila melanogaster. We found that the impact of these mutations on both the recruitment of E2F and the expression of the target genes varied, with the glycolytic gene, Phosphoglycerate kinase (Pgk), being mostly affected. The loss of E2F regulation on the Pgk gene led to a decrease in glycolytic flux, tricarboxylic acid cycle intermediates levels, adenosine triphosphate (ATP) content, and an abnormal mitochondrial morphology. Remarkably, chromatin accessibility was significantly reduced at multiple genomic regions in PgkΔE2F mutants. These regions contained hundreds of genes, including metabolic genes that were downregulated in PgkΔE2F mutants. Moreover, PgkΔE2F animals had shortened life span and exhibited defects in high-energy consuming organs, such as ovaries and muscles. Collectively, our results illustrate how the pleiotropic effects on metabolism, gene expression, and development in the PgkΔE2F animals underscore the importance of E2F regulation on a single E2F target, Pgk.
Asunto(s)
Proteínas de Drosophila , Drosophila , Factores de Transcripción E2F , Fosfoglicerato Quinasa , Animales , Cromatina , Drosophila/genética , Factores de Transcripción E2F/genética , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Regiones Promotoras Genéticas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismoRESUMEN
Bromodomain and extraterminal (BET) domain inhibitors (BETis) show efficacy on NUT midline carcinoma (NMC). However, not all NMC patients respond, and responders eventually develop resistance and relapse. Using CRISPR and ORF expression screens, we systematically examined the ability of cancer drivers to mediate resistance of NMC to BETis and uncovered six general classes/pathways mediating resistance. Among these, we showed that RRAS2 attenuated the effect of JQ1 in part by sustaining ERK pathway function during BRD4 inhibition. Furthermore, overexpression of Kruppel-like factor 4 (KLF4), mediated BETi resistance in NMC cells through restoration of the E2F and MYC gene expression program. Finally, we found that expression of cyclin D1 or an oncogenic cyclin D3 mutant or RB1 loss protected NMC cells from BETi-induced cell cycle arrest. Consistent with these findings, cyclin-dependent kinase 4/6 (CDK4/6) inhibitors showed synergistic effects with BETis on NMC in vitro as well as in vivo, thereby establishing a potential two-drug therapy for NMC.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Azepinas/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Triazoles/uso terapéutico , Animales , Azepinas/farmacología , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Ciclinas/metabolismo , Resistencia a Antineoplásicos , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Desnudos , Proteínas de Unión al GTP Monoméricas/genética , Mutación , Proteínas de Neoplasias , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Oncogénicas/antagonistas & inhibidores , Piperazinas/farmacología , Piperazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Piridinas/farmacología , Piridinas/uso terapéutico , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacologíaRESUMEN
Epstein-Barr virus (EBV) co-infections with human papillomavirus (HPV) have been observed in oropharyngeal squamous cell carcinoma. Modeling EBV/HPV co-infection in organotypic epithelial raft cultures revealed that HPV16 E7 inhibited EBV productive replication through the facilitated degradation of the retinoblastoma protein pRb/p105. To further understand how pRb is required for EBV productive replication, we generated CRISPR-Cas9 pRb knockout (KO) normal oral keratinocytes (NOKs) in the context of wild-type and mutant K120E p53. EBV replication was examined in organotypic rafts as a physiological correlate for epithelial differentiation. In pRb KO rafts, EBV DNA copy number was statistically decreased compared to vector controls, regardless of p53 context. Loss of pRb did not affect EBV binding or internalization of calcium-treated NOKs or early infection of rafts. Rather, the block in EBV replication correlated with impaired immediate early gene expression. An EBV infection time course in rafts with mutant p53 demonstrated that pRb-positive basal cells were initially infected with delayed replication occurring in differentiated layers. Loss of pRb showed increased S-phase progression makers and elevated activator E2F activity in raft tissues. Complementation with a panel of pRb/E2F binding mutants showed that wild type or pRb∆685 mutant capable of E2F binding reduced S-phase marker gene expression, rescued EBV DNA replication, and restored BZLF1 expression in pRb KO rafts. However, pRb KO complemented with pRb661W mutant, unable to bind E2Fs, failed to rescue EBV replication in raft culture. These findings suggest that EBV productive replication in differentiated epithelium requires pRb inhibition of activator E2Fs to restrict S-phase progression.IMPORTANCEA subset of human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma is co-positive for Epstein-Barr virus (EBV). Potential oncogenic viral interactions revealed that HPV16 E7 inhibited productive EBV replication within the differentiated epithelium. As E7 mediates the degradation of pRb, we aimed to establish how pRb is involved in EBV replication. In the context of differentiated epithelium using organotypic raft culture, we evaluated how the loss of pRb affects EBV lytic replication to better comprehend EBV contributions to carcinogenesis. In this study, ablation of pRb interfered with EBV replication at the level of immediate early gene expression. Loss of pRb increased activator E2Fs and associated S-phase gene expression throughout the differentiated epithelium. Complementation studies showed that wild type and pRb mutant capable of binding to E2F rescued EBV replication, while pRb mutant lacking E2F binding did not. Altogether, these studies support that in differentiated tissues, HPV16 E7-mediated degradation of pRb inhibits EBV replication through unregulated E2F activity.
Asunto(s)
Factores de Transcripción E2F , Herpesvirus Humano 4 , Queratinocitos , Proteína de Retinoblastoma , Replicación Viral , Herpesvirus Humano 4/fisiología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Queratinocitos/virología , Queratinocitos/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína de Retinoblastoma/genética , Factores de Transcripción E2F/metabolismo , Factores de Transcripción E2F/genética , Diferenciación Celular , Proteínas E7 de Papillomavirus/metabolismo , Proteínas E7 de Papillomavirus/genética , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Células Epiteliales/virología , Células Epiteliales/metabolismo , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/genética , Papillomavirus Humano 16/fisiología , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismoRESUMEN
The family of mammalian E2F transcription factors (E2Fs) comprise of 8 members (E2F1-E2F8) classified as activators (E2F1-E2F3) and repressors (E2F4-E2F8) primarily regulating the expression of several genes related to cell proliferation, apoptosis and differentiation, mainly in a cell cycle-dependent manner. E2F activity is frequently controlled via the retinoblastoma protein (pRb), cyclins, p53 and the ubiquitin-proteasome pathway. Additionally, genetic or epigenetic changes result in the deregulation of E2F family genes expression altering S phase entry and apoptosis, an important hallmark for the onset and development of cancer. Although studies reveal E2Fs to be involved in several human malignancies, the mechanisms underlying the role of E2Fs in oral cancer lies nascent and needs further investigations. This review focuses on the role of E2Fs in oral cancer and the etiological factors regulating E2Fs activity, which in turn transcriptionally control the expression of their target genes, thus contributing to cell proliferation, metastasis, and drug/therapy resistance. Further, we will discuss therapeutic strategies for E2Fs, which may prevent oral tumor growth, metastasis, and drug resistance.
Asunto(s)
Neoplasias de la Boca , Factores de Transcripción , Animales , Humanos , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Factores de Transcripción/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Neoplasias de la Boca/genética , Mamíferos/metabolismoRESUMEN
BACKGROUND: E2F/DP (Eukaryotic 2 transcription factor/dimerization partner) family proteins play an essential function in the cell cycle development of higher organisms. E2F/DP family genes have been reported only in a few plant species. However, comprehensive genome-wide characterization analysis of the E2F/DP gene family of Solanum lycopersicum has not been reported so far. RESULTS: This study identified eight nonredundant SlE2F/DP genes that were classified into seven groups in the phylogenetic analysis. All eight genes had a single E2F-TDP domain and few genes had additional domains. Two segmental duplication gene pairs were observed within tomato, in addition to cis-regulatory elements, miRNA target sites and phosphorylation sites which play an important role in plant development and stress response in tomato. To explore the three-dimensional (3D) models and gene ontology (GO) annotations of SlE2F/DP proteins, we pointed to their putative transporter activity and their interaction with several putative ligands. The localization of SlE2F/DP-GFP fused proteins in the nucleus and endoplasmic reticulum suggested that they may act in other biological functions. Expression studies revealed the differential expression pattern of most of the SlE2F/DP genes in various organs. Moreover, the expression of E2F/DP genes against abiotic stress, particularly SlE2F/DP2 and/or SlE2F/DP7, was upregulated in response to heat, salt, cold and ABA treatment. Furthermore, the co-expression analysis of SlE2F/DP genes with multiple metabolic pathways was co-expressed with defence genes, transcription factors and so on, suggested their crucial role in various biological processes. CONCLUSIONS: Overall, our findings provide a way to understand the structure and function of SlE2F/DP genes; it might be helpful to improve fruit development and tolerance against abiotic stress through marker-assisted selection or transgenic approaches.
Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Solanum lycopersicum , Estrés Fisiológico , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Familia de Multigenes , Filogenia , Genoma de Planta , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismoRESUMEN
The atypical protein kinase/ATPase RIO kinase (RIOK)-1 is involved in pre-40S ribosomal subunit production, cell-cycle progression, and protein arginine N-methyltransferase 5 methylosome substrate recruitment. RIOK1 overexpression is a characteristic of several malignancies and is correlated with cancer stage, therapy resistance, poor patient survival, and other prognostic factors. However, its role in prostate cancer (PCa) is unknown. In this study, the expression, regulation, and therapeutic potential of RIOK1 in PCa were examined. RIOK1 mRNA and protein expression were elevated in PCa tissue samples and correlated with proliferative and protein homeostasis-related pathways. RIOK1 was identified as a downstream target gene of the c-myc/E2F transcription factors. Proliferation of PCa cells was significantly reduced with RIOK1 knockdown and overexpression of the dominant-negative RIOK1-D324A mutant. Biochemical inhibition of RIOK1 with toyocamycin led to strong antiproliferative effects in androgen receptor-negative and -positive PCa cell lines with EC50 values of 3.5 to 8.8 nmol/L. Rapid decreases in RIOK1 protein expression and total rRNA content, and a shift in the 28S/18S rRNA ratio, were found with toyocamycin treatment. Apoptosis was induced with toyocamycin treatment at a level similar to that with the chemotherapeutic drug docetaxel used in clinical practice. In summary, the current study indicates that RIOK1 is a part of the MYC oncogene network, and as such, could be considered for future treatment of patients with PCa.
Asunto(s)
Genes myc , Neoplasias de la Próstata , Masculino , Humanos , Proteínas Quinasas/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Toyocamicina/farmacología , Toyocamicina/uso terapéutico , Proliferación Celular , Neoplasias de la Próstata/patología , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión GénicaRESUMEN
The bromodomain and extraterminal domain (BET) family proteins serve as primary readers of acetylated lysine residues and play crucial roles in cell proliferation and differentiation. Dysregulation of BET proteins has been implicated in tumorigenesis, making them important therapeutic targets. BET-bromodomain (BD) inhibitors and BET-targeting degraders have been developed to inhibit BET proteins. In this study, we found that the BET inhibitor MS645 exhibited superior antiproliferative activity than BET degraders including ARV771, AT1, MZ1 and dBET1 in triple-negative breast cancer (TNBC) cells. Treatment with MS645 led to the dissociation of BETs, MED1 and RNA polymerase II from the E2F1-3 promoter, resulting in the suppression of E2F1-3 transcription and subsequent inhibition of cell growth in TNBC. In contrast, while ARV771 displaced BET proteins from chromatin, it did not significantly alter E2F1-3 expression. Mechanistically, ARV771 induced BRD4 depletion at protein level, which markedly increased EGR1 expression. This elevation of EGR1 subsequently recruited septin 2 and septin 9 to E2F1-3 promoters, enhancing E2F1-3 transcription and promoting cell proliferation rate in vitro and in vivo. Our findings provide valuable insights into differential mechanisms of BET inhibition and highlight potential of developing BET-targeting molecules as therapeutic strategies for TNBC.
Asunto(s)
Proliferación Celular , Factor de Transcripción E2F1 , Proteína 1 de la Respuesta de Crecimiento Precoz , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Humanos , Proliferación Celular/efectos de los fármacos , Animales , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Línea Celular Tumoral , Factores de Transcripción E2F/metabolismo , Factores de Transcripción E2F/genética , Antineoplásicos/farmacología , Transcripción Genética/efectos de los fármacos , Ratones Desnudos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Ratones , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular , Factor de Transcripción E2F3RESUMEN
Control of the G1/S phase transition by the Retinoblastoma (RB) tumor suppressor is critical for the proliferation of normal cells in tissues, and its inactivation is one of the most fundamental events leading to cancer. Cyclin-dependent kinase (CDK) phosphorylation inactivates RB to promote cell cycle-regulated gene expression. Here we show that, upon stress, the p38 stress-activated protein kinase (SAPK) maximizes cell survival by downregulating E2F gene expression through the targeting of RB. RB undergoes selective phosphorylation by p38 in its N terminus; these phosphorylations render RB insensitive to the inactivation by CDKs. p38 phosphorylation of RB increases its affinity toward the E2F transcription factor, represses gene expression, and delays cell-cycle progression. Remarkably, introduction of a RB phosphomimetic mutant in cancer cells reduces colony formation and decreases their proliferative and tumorigenic potential in mice.
Asunto(s)
Neoplasias de la Mama/genética , Quinasas Ciclina-Dependientes/genética , Factores de Transcripción E2F/genética , Regulación Neoplásica de la Expresión Génica , Proteína de Retinoblastoma/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Quinasas Ciclina-Dependientes/metabolismo , Factores de Transcripción E2F/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Ratones , Imitación Molecular , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Retinoblastoma/química , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
The p53 pathway is a universal tumor suppressor mechanism that limits tumor progression by triggering apoptosis or permanent cell cycle arrest, called senescence. In recent years, efforts to reactivate p53 function in cancer have proven to be a successful therapeutic strategy in murine models and have gained traction with the development of a range of small molecules targeting mutant p53. However, knowledge of the downstream mediators of p53 reactivation in different oncogenic contexts has been limited. Here, we utilized a panel of murine cancer cell lines from three distinct tumor types susceptible to alternative outcomes following p53 restoration to define unique and shared p53 transcriptional signatures. While we found that the majority of p53-bound sites and p53-responsive transcripts are tumor-type specific, analysis of shared targets identified a core signature of genes activated by p53 across all contexts. Furthermore, we identified repression of E2F and Myc target genes as a key feature of senescence. Characterization of p53-induced transcripts revealed core and senescence-specific long noncoding RNAs (lncRNAs) that are predominantly chromatin associated and whose production is coupled to cis-regulatory activities. Functional investigation of the contributions of p53-induced lncRNAs to p53-dependent outcomes highlighted Pvt1b, the p53-dependent isoform of Pvt1, as a mediator of p53-dependent senescence via Myc repression. Inhibition of Pvt1b led to decreased activation of senescence markers and increased levels of markers of proliferation. These findings shed light on the core and outcome-specific p53 restoration signatures across different oncogenic contexts and underscore the key role of the p53-Pvt1b-Myc regulatory axis in mediating proliferative arrest.
Asunto(s)
Senescencia Celular/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias/metabolismo , ARN Largo no Codificante/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular , Daño del ADN , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Estudio de Asociación del Genoma Completo , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal , Estrés Fisiológico , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Long noncoding RNAs (lncRNAs) play diverse roles in biological processes, but their expression profiles and functions in cervical carcinogenesis remain unknown. By RNA-sequencing (RNA-seq) analyses of 18 clinical specimens and selective validation by RT-qPCR analyses of 72 clinical samples, we provide evidence that, relative to normal cervical tissues, 194 lncRNAs are differentially regulated in high-risk (HR)-HPV infection along with cervical lesion progression. One such lncRNA, lnc-FANCI-2, is extensively characterized because it is expressed from a genomic locus adjacent to the FANCI gene encoding an important DNA repair factor. Both genes are up-regulated in HPV lesions and in in vitro model systems of HR-HPV18 infection. We observe a moderate reciprocal regulation of lnc-FANCI-2 and FANCI in cervical cancer CaSki cells. In these cells, lnc-FANCI-2 is transcribed from two alternative promoters, alternatively spliced, and polyadenylated at one of two alternative poly(A) sites. About 10 copies of lnc-FANCI-2 per cell are detected preferentially in the cytoplasm. Mechanistically, HR-HPVs, but not low-risk (LR)-HPV oncogenes induce lnc-FANCI-2 in primary and immortalized human keratinocytes. The induction is mediated primarily by E7, and to a lesser extent by E6, mostly independent of p53/E6AP and pRb/E2F. We show that YY1 interacts with an E7 CR3 core motif and transactivates the promoter of lnc-FANCI-2 by binding to two critical YY1-binding motifs. Moreover, HPV18 increases YY1 expression by reducing miR-29a, which targets the 3' untranslated region of YY1 mRNA. These data have provided insights into the mechanisms of how HR-HPV infections contribute to cervical carcinogenesis.
Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Papillomavirus Humano 16/genética , MicroARNs/genética , Infecciones por Papillomavirus/genética , ARN Largo no Codificante/genética , Neoplasias del Cuello Uterino/genética , Factor de Transcripción YY1/genética , Empalme Alternativo , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Cuello del Útero/metabolismo , Cuello del Útero/patología , Cuello del Útero/virología , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Femenino , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidad , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/metabolismo , Papillomavirus Humano 18/patogenicidad , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Queratinocitos/virología , MicroARNs/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología , Factor de Transcripción YY1/metabolismoRESUMEN
Heat-shock factor (HSF) is the master transcriptional regulator of the heat-shock response (HSR) and is essential for stress resilience. HSF is also required for metazoan development; however, its function and regulation in this process are poorly understood. Here, we characterize the genomic distribution and transcriptional activity of Caenorhabditis elegans HSF-1 during larval development and show that the developmental HSF-1 transcriptional program is distinct from the HSR. HSF-1 developmental activation requires binding of E2F/DP to a GC-rich motif that facilitates HSF-1 binding to a heat-shock element (HSE) that is degenerate from the consensus HSE sequence and adjacent to the E2F-binding site at promoters. In contrast, induction of the HSR is independent of these promoter elements or E2F/DP and instead requires a distinct set of tandem canonical HSEs. Together, E2F and HSF-1 directly regulate a gene network, including a specific subset of chaperones, to promote protein biogenesis and anabolic metabolism, which are essential in development.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Factores de Transcripción E2F/metabolismo , Respuesta al Choque Térmico/genética , Animales , Factores de Transcripción E2F/genética , Redes Reguladoras de Genes/genética , Genoma de los Helmintos/genética , Larva/genética , Larva/crecimiento & desarrollo , Motivos de Nucleótidos , Regiones Promotoras Genéticas/genética , Unión ProteicaRESUMEN
Ultraviolet (UV)B radiation affects plant growth inhibiting cell proliferation. This inhibition is in part controlled by the activity of transcription factors from the E2F family. In particular, the participation of E2Fc and E2Fe in UV-B responses in Arabidopsis plants was previously reported. However, the E2Fa and E2Fb contribution to these processes has still not been investigated. Thus, in this work, we provide evidence that, in Arabidopsis, both E2Fa and E2Fb control leaf size under UV-B conditions without participating in the repair of cyclobutane pyrimidine dimers in the DNA. Nevertheless, in UV-B-exposed seedlings, E2Fa, but not E2Fb, regulates primary root elongation, cell proliferation, and programmed cell death in the meristematic zone. Using e2fa mutants that overexpress E2Fb, we showed that the role of E2Fa in the roots could not be replaced by E2Fb. Finally, our results show that E2Fa and E2Fb differentially regulate the expression of genes that activate the DNA damage response and cell cycle progression, both under conditions without UV-B and after exposure. Overall, we showed that both E2Fa and E2Fb have different and non-redundant roles in developmental and DNA damage responses in Arabidopsis plants exposed to UV-B.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Daño del ADN , Factores de Transcripción E2F/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Rayos Ultravioleta/efectos adversosRESUMEN
The TFDP1 gene codes for the heterodimeric partner DP1 of the transcription factor E2F. E2F, principal target of the tumor suppressor pRB, plays central roles in cell proliferation by activating a group of growth-related genes. E2F also mediates tumor suppression by activating tumor suppressor genes such as ARF, an upstream activator of the tumor suppressor p53, when deregulated from pRB upon oncogenic changes. Among 8 E2F family members (E2F1â¼E2F8), expression of activator E2Fs (E2F1â¼E2F3a) is induced at the G1/S boundary of the cell cycle after growth stimulation by E2F itself. However, mechanisms regulating DP1 expression are not known. We show here that over-expression of E2F1 and forced inactivation of pRB, by adenovirus E1a, induced TFDP1 gene expression in human normal fibroblast HFFs, suggesting that the TFDP1 gene is a target of E2F. Serum stimulation of HFFs also induced TFDP1 gene expression, but with different kinetics from that of the CDC6 gene, a typical growth-related E2F target. Both over-expression of E2F1 and serum stimulation activated the TFDP1 promoter. We searched for E2F1-responsive regions by 5' and 3' deletion of the TFDP1 promoter and by introducing point mutations in putative E2F1-responsive elements. Promoter analysis identified several GC-rich elements, mutation of which reduced E2F1-responsiveness but not serum-responsiveness. ChIP assays showed that the GC-rich elements bound deregulated E2F1 but not physiological E2F1 induced by serum stimulation. These results suggest that the TFDP1 gene is a target of deregulated E2F. In addition, knockdown of DP1 expression by shRNA enhanced ARF gene expression, which is specifically induced by deregulated E2F activity, suggesting that activation of the TFDP1 gene by deregulated E2F may function as a failsafe feedback mechanism to suppress deregulated E2F and maintain normal cell growth in the event that DP1 expression is insufficient relative to that of its partner activator E2Fs. a maximum of 6 keywords: E2F, DP1, TFDP1 gene, pRB, gene expression.
Asunto(s)
Factor de Transcripción E2F1 , Regulación de la Expresión Génica , Humanos , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Genes Supresores de Tumor , Proteínas de Ciclo Celular/metabolismo , Factor de Transcripción E2F3/metabolismo , Factor de Transcripción DP1/genética , Factor de Transcripción DP1/metabolismoRESUMEN
Pancreatic cancer (PC) is one of the deadliest malignancies. Partner of NOB1 homolog (PNO1) has been reported to be involved in tumorigenesis. However, the role of PNO1 in PC remains to be elucidated. The purpose of this study was to examine the effects of PNO1 on the progression of PC and the possible mechanism related to E2F transcription factor 1 (E2F1), a transcription factor predicted by the JASPAR database to bind to the PNO1 promoter region and promoted the proliferation of pancreatic ductal adenocarcinoma. First, PNO1 expression in PC tissues and its association with survival rate were analyzed by the Gene Expression Profiling Interactive Analysis database. Western blot and reverse transcription-quantitative polymerase chain reaction were used to evaluate PNO1 expression in several PC cell lines. After PNO1 silencing, cell proliferation, migration, and invasion were measured by colony formation assay, 5-ethynyl-2'-deoxyuridine staining, wound healing, and transwell assays. Then, the lipid reactive oxygen species in PANC-1 cells was estimated by using C11-BODIPY581/591 probe. The levels of glutathione, malondialdehyde, and iron were measured. The binding between PNO1 and E2F1 was confirmed by luciferase and chromatin immunoprecipitation (ChIP) assays. Subsequently, E2F1 was overexpressed in PANC-1 cells with PNO1 knockdown to perform the rescue experiments. Results revealed that PNO1 was highly expressed in PC tissues and PNO1 expression was positively correlated with overall survival rate and disease-free survival rate. Significantly elevated PNO1 expression was also observed in PC cell lines. PNO1 knockdown inhibited the proliferation, migration, and invasion of PANC-1 cells. Moreover, ferroptosis was promoted in PNO1-silenced PANC-1 cells. Results of luciferase and ChIP assays indicated that E2F1 could bind to PNO1 promoter region. Rescue experiments suggested that E2F1 overexpression reversed the impacts of PNO1 depletion on the malignant behaviors and ferroptosis in PANC-1 cells. Summing up, PNO1 transcriptionally activated by E2F1 promotes the malignant progression and inhibits the ferroptosis of PC.
Asunto(s)
Factores de Transcripción E2F , Ferroptosis , Neoplasias Pancreáticas , Proteínas de Unión al ARN , Humanos , Línea Celular Tumoral , Proliferación Celular , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Regulación Neoplásica de la Expresión Génica , Luciferasas/genética , Luciferasas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Neoplasias PancreáticasRESUMEN
Tumors are serious threats to human health. The transcription factors are regarded as the potential targets for tumor treatment. As an important family of transcription factors, E2F family transcription factors (E2Fs) play vital roles in cell proliferation and regulation. However, the expression feature, gene functions, and molecular interactions of E2Fs in tumorigenesis are not clear. In this study, the transcriptome data, mutation data, and protein-protein interaction data of 10 high-incidence tumors in China from the TCGA database were integrated and analyzed to explore the expression, structure, function, mutation, and phylogenetic characteristics of E2Fs. The results showed that E2F1 and E2F7 were regularly upregulated in the tumor samples. Moreover, E2Fs participated in the regulation of the cell cycle, cell aging, and other signaling pathways. As an important regulator, E2F1 interacted with more proteins than other E2Fs. At the same time, the genetic mutation types of E2Fs varied in tumor type and patient sex, of which gene amplification accounts for the largest proportion. Phylogenetic analysis showed that E2Fs were conserved in 41 species, including fruit flies, nematodes, and humans. Meanwhile, E2Fs had a tendency for gene expansion during evolution. In conclusion, this study clarified the expression pattern, mutation characteristics, and evolutionary trend of E2Fs in high-incidence tumors in China, and suggested that E2F family transcription factors could be novel diagnostic markers for tumor diseases. Furthermore, this work can provide a theoretical basis for the development of anti-tumor-targeted drugs.
Asunto(s)
Carcinogénesis , Factores de Transcripción , Humanos , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Filogenia , Factores de Transcripción/genética , Ciclo Celular , Carcinogénesis/genéticaRESUMEN
INTRODUCTION: Fanconi anemia complementation group E (FANCE) is a Fanconi anemia (FA) pathway gene that regulates DNA repair. We evaluated the clinical relevance of FANCE expression in hepatocellular carcinoma (HCC). METHODS: First, the associations between the expression of FA pathway genes including FANCE and clinical outcomes in HCC patients were analyzed in 2 independent cohorts: The Cancer Genome Atlas (TCGA, n = 373) and our patient cohort (n = 53). Localization of FANCE expression in HCC tissues was observed by immunohistochemical staining. Gene set enrichment analysis (GSEA) and gene network analysis (SiGN_BN) were conducted using the TCGA dataset. Next, an in vitro proliferation assay was performed using FANCE-knockdown HCC cell lines (HuH7 and HepG2). The association between mRNA expression of FANCE and that of DNA damage response genes in HCC was analyzed using TCGA and Cancer Cell Line Encyclopedia datasets. Finally, the association between FANCE mRNA expression and overall survival (OS) in various digestive carcinomas was analyzed using TCGA data. RESULTS: FANCE was highly expressed in HCC cells. Multivariate analysis indicated that high FANCE mRNA expression was an independent factor predicting poor OS. GSEA revealed a positive relationship between enhanced FANCE expression and E2F and MYC target gene expression in HCC tissues. FANCE knockdown attenuated the proliferation of HCC cells, as well as reduced cdc25A expression and elevated histone H3 pSer10 expression. SiGN_BN revealed that FANCE mRNA expression was positively correlated with DNA damage response genes (H2A histone family member X and checkpoint kinase 1) in HCC tissues. Significant effects of high FANCE expression on OS were observed in hepatobiliary pancreatic carcinomas, including HCC. CONCLUSIONS: FANCE may provide a potential therapeutic target and biomarker of poor prognosis in HCC, possibly by facilitating tumor proliferation, which is mediated partly by cell cycle signaling activation.
Asunto(s)
Biomarcadores de Tumor/genética , Proteína del Grupo de Complementación E de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación E de la Anemia de Fanconi/metabolismo , Regulación hacia Arriba , Anciano , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Factores de Transcripción E2F/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Pronóstico , Proteínas Proto-Oncogénicas c-myc/genética , Análisis de SupervivenciaRESUMEN
BACKGROUND: E2Fs are important components of transcription factors and play key roles in occurrence or advancement of various cancers, but the expression and exact roles of each E2F in colorectal cancer (CRC) are rarely known. METHODS: To address this issue, we investigated the roles and prognostic values of E2Fs expressions in CRC patients by searching ONCOMINE, cBioPortal, GEPIA, Matascape and UALCAN. RESULTS: E2F1, 3-8 were upregulated at the mRNA level and E2F2 was less expressed in CRC tissues than in normal tissues. The eight E2Fs were correlated with tumor stages of CRC. Survival analysis using GEPIA revealed that high expressions of E2F3, 4 were related with short overall survival in all CRC patients. The mutation rate of E2Fs (60%) was high and genetic alteration in E2Fs was linked with longer overall survival in CRC patients. Functional analysis implied that E2Fs and their 50 nearby genes were concentrated in tumor-related pathways. CONCLUSIONS: E2Fs may be candidate biomarkers for CRC diagnosis and E2F3, 4 are potential prognosis biomarkers of CRC. Nevertheless, our findings must be validated in the future to popularize the clinical application of E2Fs in CRC.