Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 694
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(12): 2807-2822, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762879

RESUMEN

Piperine has been shown to bind to myosin and shift the distribution of conformational states of myosin molecules from the super-relaxed state to the disordered relaxed state. However, little is known about the implications for muscle force production and potential underlying mechanisms. Muscle contractility experiments were performed using isolated muscles and single fibres from rats and mice. The dose-response effect of piperine on muscle force was assessed at several stimulation frequencies. The potentiation of muscle force was also tested in muscles fatigued by eccentric contractions. Potential mechanisms of force potentiation were assessed by measuring Ca2+ levels during stimulation in enzymatically dissociated muscle fibres, while myofibrillar Ca2+ sensitivity was assessed in chemically skinned muscle fibres. Piperine caused a dose-dependent increase in low-frequency force with no effect on high-frequency force in both slow- and fast-twitch muscle, with similar relative increases in twitch force, rate of force development and relaxation rate. The potentiating effect of piperine on low-frequency force was reversible, and piperine partially recovered low-frequency force in fatigued muscle. Piperine had no effect on myoplasmic free [Ca2+] levels in mouse muscle fibres, whereas piperine substantially augmented the force response to submaximal levels of [Ca2+] in rat MyHCII fibres and MyHCI fibres along with a minor increase in maximum Ca2+-activated force. Piperine enhances low-frequency force production in both fast- and slow-twitch muscle. The effects are reversible and can counteract muscle fatigue. The primary underlying mechanism appears to be an increase in Ca2+ sensitivity. KEY POINTS: Piperine is a plant alkaloid derived from black pepper. It is known to bind to skeletal muscle myosin and enhance resting ATP turnover but its effects on contractility are not well known. We showed for the first time a piperine-induced force potentiation that was pronounced during low-frequency electrical stimulation of isolated muscles. The effect of piperine was observed in both slow and fast muscle types, was reversible, and could counteract the force decrements observed after fatiguing muscle contractions. Piperine treatment caused an increase in myofibrillar Ca2+ sensitivity in chemically skinned muscle fibres, while we observed no effect on intracellular Ca2+ concentrations during electrical stimulation in enzymatically dissociated muscle fibres.


Asunto(s)
Alcaloides , Benzodioxoles , Calcio , Contracción Muscular , Fibras Musculares de Contracción Rápida , Fibras Musculares de Contracción Lenta , Piperidinas , Alcamidas Poliinsaturadas , Animales , Alcamidas Poliinsaturadas/farmacología , Benzodioxoles/farmacología , Piperidinas/farmacología , Alcaloides/farmacología , Ratones , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Rápida/fisiología , Ratas , Contracción Muscular/efectos de los fármacos , Masculino , Calcio/metabolismo , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Fibras Musculares de Contracción Lenta/fisiología , Fatiga Muscular/efectos de los fármacos , Fatiga Muscular/fisiología , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Relación Dosis-Respuesta a Droga
2.
Clin Exp Pharmacol Physiol ; 51(7): e13873, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815994

RESUMEN

At present, there are no official approved drugs for improving muscle endurance. Our previous research found acute phase protein orosomucoid (ORM) is an endogenous anti-fatigue protein, and macrolides antibiotics erythromycin can elevate ORM level to increase muscle bioenergetics and endurance parameters. Here, we further designed, synthesized and screened a new erythromycin derivative named HMS-01, which lost its antibacterial activity in vitro and in vivo. Data showed that HMS-01 could time- and dose-dependently prolong mice forced-swimming time and running time, and improve fatigue index in isolated soleus muscle. Moreover, HMS-01 treatment could increase the glycogen content, mitochondria number and function in liver and skeletal muscle, as well as ORM level in these tissues and sera. In Orm-deficient mice, the anti-fatigue and glycogen-elevation activity of HMS-01 disappeared. Therefore, HMS-01 might act as a promising small molecule drug targeting ORM to enhance muscle endurance.


Asunto(s)
Eritromicina , Glucógeno , Fatiga Muscular , Músculo Esquelético , Orosomucoide , Resistencia Física , Animales , Eritromicina/farmacología , Eritromicina/análogos & derivados , Ratones , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Glucógeno/metabolismo , Orosomucoide/metabolismo , Resistencia Física/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL
3.
An Acad Bras Cienc ; 96(2): e20230559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747788

RESUMEN

Creatine is consumed by athletes to increase strength and gain muscle. The aim of this study was to evaluate the effects of creatine supplementation on maximal strength and strength endurance. Twelve strength-trained men (25.2 ± 3.4 years) supplemented with 20 g Creatina + 10g maltodextrin or placebo (20g starch + 10g maltodextrin) for five days in randomized order. Maximal strength and strength endurance (4 sets 70% 1RM until concentric failure) were determined in the bench press. In addition, blood lactate, rate of perceived effort, fatigue index, and mood state were evaluated. All measurements were performed before and after the supplementation period. There were no significant changing in maximal strength, blood lactate, RPE, fatigue index, and mood state in either treatment. However, the creatine group performed more repetitions after the supplementation (Cr: Δ = +3.4 reps, p = 0.036, g = 0.53; PLA: Δ = +0.3reps, p = 0.414, g = 0.06), and higher total work (Cr: Δ = +199.5au, p = 0.038, g = 0.52; PLA: Δ = +26.7au, p = 0.402, g = 0.07). Creatine loading for five days allowed the subjects to perform more repetitions, resulting in greater total work, but failed to change the maximum strength.


Asunto(s)
Creatina , Suplementos Dietéticos , Ácido Láctico , Fuerza Muscular , Resistencia Física , Humanos , Masculino , Adulto , Creatina/administración & dosificación , Creatina/farmacología , Creatina/sangre , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/fisiología , Resistencia Física/efectos de los fármacos , Resistencia Física/fisiología , Ácido Láctico/sangre , Adulto Joven , Entrenamiento de Fuerza/métodos , Fatiga Muscular/efectos de los fármacos , Fatiga Muscular/fisiología , Método Doble Ciego
4.
J Strength Cond Res ; 38(6): 1056-1062, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38781467

RESUMEN

ABSTRACT: Ambrozy, CA, Hawes, NE, Hayden, OL, Sortzi, I, and Malek, MH. Caffeine expectancy does not influence the physical working capacity at the fatigue threshold. J Strength Cond Res 38(6): 1056-1062, 2024-The placebo effect occurs when a desired outcome is experienced due to the belief that a treatment is effective, even in the absence of an active ingredient. One explanation for this effect is based on a person's expectations of a drug or supplement. Although caffeine's effects on sports performance have been studied, little is known about how expectations of caffeine affect neuromuscular fatigue during continuous muscle action. The physical working capacity at the fatigue threshold (PWCFT) can be used to assess neuromuscular fatigue noninvasively using surface electromyography. Thus, the purpose of this study was to investigate whether caffeine expectancy influences PWCFT. We hypothesized that regardless of expectancy, caffeine consumption would delay neuromuscular fatigue. The study involved 8 healthy college-aged men (mean ± SEM: age, 25.6 ± 1.0 years) who visited the laboratory on 4 occasions, each separated by 7 days. The subjects completed 4 experimental conditions, in random order, where they were told that they were consuming caffeine or placebo and either received caffeine or placebo. After consuming the drink, the subjects remained in the laboratory for an hour and then performed an incremental exercise test. The results showed that the condition where subjects were told that they were consuming caffeine and received caffeine had significantly higher mean values for maximal power output (F(3, 21) = 11.75; p < 0.001), PWCFT (F(3, 21) = 12.28; p < 0.001), PWCFT (%maximal power output; F(3, 21) = 8.75; p < 0.001), and heart rate at end exercise (%predicted; F(3, 21) = 3.83; p = 0.025) compared with the 2 conditions where placebo was received. However, no statistically significant mean differences were found from the condition where subjects were told that they were consuming placebo but consuming caffeine. This suggests that a person's expectancy and potential somatic response may serve as a cue for how an ergogenic aid or placebo could affect subsequent performance.


Asunto(s)
Cafeína , Electromiografía , Fatiga Muscular , Humanos , Cafeína/administración & dosificación , Cafeína/farmacología , Masculino , Adulto , Fatiga Muscular/efectos de los fármacos , Fatiga Muscular/fisiología , Adulto Joven , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/administración & dosificación , Efecto Placebo , Músculo Esquelético/fisiología , Músculo Esquelético/efectos de los fármacos
5.
J Strength Cond Res ; 38(7): 1256-1265, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38598545

RESUMEN

ABSTRACT: Cabre, HE, Ladan, AN, Moore, SR, Joniak, KE, Blue, MNM, Pietrosimone, BG, Hackney, AC, and Smith-Ryan, AE. Effects of hormonal contraception and the menstrual cycle on fatigability and recovery from an anaerobic exercise test. J Strength Cond Res 38(7): 1256-1265, 2024-This study sought to evaluate the effects of oral contraceptive (OC) and hormonal intrauterine device (H-IUD) use, compared with a eumenorrheic (EUM) cycle, on fatigability and recovery between hormone the phases. Peak power (PP), average power (AP), fatigue index (FI), blood lactate, vessel diameter, and blood flow (BF) were measured from a repeated sprint cycle test (10 × 6 seconds) in 60, healthy, active women (mean ± SD ; age: 26.5 ± 7.0 years, BMI: 22.5 ± 3.7 kg·m -2 ) who used monophasic OC (≥6 months; n = 21), had a H-IUD (≥6 months; n = 20), or had regular naturally occurring menstrual cycle (≥3 months) or had a nonhormonal IUD (EUM; n = 19). Subjects were randomly assigned to begin in either the low-hormone phase (LHP) or high-hormone phase (HHP) and were tested once in each phase. Separate univariate analyses of covariances assessed the change from HHP to LHP between the groups, covaried for progesterone, with significance set at p ≤ 0.05. All groups demonstrated similar changes in PP, AP, FI, blood lactate, vessel diameter, and BF between the phases ( p > 0.05). Although not significant, AP was higher in LHP for OC (Δ -248.2 ± 1,301.4 W) and EUM (Δ -19.5 ± 977.7 W) and higher in HHP for H-IUD (Δ 369.3 ± 1,123.0 W). Oral contraceptive group exhibited a higher FI (Δ 2.0%) and reduced blood lactate clearance (Δ 2.5%) in HHP. In recreationally active women, hormonal contraception and hormone phases may minimally impact fatigue and recovery. Individual elite female athletes may benefit from understanding hormonal contraception type as performance and recovery may slightly vary across the cycle.


Asunto(s)
Prueba de Esfuerzo , Ciclo Menstrual , Humanos , Femenino , Ciclo Menstrual/fisiología , Ciclo Menstrual/efectos de los fármacos , Adulto , Prueba de Esfuerzo/métodos , Adulto Joven , Ácido Láctico/sangre , Anticoncepción Hormonal , Fatiga/fisiopatología , Dispositivos Intrauterinos , Fatiga Muscular/efectos de los fármacos , Fatiga Muscular/fisiología
6.
Dokl Biochem Biophys ; 516(1): 58-65, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38722403

RESUMEN

The objectives of this study were to investigate the anti-fatigue effects of Paris polyphylla polysaccharide component 1 (PPPm-1) and explore its mechanisms. A mouse model of exercise-induced fatigue was established by weight-bearing swimming to observe the effects of different concentrations of PPPm-1 on weight-bearing swimming time. The anti-fatigue effect of PPPm-1 was determined by the effects of contraction amplitude, contraction rate, and diastolic rate of the frog gastrocnemius muscle in vivo before and after infiltration with 5 mg/mL PPPm-1. The effects of PPPm-1 on the contents of blood lactate, serum urea nitrogen, hepatic glycogen, muscle glycogen in the exercise fatigue model of mice, and acetylcholine (ACh) content and acetylcholinesterase (AChE) activity at the junction of the frog sciatic nerve-gastrocnemius under normal physiological, and Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of the frog gastrocnemius were determined by enzyme-linked immunosorbent assay (ELISA), to investigate the anti-fatigue mechanisms of PPPm-1. The results showed that PPPm-1 could significantly prolong the weight-bearing swimming time in mice (P < 0.01), decrease the contents of blood lactate and serum urea nitrogen, increase the contents of the hepatic glycogen and muscle glycogen of mice after exercise fatigue compared with those of the control group, and there was extremely significant difference in most indicators (P < 0.01). The 5 mg/mL of PPPm-1 could significantly promote the contraction amplitude, contraction rate, and relaxation rate of the gastrocnemius muscle in the frogs, and the content of ACh at the junction of the frog sciatic nerve-gastrocnemius (P < 0.01), but it had obvious inhibitory effetc on the activity of AChE at the junction of the frog sciatic nerve-gastrocnemius (P < 0.01). PPPm-1 could increase the Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of gastrocnemius in the frogs (for Ca2+-Mg2+-ATPase, P < 0.01). The above results suggested that the PPPm-1 had a good anti-fatigue effect, and its main mechanisms were related to improving endurance and glycogen reserve, reducing glycogen consumption, lactate and serum urea nitrogen accumulation, and promoting Ca2+ influx.


Asunto(s)
Músculo Esquelético , Polisacáridos , Animales , Polisacáridos/farmacología , Polisacáridos/química , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Fatiga Muscular/efectos de los fármacos , Masculino , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Natación , Glucógeno/metabolismo , Acetilcolinesterasa/metabolismo , Fatiga/tratamiento farmacológico , Nitrógeno de la Urea Sanguínea , Acetilcolina/metabolismo , Contracción Muscular/efectos de los fármacos , ATPasa de Ca(2+) y Mg(2+)/metabolismo
7.
J Neurophysiol ; 127(1): 27-37, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851768

RESUMEN

Although there is evidence that 5-HT acts as an excitatory neuromodulator to enhance maximal force generation, it is largely unknown how 5-HT activity influences the ability to sustain a constant force during steady-state contractions. A total of 22 healthy individuals participated in the study, where elbow flexion force was assessed during brief isometric contractions at 10% maximal voluntary contraction (MVC), 60% MVC, MVC, and during a sustained MVC. The selective serotonin reuptake inhibitor, paroxetine, suppressed physiological tremor and increased force steadiness when performing the isometric contractions. In particular, a main effect of drug was detected for peak power of force within the 8-12 Hz range (P = 0.004) and the coefficient of variation (CV) of force (P < 0.001). A second experiment was performed where intermittent isometric elbow flexions (20% MVC sustained for 2 min) were repeatedly performed so that serotonergic effects on physiological tremor and force steadiness could be assessed during the development of fatigue. Main effects of drug were once again detected for peak power of force in the 8-12 Hz range (P = 0.002) and CV of force (P = 0.003), where paroxetine suppressed physiological tremor and increased force steadiness when the elbow flexors were fatigued. The findings of this study suggest that enhanced availability of 5-HT in humans has a profound influence of maintaining constant force during steady-state contractions. The action of 5-HT appears to suppress fluctuations in force regardless of the fatigue state of the muscle.NEW & NOTEWORTHY Converging lines of research indicate that enhanced serotonin availability increases maximal force generation. However, it is largely unknown how serotonin influences the ability to sustain a constant force. We performed two experiments to assess physiological tremor and force steadiness in unfatigued and fatigued muscle when serotonin availability was enhanced in the central nervous system. Enhanced availability of serotonin reduced physiological tremor amplitude and improved steadiness regardless of muscle fatigue.


Asunto(s)
Fenómenos Biomecánicos/efectos de los fármacos , Contracción Isométrica/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Paroxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Serotonina/metabolismo , Temblor/tratamiento farmacológico , Adulto , Codo/fisiología , Humanos , Masculino , Paroxetina/administración & dosificación , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Adulto Joven
8.
J Neurophysiol ; 127(1): 150-160, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34936830

RESUMEN

Serotonin (5-HT) is a neuromodulator that is critical for regulating the excitability of spinal motoneurons and the generation of muscle torque. However, the role of 5-HT in modulating human motor unit activity during rapid contractions has yet to be assessed. Nine healthy participants (23.7 ± 2.2 yr) ingested 8 mg of the competitive 5-HT2 antagonist cyproheptadine in a double-blinded, placebo-controlled, repeated-measures experiment. Rapid dorsiflexion contractions were performed at 30%, 50%, and 70% of maximal voluntary contraction (MVC), where motor unit activity was assessed by high-density surface electromyographic decomposition. A second protocol was performed where a sustained, fatigue-inducing dorsiflexion contraction was completed before undertaking the same 30%, 50%, and 70% MVC rapid contractions and motor unit analysis. Motor unit discharge rate (P < 0.001) and rate of torque development (RTD; P = 0.019) for the unfatigued muscle were both significantly lower for the cyproheptadine condition. Following the fatigue inducing contraction, cyproheptadine reduced motor unit discharge rate (P < 0.001) and RTD (P = 0.024), whereas the effects of cyproheptadine on motor unit discharge rate and RTD increased with increasing contraction intensity. Overall, these results support the viewpoint that serotonergic effects in the central nervous system occur fast enough to regulate motor unit discharge rate during rapid powerful contractions.NEW & NOTEWORTHY We have shown that serotonin activity in the central nervous system plays a role in regulating human motor unit discharge rate during rapid contractions. Our findings support the viewpoint that serotonergic effects in the central nervous system are fast and are most prominent during contractions that are characterized by high motor unit discharge rates and large amounts of torque development.


Asunto(s)
Sistema Nervioso Central/metabolismo , Neuronas Motoras/fisiología , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Reclutamiento Neurofisiológico/fisiología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Serotonina/metabolismo , Adulto , Sistema Nervioso Central/efectos de los fármacos , Ciproheptadina/farmacología , Método Doble Ciego , Electromiografía , Femenino , Humanos , Masculino , Neuronas Motoras/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Reclutamiento Neurofisiológico/efectos de los fármacos , Adulto Joven
9.
J Neurophysiol ; 125(4): 1269-1278, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33625939

RESUMEN

Although synaptic transmission in motor pathways can be regulated by neuromodulators, such as acetylcholine, few studies have examined how cholinergic activity affects cortical and spinal motor circuits following muscle contractions of varying intensities. This was a human, double-blinded, placebo-controlled, crossover study. Participants attended two sessions where they were administered either a placebo or 25 mg of promethazine. Electromyography of the abductor digiti minimi (ADM) was measured for all conditions. Motor evoked potentials (MEPs) were obtained via motor cortical transcranial magnetic stimulation (TMS), and F waves were obtained via ulnar nerve electrical stimulation. MEPs and F waves were examined: 1) when the muscle was at rest; 2) after the muscle had been active; and 3) after the muscle had been fatigued. MEPs were unaffected by muscarinic receptor blockade when measurements were recorded from resting muscle or following a 50% isometric maximal voluntary contraction (MVC). However, muscarinic receptor blockade increased MEP area following a 10-s MVC (P = 0.019) and following a fatiguing 60-s MVC (P = 0.040). F wave area and persistence were not affected by promethazine for any muscle contraction condition. Corticospinal excitability was influenced by cholinergic effects when voluntary drive to the muscle was high. Given that spinal motoneurone excitability remained unaffected, it is likely that cholinergic effects are influential within the motor cortex during strong muscle contractions. Future research should evaluate how cholinergic effects alter the relationship between subcortical structures and the motor cortex, as well as brainstem neuromodulatory pathways and spinal motoneurons.NEW & NOTEWORTHY The relationship between motor function and cholinergic circuitry in the central nervous system is complex. Although many studies have approached this issue at the cellular level, few studies have examined cholinergic mechanisms in humans performing muscle contractions. This study demonstrates that blockade of muscarinic acetylcholine receptors enhances motor evoked potentials (elicited with transcranial magnetic stimulation) following strong muscle contractions, but not weak muscle contractions.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Potenciales Evocados Motores/efectos de los fármacos , Corteza Motora/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Antagonistas Muscarínicos/farmacología , Contracción Muscular/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Prometazina/farmacología , Médula Espinal/efectos de los fármacos , Adulto , Estudios Cruzados , Método Doble Ciego , Estimulación Eléctrica , Electromiografía , Femenino , Humanos , Masculino , Antagonistas Muscarínicos/administración & dosificación , Prometazina/administración & dosificación , Tractos Piramidales/efectos de los fármacos , Estimulación Magnética Transcraneal , Adulto Joven
10.
Microcirculation ; 28(4): e12677, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33417723

RESUMEN

OBJECTIVE: Adequacy of the microcirculation is essential for maintaining repetitive skeletal muscle function while avoiding fatigue. It is unclear, however, whether capillary remodelling after different angiogenic stimuli is comparable in terms of vessel distribution and consequent functional adaptations. We determined the physiological consequences of two distinct mechanotransductive stimuli: (1) overload-mediated abluminal stretch (OV); (2) vasodilator-induced shear stress (prazosin, PR). METHODS: In situ EDL fatigue resistance was determined after 7 or 14 days of intervention, in addition to measurements of femoral artery flow. Microvascular composition (muscle histology) and oxidative capacity (citrate synthase activity) were quantified, and muscle PO2 calculated using advanced mathematical modelling. RESULTS: Compared to controls, capillary-to-fiber ratio was higher after OV14 (134%, p < .001) and PR14 (121%, p < .05), although fatigue resistance only improved after overload (7 days: 135%, 14 days: 125%, p < .05). In addition, muscle overload improved local capillary supply indices and reduced CS activity, while prazosin treatment failed to alter either index of aerobic capacity. CONCLUSION: Targeted capillary growth in response to abluminal stretch is a potent driver of improved muscle fatigue resistance, while shear stress-driven angiogenesis has no beneficial effect on muscle function. In terms of capillarity, more is not necessarily better.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 1 , Capilares , Actividad Motora , Músculo Esquelético , Neovascularización Fisiológica , Prazosina , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Fenómenos Biomecánicos/fisiología , Capilares/efectos de los fármacos , Capilares/crecimiento & desarrollo , Capilares/fisiología , Estimulación Eléctrica , Masculino , Microcirculación/efectos de los fármacos , Microcirculación/fisiología , Microvasos/efectos de los fármacos , Microvasos/fisiología , Modelos Animales , Actividad Motora/fisiología , Fatiga Muscular/efectos de los fármacos , Fatiga Muscular/fisiología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/fisiología , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Prazosina/farmacología , Ratas , Ratas Wistar
11.
EMBO Rep ; 20(9): e47892, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31318145

RESUMEN

The conversion of skeletal muscle fiber from fast twitch to slow-twitch is important for sustained and tonic contractile events, maintenance of energy homeostasis, and the alleviation of fatigue. Skeletal muscle remodeling is effectively induced by endurance or aerobic exercise, which also generates several tricarboxylic acid (TCA) cycle intermediates, including succinate. However, whether succinate regulates muscle fiber-type transitions remains unclear. Here, we found that dietary succinate supplementation increased endurance exercise ability, myosin heavy chain I expression, aerobic enzyme activity, oxygen consumption, and mitochondrial biogenesis in mouse skeletal muscle. By contrast, succinate decreased lactate dehydrogenase activity, lactate production, and myosin heavy chain IIb expression. Further, by using pharmacological or genetic loss-of-function models generated by phospholipase Cß antagonists, SUNCR1 global knockout, or SUNCR1 gastrocnemius-specific knockdown, we found that the effects of succinate on skeletal muscle fiber-type remodeling are mediated by SUNCR1 and its downstream calcium/NFAT signaling pathway. In summary, our results demonstrate succinate induces transition of skeletal muscle fiber via SUNCR1 signaling pathway. These findings suggest the potential beneficial use of succinate-based compounds in both athletic and sedentary populations.


Asunto(s)
Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Ácido Succínico/farmacología , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Cadenas Pesadas de Miosina/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
12.
Br J Nutr ; 125(2): 161-171, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-32660675

RESUMEN

Anthocyanins and bromelain have gained significant attention due to their antioxidative and anti-inflammatory properties. Both have been shown to improve endothelial function, blood pressure (BP) and oxygen utility capacity in humans; however, the combination of these two and the impacts on endothelial function, BP, total antioxidant capacity (TAC) and oxygen utility capacity have not been previously investigated. The purpose of this study was to investigate the impacts of a combined anthocyanins and bromelain supplement (BE) on endothelial function, BP, TAC, oxygen utility capacity and fatigability in healthy adults. Healthy adults (n 18, age 24 (sd 4) years) received BE or placebo in a randomised crossover design. Brachial artery flow-mediated dilation (FMD), BP, TAC, resting heart rate, oxygen utility capacity and fatigability were measured pre- and post-BE and placebo intake. The BE group showed significantly increased FMD, reduced systolic BP and improved oxygen utility capacity compared with the placebo group (P < 0·05). Tissue saturation and oxygenated Hb significantly increased following BE intake, while deoxygenated Hb significantly decreased (P < 0·05) during exercise. Additionally, TAC was significantly increased following BE intake (P < 0·05). There were no significant differences for resting heart rate, diastolic BP or fatigability index. These results suggest that BE intake is an effective nutritional therapy for improving endothelial function, BP, TAC and oxygen utility capacity, which may be beneficial to support vascular health in humans.


Asunto(s)
Antocianinas/farmacología , Antioxidantes/farmacología , Bromelaínas/farmacología , Suplementos Dietéticos , Endotelio Vascular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Adolescente , Presión Sanguínea/efectos de los fármacos , Arteria Braquial/efectos de los fármacos , Estudios Cruzados , Método Doble Ciego , Ejercicio Físico/fisiología , Femenino , Voluntarios Sanos , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Masculino , Fatiga Muscular/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Adulto Joven
13.
Acta Pharmacol Sin ; 42(10): 1703-1713, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33927358

RESUMEN

Chemotherapy-related fatigue (CRF) is increasingly being recognized as one of the severe symptoms in patients undergoing chemotherapy, which not only largely reduces the quality of life in patients, but also diminishes their physical and social function. At present, there is no effective drug for preventing and treating CRF. Ganoderic acid (GA), isolated from traditional Chinese medicine Ganoderma lucidum, has shown a variety of pharmacological activities such as anti-tumor, anti-inflammation, immunoregulation, etc. In this study, we investigated whether GA possessed anti-fatigue activity against CRF. CT26 tumor-bearing mice were treated with 5-fluorouracil (5-FU, 30 mg/kg) and GA (50 mg/kg) alone or in combination for 18 days. Peripheral and central fatigue-related behaviors, energy metabolism and inflammatory factors were assessed. We demonstrated that co-administration of GA ameliorated 5-FU-induced peripheral muscle fatigue-like behavior via improving muscle quality and mitochondria function, increasing glycogen content and ATP production, reducing lactic acid content and LDH activity, and inhibiting p-AMPK, IL-6 and TNF-α expression in skeletal muscle. Co-administration of GA also retarded the 5-FU-induced central fatigue-like behavior accompanied by down-regulating the expression of IL-6, iNOS and COX2 in the hippocampus through inhibiting TLR4/Myd88/NF-κB pathway. These results suggest that GA could attenuate 5-FU-induced peripheral and central fatigue in tumor-bearing mice, which provides evidence for GA as a potential drug for treatment of CRF in clinic.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Fatiga Muscular/efectos de los fármacos , Triterpenos/uso terapéutico , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Citocinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Fluorouracilo/efectos adversos , Fluorouracilo/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones Endogámicos BALB C , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología
14.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769017

RESUMEN

Muscle fatigue (MF) declines the capacity of muscles to complete a task over time at a constant load. MF is usually short-lasting, reversible, and is experienced as a feeling of tiredness or lack of energy. The leading causes of short-lasting fatigue are related to overtraining, undertraining/deconditioning, or physical injury. Conversely, MF can be persistent and more serious when associated with pathological states or following chronic exposure to certain medication or toxic composites. In conjunction with chronic fatigue, the muscle feels floppy, and the force generated by muscles is always low, causing the individual to feel frail constantly. The leading cause underpinning the development of chronic fatigue is related to muscle wasting mediated by aging, immobilization, insulin resistance (through high-fat dietary intake or pharmacologically mediated Peroxisome Proliferator-Activated Receptor (PPAR) agonism), diseases associated with systemic inflammation (arthritis, sepsis, infections, trauma, cardiovascular and respiratory disorders (heart failure, chronic obstructive pulmonary disease (COPD))), chronic kidney failure, muscle dystrophies, muscle myopathies, multiple sclerosis, and, more recently, coronavirus disease 2019 (COVID-19). The primary outcome of displaying chronic muscle fatigue is a poor quality of life. This type of fatigue represents a significant daily challenge for those affected and for the national health authorities through the financial burden attached to patient support. Although the origin of chronic fatigue is multifactorial, the MF in illness conditions is intrinsically linked to the occurrence of muscle loss. The sequence of events leading to chronic fatigue can be schematically denoted as: trigger (genetic or pathological) -> molecular outcome within the muscle cell -> muscle wasting -> loss of muscle function -> occurrence of chronic muscle fatigue. The present review will only highlight and discuss current knowledge on the molecular mechanisms that contribute to the upregulation of muscle wasting, thereby helping us understand how we could prevent or treat this debilitating condition.


Asunto(s)
Fatiga Muscular/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiología , Autofagia , COVID-19/fisiopatología , Enfermedad Crítica , Humanos , Resistencia a la Insulina , Lisosomas/metabolismo , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/fisiopatología , Atrofia Muscular/etiología , Sarcopenia/fisiopatología
15.
J Biol Chem ; 294(51): 19709-19722, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31690631

RESUMEN

Doxorubicin is an anthracycline-based chemotherapeutic that causes myotoxicity with symptoms persisting beyond treatment. Patients experience muscle pain, weakness, fatigue, and atrophy, but the underlying mechanisms are poorly understood. Studies investigating doxorubicin-induced myotoxicity have reported disrupted mitochondrial function. Mitochondria are responsible for regulating both cellular energy status and Ca2+ handling, both of which impact contractile function. Moreover, loss of mitochondrial integrity may initiate muscle atrophy. Skeletal muscle mitochondrial dysregulation may therefore contribute to an overall loss of skeletal muscle quality and performance that may be mitigated by appropriately targeted mitochondrial therapies. We therefore assessed the impact of doxorubicin on muscle performance and applied a multiplexed assay platform to diagnose alterations in mitochondrial respiratory control. Mice received a clinically relevant dose of doxorubicin delivered systemically and were euthanized 72 h later. We measured extensor digitorum longus and soleus muscle forces, fatigue, and contractile kinetics in vitro, along with Ca2+ uptake in isolated sarcoplasmic reticulum. Isolated skeletal muscle mitochondria were used for real-time respirometry or frozen for protein content and activity assays. Doxorubicin impaired muscle performance, which was indicated by reduced force production, fatigue resistance, and sarcoplasmic reticulum-Ca2+ uptake, which were associated with a substrate-independent reduction in respiration and membrane potential but no changes in the NAD(P)H/NAD(P)+ redox state. Protein content and dehydrogenase activity results corroborated these findings, indicating that doxorubicin-induced mitochondrial impairments are located upstream of ATP synthase within the electron transport system. Collectively, doxorubicin-induced lesions likely span mitochondrial complexes I-IV, providing potential targets for alleviating doxorubicin myotoxicity.


Asunto(s)
Doxorrubicina/farmacología , Contracción Muscular/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Antraciclinas/farmacología , Calcio/metabolismo , Citrato (si)-Sintasa/metabolismo , Transporte de Electrón , Hierro/metabolismo , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/metabolismo , Atrofia Muscular , Oxidación-Reducción , Retículo Sarcoplasmático/metabolismo , Termodinámica
16.
Exp Physiol ; 105(12): 2073-2085, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33073449

RESUMEN

NEW FINDINGS: What is the central question of this study? Does creatine supplementation augment the total torque impulse accumulated above end-test torque (IET) during severe-intensity knee-extensor exercise by attenuating the rate of decrease in peak potentiated twitch torque (PT)? What is the main finding and its importance? Creatine augmented the IET and attenuated the rate of decrease in both voluntary activation and PT during severe-intensity exercise. The IET was related to the rate of decrease in PT. These findings reveal an important role for the rates of neuromuscular fatigue development as key determinants of exercise tolerance within the severe domain. ABSTRACT: This study investigated the effect of creatine supplementation on exercise tolerance, total torque impulse accumulated above end-test torque (total IET) and neuromuscular fatigue development of the knee extensors during severe-intensity intermittent isometric exercise. Sixteen men were randomly allocated into Creatine (n = 8, 20 g day-1 for 5 days) or Placebo (n = 8) groups and performed knee-extensor maximal voluntary contraction (MVC) testing, all-out testing to determine end-test torque (ET) and the finite torque impulse accumulated above end-test torque (IET'), and three submaximal tests at ET + 10%: (i) time to task failure without supplementation (Baseline); (ii) time to task failure after creatine or placebo supplementation; and (iii) time matched to Baseline after creatine (Creatine-Isotime) or placebo (Placebo-Isotime) supplementation. Creatine supplementation significantly increased the time to task failure (Baseline = 572 ± 144 s versus Creatine = 833 ± 221 s) and total IET (Baseline = 5761 ± 1710  N m s versus Creatine = 7878 ± 1903 N m s), but there were no significant differences within the Placebo group. The percentage change pre- to postexercise in MVC, voluntary activation, peak potentiated twitch torque and integrated EMG during MVC were not significantly different between Baseline and Creatine but were all significantly attenuated in Creatine-Isotime compared with Baseline. There were no significant differences in these variables within the placebo group. The total IET was significantly correlated with the rates of change in potentiated twitch torque peak (r = 0.83-0.87) and rate of torque development (r = -0.83 to -0.87) for the submaximal tests to task failure. These findings reveal an important role for the rates of neuromuscular fatigue development as key determinants of exercise tolerance during severe-intensity intermittent isometric exercise.


Asunto(s)
Creatina/administración & dosificación , Ejercicio Físico/fisiología , Contracción Isométrica/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Adulto , Suplementos Dietéticos , Tolerancia al Ejercicio/efectos de los fármacos , Humanos , Articulación de la Rodilla/efectos de los fármacos , Masculino , Contracción Muscular/efectos de los fármacos , Torque
17.
Exp Physiol ; 105(4): 690-706, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32092208

RESUMEN

NEW FINDINGS: What is the central question of the study? What are the effects of caffeine on neuromuscular function in a non-fatigued state and during fatiguing exercise? What is the main finding and its importance? In a non-fatigued state, caffeine decreased the duration of the silent period evoked by transcranial magnetic stimulation. Caffeine-induced reduction of inhibitory mechanisms in the central nervous system before exercise was associated with an increased performance. Individuals who benefit from caffeine ingestion may experience lower perception of effort during exercise and an accelerated recovery of M-wave amplitude postfatigue. This study elucidates the mechanisms of action of caffeine and demonstrates that inter-individual variability of its effects on neuromuscular function is a fruitful area for further work. ABSTRACT: Caffeine enhances exercise performance, but its mechanisms of action remain unclear. In this study, we investigated its effects on neuromuscular function in a non-fatigued state and during fatiguing exercise. Eighteen men participated in this randomized, double-blind, placebo-controlled crossover trial. Baseline measures included plantarflexion force, drop jump, squat jump, voluntary activation of triceps surae muscle, soleus muscle contractile properties, M-wave, α-motoneuron excitability (H-reflex), corticospinal excitability, short-interval intracortical inhibition, intracortical facilitation, silent period evoked by transcranial magnetic stimulation (SP) and plasma potassium and caffeine concentrations. Immediately after baseline testing, participants ingested caffeine (6 mg·kg-1 ) or placebo. After a 1-h rest, baseline measures were repeated, followed by a fatiguing stretch-shortening cycle exercise (sets of 40 bilateral rebound jumps on a sledge apparatus) until task failure. Neuromuscular testing was carried out throughout the fatigue protocol and afterwards. Caffeine enhanced drop jump height (by 4.2%) and decreased the SP (by 12.6%) in a non-fatigued state. A caffeine-related decrease in SP and short-interval intracortical inhibition before the fatiguing activity was associated with an increased time to task failure. The participants who benefitted from an improved performance on the caffeine day reported a significantly lower sense of effort during exercise and had an accelerated postexercise recovery of M-wave amplitude. Caffeine modulates inhibitory mechanisms of the CNS, recovery of M-wave amplitude and perception of effort. This study lays the groundwork for future examinations of differences in caffeine-induced neuromuscular changes between those who are deemed to benefit from caffeine ingestion and those who are not.


Asunto(s)
Cafeína/administración & dosificación , Ejercicio Físico/fisiología , Fatiga Muscular/efectos de los fármacos , Fármacos Neuromusculares/administración & dosificación , Adulto , Método Doble Ciego , Potenciales Evocados Motores/efectos de los fármacos , Potenciales Evocados Motores/fisiología , Reflejo H/efectos de los fármacos , Reflejo H/fisiología , Humanos , Masculino , Corteza Motora/efectos de los fármacos , Corteza Motora/fisiología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Postura/fisiología , Estimulación Magnética Transcraneal/métodos
18.
Nutr Cancer ; 72(2): 252-259, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31184509

RESUMEN

The purpose of this study was to investigate the effects of in vivo creatine monohydrate (Cr) supplementation on doxorubicin (Dox)-induced muscle dysfunction. Male rats were fed a diet supplemented with 3% Cr or a standard chow for 2 wk. After 2 wk of feeding, animals received Dox or saline as a placebo. Five days post-injection, grip strength was measured, and muscle fatigue was analyzed ex vivo. When compared with controls, a significantly lower grip strength was observed with Dox treatment, but no significant handgrip difference was observed with Cr feeding prior to Dox treatment when compared to controls. In the isolated muscle fatigue experiments, solei (primarily type I muscle) from controls produced significantly less force than baseline at 60 s and solei from Dox treated rats produced significantly less force than baseline at 30 s; however, Cr feeding prior to Dox produced significantly less force than baseline at 60 s. In the primarily type II EDL, a decline in force production from baseline was observed at 50 s in controls and Cr + Dox and at 20 s in standard chow + Dox. Cr attenuated the increase in fatigue that accompanies Dox treatment suggesting that Cr supplementation may have use in managing Dox myotoxicity.


Asunto(s)
Creatina/farmacología , Suplementos Dietéticos , Doxorrubicina/toxicidad , Fuerza de la Mano/fisiología , Fatiga Muscular/efectos de los fármacos , Fuerza Muscular/fisiología , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley , Inhibidores de Topoisomerasa II/toxicidad
19.
Pharmacol Res ; 161: 105118, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32777256

RESUMEN

At present, there are still no official or semi-official recommendations for the treatment of muscle fatigue. We previously reported that acute phase protein orosomucoid (ORM) can enhance muscle endurance and exert anti-fatigue effect. In attempting to seek anti-fatigue drugs that target ORM, we found macrolide antibiotics, particularly erythromycin, were effective. Erythromycin can significantly prolong the time of mice forced-swimming and treadmill running, increase muscle fatigue index, alleviate fatigue-induced tissue damage, and elevate glycogen content, mitochondria function and ATP level in the muscle. Also, erythromycin increases ORM protein expression in a dose- and time- dependent manner both in vitro and in vivo. Further studies found that erythromycin could increase the activity of ORM promoter and the stability of ORM mRNA, which might both be responsible for the ORM up-regulation. ORM knockdown or knockout could abolish the promoting effect of erythromycin in mice forced-swimming time, muscle fatigue index and glycogen level. Furthermore, those effects were also abolished in mice with C-C motif chemokine receptor 5 (CCR5) antagonist administration or AMPKα2 deficiency. Therefore, erythromycin could enhance muscle glycogen and endurance via up-regulating the level of ORM and activating CCR5-AMPK pathway, indicating it might act as a potential drug to treat muscle fatigue.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Eritromicina/farmacología , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Orosomucoide/metabolismo , Resistencia Física/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Glucógeno/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Orosomucoide/genética , Receptores CCR5/metabolismo , Carrera , Transducción de Señal , Natación , Factores de Tiempo
20.
Artif Organs ; 44(1): 72-80, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31291698

RESUMEN

The effects of liposome-encapsulated hemoglobin with high O2 affinity (h-LEH), an artificial O2 carrier in skeletal muscle, were studied by in situ fatigue resistance test in fast-type plantaris (PLT) and slow-type soleus (SOL) muscles with or without ischemia in the rat. The distal tendons of PLT and SOL muscles were isolated in situ and individually attached to the force transducers to record the developed tension in response to stimuli (80 Hz tetanus train, 1.5 minutes) to the ipsilateral sciatic nerve. The fatigue resistance test (five sets separated by 2-minute rests) was evaluated in terms of tension attenuation (fatigue) from the initial to the last tension (A) during each set, attenuation of the initial (B) or last tension (C) in each set, as compared to the first set in the presence or absence of ischemia or h-LEH (10 mL/kg). While ischemia significantly enhanced fatigue only in PLT, h-LEH showed no effect regardless of the perfusion pattern (normal/ischemia) or muscle-type (PLT/SOL) during each set (A). In parameter (B), set-by-set fatigue development was observed in PLT, whereas h-LEH-SOL showed a trend of advanced fatigue resistance. Such trends became clear in the parameter C (last tension), because h-LEH-SOL exerted, rather than decreased, the tension enhancement regardless of the presence or absence of ischemia, whereas there were no h-LEH effects in PLT. In addition, faster recovery of the nicotinamide adenine dinucleotide content in the muscle after 10 minutes of all fatigue tests was observed in h-LEH-SOL, while saline-SOL still showed a significantly higher value than that of control. These results suggested that additional O2 supply by h-LEH may accelerate the tricarboxylic acid cycle/electron transport chain in slow-type aerobic SOL muscle containing abundant mitochondria and contribute to the faster removal of muscle fatigue substances such as lactate.


Asunto(s)
Sustitutos Sanguíneos/farmacología , Hemoglobinas/farmacología , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Animales , Humanos , Masculino , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA