Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.577
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(2): 235-256, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242081

RESUMEN

Cell death supports morphogenesis during development and homeostasis after birth by removing damaged or obsolete cells. It also curtails the spread of pathogens by eliminating infected cells. Cell death can be induced by the genetically programmed suicide mechanisms of apoptosis, necroptosis, and pyroptosis, or it can be a consequence of dysregulated metabolism, as in ferroptosis. Here, we review the signaling mechanisms underlying each cell-death pathway, discuss how impaired or excessive activation of the distinct cell-death processes can promote disease, and highlight existing and potential therapies for redressing imbalances in cell death in cancer and other diseases.


Asunto(s)
Muerte Celular , Transducción de Señal , Humanos , Apoptosis , Ferroptosis , Homeostasis , Piroptosis
2.
Cell ; 187(5): 1177-1190.e18, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38366593

RESUMEN

Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.


Asunto(s)
Grasas de la Dieta , Ferroptosis , Fosfolípidos , Ácidos Grasos , Fosfatidilcolinas , Fosfolípidos/química , Fosfolípidos/metabolismo , Especies Reactivas de Oxígeno , Grasas de la Dieta/metabolismo
3.
Cell ; 186(13): 2748-2764.e22, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37267948

RESUMEN

Ferroptosis, a cell death process driven by iron-dependent phospholipid peroxidation, has been implicated in various diseases. There are two major surveillance mechanisms to suppress ferroptosis: one mediated by glutathione peroxidase 4 (GPX4) that catalyzes the reduction of phospholipid peroxides and the other mediated by enzymes, such as FSP1, that produce metabolites with free radical-trapping antioxidant activity. In this study, through a whole-genome CRISPR activation screen, followed by mechanistic investigation, we identified phospholipid-modifying enzymes MBOAT1 and MBOAT2 as ferroptosis suppressors. MBOAT1/2 inhibit ferroptosis by remodeling the cellular phospholipid profile, and strikingly, their ferroptosis surveillance function is independent of GPX4 or FSP1. MBOAT1 and MBOAT2 are transcriptionally upregulated by sex hormone receptors, i.e., estrogen receptor (ER) and androgen receptor (AR), respectively. A combination of ER or AR antagonist with ferroptosis induction significantly inhibited the growth of ER+ breast cancer and AR+ prostate cancer, even when tumors were resistant to single-agent hormonal therapies.


Asunto(s)
Ferroptosis , Masculino , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Peroxidación de Lípido , Peróxidos , Fosfolípidos
4.
Cell ; 186(4): 685-687, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36803600

RESUMEN

Curtailed protein translation ensures stemness and multipotency in embryonic and adult tissue-specific stem cells. In this issue of Cell, a study led by Zhao and colleagues uncovered increased susceptibility of hematopoietic stem cells (HSC) to iron-dependent programmed necrotic cell death (ferroptosis) as a consequence of low protein synthesis.


Asunto(s)
Células Madre Hematopoyéticas , Biosíntesis de Proteínas , Proliferación Celular , Ferroptosis
5.
Cell ; 186(4): 732-747.e16, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36803603

RESUMEN

Hematopoietic stem cells (HSCs) have a number of unique physiologic adaptations that enable lifelong maintenance of blood cell production, including a highly regulated rate of protein synthesis. Yet, the precise vulnerabilities that arise from such adaptations have not been fully characterized. Here, inspired by a bone marrow failure disorder due to the loss of the histone deubiquitinase MYSM1, characterized by selectively disadvantaged HSCs, we show how reduced protein synthesis in HSCs results in increased ferroptosis. HSC maintenance can be fully rescued by blocking ferroptosis, despite no alteration in protein synthesis rates. Importantly, this selective vulnerability to ferroptosis not only underlies HSC loss in MYSM1 deficiency but also characterizes a broader liability of human HSCs. Increasing protein synthesis rates via MYSM1 overexpression makes HSCs less susceptible to ferroptosis, more broadly illustrating the selective vulnerabilities that arise in somatic stem cell populations as a result of physiologic adaptations.


Asunto(s)
Ferroptosis , Células Madre Hematopoyéticas , Humanos , Endopeptidasas/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Transactivadores/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
6.
Cell ; 185(14): 2401-2421, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803244

RESUMEN

Ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, was identified as a distinct phenomenon and named a decade ago. Ferroptosis has been implicated in a broad set of biological contexts, from development to aging, immunity, and cancer. This review describes key regulators of this form of cell death within a framework of metabolism, ROS biology, and iron biology. Key concepts and major unanswered questions in the ferroptosis field are highlighted. The next decade promises to yield further breakthroughs in the mechanisms governing ferroptosis and additional ways of harnessing ferroptosis for therapeutic benefit.


Asunto(s)
Ferroptosis , Muerte Celular , Hierro/metabolismo , Peroxidación de Lípido , Especies Reactivas de Oxígeno/metabolismo
7.
Nat Rev Mol Cell Biol ; 25(6): 424-442, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38366038

RESUMEN

Ferroptosis is a non-apoptotic cell death mechanism characterized by iron-dependent membrane lipid peroxidation. Here, we review what is known about the cellular mechanisms mediating the execution and regulation of ferroptosis. We first consider how the accumulation of membrane lipid peroxides leads to the execution of ferroptosis by altering ion transport across the plasma membrane. We then discuss how metabolites and enzymes that are distributed in different compartments and organelles throughout the cell can regulate sensitivity to ferroptosis by impinging upon iron, lipid and redox metabolism. Indeed, metabolic pathways that reside in the mitochondria, endoplasmic reticulum, lipid droplets, peroxisomes and other organelles all contribute to the regulation of ferroptosis sensitivity. We note how the regulation of ferroptosis sensitivity by these different organelles and pathways seems to vary between different cells and death-inducing conditions. We also highlight transcriptional master regulators that integrate the functions of different pathways and organelles to modulate ferroptosis sensitivity globally. Throughout this Review, we highlight open questions and areas in which progress is needed to better understand the cell biology of ferroptosis.


Asunto(s)
Ferroptosis , Hierro , Peroxidación de Lípido , Ferroptosis/fisiología , Humanos , Animales , Hierro/metabolismo , Mitocondrias/metabolismo , Metabolismo de los Lípidos , Membrana Celular/metabolismo , Oxidación-Reducción
8.
Nat Rev Mol Cell Biol ; 25(5): 379-395, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38110635

RESUMEN

Regulated cell death mediated by dedicated molecular machines, known as programmed cell death, plays important roles in health and disease. Apoptosis, necroptosis and pyroptosis are three such programmed cell death modalities. The caspase family of cysteine proteases serve as key regulators of programmed cell death. During apoptosis, a cascade of caspase activation mediates signal transduction and cellular destruction, whereas pyroptosis occurs when activated caspases cleave gasdermins, which can then form pores in the plasma membrane. Necroptosis, a form of caspase-independent programmed necrosis mediated by RIPK3 and MLKL, is inhibited by caspase-8-mediated cleavage of RIPK1. Disruption of cellular homeostatic mechanisms that are essential for cell survival, such as normal ionic and redox balance and lysosomal flux, can also induce cell death without invoking programmed cell death mechanisms. Excitotoxicity, ferroptosis and lysosomal cell death are examples of such cell death modes. In this Review, we provide an overview of the major cell death mechanisms, highlighting the latest insights into their complex regulation and execution, and their relevance to human diseases.


Asunto(s)
Muerte Celular , Animales , Humanos , Apoptosis/fisiología , Caspasas/metabolismo , Muerte Celular/fisiología , Ferroptosis/fisiología , Lisosomas/metabolismo , Necroptosis , Piroptosis/fisiología , Transducción de Señal
9.
Cell ; 181(5): 1188-1188.e1, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32470402

RESUMEN

Ferroptosis is a regulated form of cell death that occurs when phospholipids with polyunsaturated fatty acyl tails are oxidized in an iron-dependent manner. Research in recent years has uncovered complex cellular networks that induce and suppress lethal lipid peroxidation. This SnapShot provides an overview of ferroptosis-related pathways, including relevant biomolecules and small-molecule modulators regulating them.


Asunto(s)
Ferroptosis/genética , Ferroptosis/fisiología , Hierro/metabolismo , Muerte Celular , Humanos , Peroxidación de Lípido/fisiología , Oxidación-Reducción , Fosfolípidos/metabolismo
10.
Nat Immunol ; 23(2): 303-317, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34949833

RESUMEN

Antigen-specific memory CD4+ T cells can persist and confer rapid and efficient protection from microbial reinfection. However, the mechanisms underlying the long-term maintenance of the memory CD4+ T cell pool remain largely unknown. Here, using a mouse model of acute infection with lymphocytic choriomeningitis virus (LCMV), we found that the serine/threonine kinase complex mammalian target of rapamycin complex 2 (mTORC2) is critical for the long-term persistence of virus-specific memory CD4+ T cells. The perturbation of mTORC2 signaling at memory phase led to an enormous loss of virus-specific memory CD4+ T cells by a unique form of regulated cell death (RCD), ferroptosis. Mechanistically, mTORC2 inactivation resulted in the impaired phosphorylation of downstream AKT and GSK3ß kinases, which induced aberrant mitochondrial reactive oxygen species (ROS) accumulation and ensuing ferroptosis-causative lipid peroxidation in virus-specific memory CD4+ T cells; furthermore, the disruption of this signaling cascade also inhibited glutathione peroxidase 4 (GPX4), a major scavenger of lipid peroxidation. Thus, the mTORC2-AKT-GSK3ß axis functions as a key signaling hub to promote the longevity of virus-specific memory CD4+ T cells by preventing ferroptosis.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Ferroptosis/inmunología , Memoria Inmunológica/inmunología , Longevidad/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Diana Mecanicista del Complejo 2 de la Rapamicina/inmunología , Animales , Glucógeno Sintasa Quinasa 3 beta/inmunología , Peroxidación de Lípido/inmunología , Activación de Linfocitos/inmunología , Recuento de Linfocitos/métodos , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/inmunología
11.
Cell ; 179(5): 1222-1238.e17, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730859

RESUMEN

Mitochondrial dysfunction is associated with a spectrum of human conditions, ranging from rare, inborn errors of metabolism to the aging process. To identify pathways that modify mitochondrial dysfunction, we performed genome-wide CRISPR screens in the presence of small-molecule mitochondrial inhibitors. We report a compendium of chemical-genetic interactions involving 191 distinct genetic modifiers, including 38 that are synthetic sick/lethal and 63 that are suppressors. Genes involved in glycolysis (PFKP), pentose phosphate pathway (G6PD), and defense against lipid peroxidation (GPX4) scored high as synthetic sick/lethal. A surprisingly large fraction of suppressors are pathway intrinsic and encode mitochondrial proteins. A striking example of such "intra-organelle" buffering is the alleviation of a chemical defect in complex V by simultaneous inhibition of complex I, which benefits cells by rebalancing redox cofactors, increasing reductive carboxylation, and promoting glycolysis. Perhaps paradoxically, certain forms of mitochondrial dysfunction may best be buffered with "second site" inhibitors to the organelle.


Asunto(s)
Genes Modificadores , Mitocondrias/genética , Mitocondrias/patología , Autoantígenos/metabolismo , Muerte Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Epistasis Genética/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Genoma , Glutatión Peroxidasa/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/genética , Humanos , Células K562 , Mitocondrias/efectos de los fármacos , Oligomicinas/toxicidad , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Vía de Pentosa Fosfato/genética , Especies Reactivas de Oxígeno/metabolismo , Ribonucleoproteínas/metabolismo , Antígeno SS-B
12.
Cell ; 177(5): 1262-1279.e25, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31056284

RESUMEN

Ferroptosis, a non-apoptotic form of programmed cell death, is triggered by oxidative stress in cancer, heat stress in plants, and hemorrhagic stroke. A homeostatic transcriptional response to ferroptotic stimuli is unknown. We show that neurons respond to ferroptotic stimuli by induction of selenoproteins, including antioxidant glutathione peroxidase 4 (GPX4). Pharmacological selenium (Se) augments GPX4 and other genes in this transcriptional program, the selenome, via coordinated activation of the transcription factors TFAP2c and Sp1 to protect neurons. Remarkably, a single dose of Se delivered into the brain drives antioxidant GPX4 expression, protects neurons, and improves behavior in a hemorrhagic stroke model. Altogether, we show that pharmacological Se supplementation effectively inhibits GPX4-dependent ferroptotic death as well as cell death induced by excitotoxicity or ER stress, which are GPX4 independent. Systemic administration of a brain-penetrant selenopeptide activates homeostatic transcription to inhibit cell death and improves function when delivered after hemorrhagic or ischemic stroke.


Asunto(s)
Isquemia Encefálica , Péptidos de Penetración Celular/farmacología , Ferroptosis/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hemorragias Intracraneales , Neuronas , Fosfolípido Hidroperóxido Glutatión Peroxidasa/biosíntesis , Selenio/farmacología , Accidente Cerebrovascular , Transcripción Genética/efectos de los fármacos , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Hemorragias Intracraneales/tratamiento farmacológico , Hemorragias Intracraneales/metabolismo , Hemorragias Intracraneales/patología , Masculino , Ratones , Neuronas/metabolismo , Neuronas/patología , Factor de Transcripción Sp1/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Factor de Transcripción AP-2/metabolismo
13.
Nat Immunol ; 22(9): 1107-1117, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34385713

RESUMEN

The linkage between neutrophil death and the development of autoimmunity has not been thoroughly explored. Here, we show that neutrophils from either lupus-prone mice or patients with systemic lupus erythematosus (SLE) undergo ferroptosis. Mechanistically, autoantibodies and interferon-α present in the serum induce neutrophil ferroptosis through enhanced binding of the transcriptional repressor CREMα to the glutathione peroxidase 4 (Gpx4, the key ferroptosis regulator) promoter, which leads to suppressed expression of Gpx4 and subsequent elevation of lipid-reactive oxygen species. Moreover, the findings that mice with neutrophil-specific Gpx4 haploinsufficiency recapitulate key clinical features of human SLE, including autoantibodies, neutropenia, skin lesions and proteinuria, and that the treatment with a specific ferroptosis inhibitor significantly ameliorates disease severity in lupus-prone mice reveal the role of neutrophil ferroptosis in lupus pathogenesis. Together, our data demonstrate that neutrophil ferroptosis is an important driver of neutropenia in SLE and heavily contributes to disease manifestations.


Asunto(s)
Ferroptosis/fisiología , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/patología , Neutropenia/patología , Neutrófilos/inmunología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Animales , Autoanticuerpos/inmunología , Autoinmunidad/inmunología , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Humanos , Interferón-alfa/inmunología , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Regiones Promotoras Genéticas/genética , Especies Reactivas de Oxígeno/metabolismo
14.
Nat Immunol ; 22(9): 1127-1139, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34413521

RESUMEN

Follicular helper T (TFH) cells are a specialized subset of CD4+ T cells that essentially support germinal center responses where high-affinity and long-lived humoral immunity is generated. The regulation of TFH cell survival remains unclear. Here we report that TFH cells show intensified lipid peroxidation and altered mitochondrial morphology, resembling the features of ferroptosis, a form of programmed cell death that is driven by iron-dependent accumulation of lipid peroxidation. Glutathione peroxidase 4 (GPX4) is the major lipid peroxidation scavenger and is necessary for TFH cell survival. The deletion of GPX4 in T cells selectively abrogated TFH cells and germinal center responses in immunized mice. Selenium supplementation enhanced GPX4 expression in T cells, increased TFH cell numbers and promoted antibody responses in immunized mice and young adults after influenza vaccination. Our findings reveal the central role of the selenium-GPX4-ferroptosis axis in regulating TFH homeostasis, which can be targeted to enhance TFH cell function in infection and following vaccination.


Asunto(s)
Ferroptosis/fisiología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Selenio/farmacología , Células T Auxiliares Foliculares/fisiología , Adolescente , Adulto , Animales , Supervivencia Celular/inmunología , Niño , Femenino , Centro Germinal/citología , Centro Germinal/inmunología , Homeostasis/efectos de los fármacos , Homeostasis/genética , Humanos , Inmunidad Humoral/inmunología , Vacunas contra la Influenza/inmunología , Peroxidación de Lípido/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/fisiología , Ovalbúmina , Células T Auxiliares Foliculares/inmunología , Vacunación , Adulto Joven
15.
Immunity ; 57(5): 941-956, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38749397

RESUMEN

Ferroptosis is a type of regulated cell death that drives the pathophysiology of many diseases. Oxidative stress is detectable in many types of regulated cell death, but only ferroptosis involves lipid peroxidation and iron dependency. Ferroptosis originates and propagates from several organelles, including the mitochondria, endoplasmic reticulum, Golgi, and lysosomes. Recent data have revealed that immune cells can both induce and undergo ferroptosis. A mechanistic understanding of how ferroptosis regulates immunity is critical to understanding how ferroptosis controls immune responses and how this is dysregulated in disease. Translationally, more work is needed to produce ferroptosis-modulating immunotherapeutics. This review focuses on the role of ferroptosis in immune-related diseases, including infection, autoimmune diseases, and cancer. We discuss how ferroptosis is regulated in immunity, how this regulation contributes to disease pathogenesis, and how targeting ferroptosis may lead to novel therapies.


Asunto(s)
Ferroptosis , Hierro , Ferroptosis/inmunología , Humanos , Animales , Hierro/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Peroxidación de Lípido/inmunología , Enfermedades Autoinmunes/inmunología , Inmunidad , Estrés Oxidativo/inmunología , Mitocondrias/metabolismo , Mitocondrias/inmunología
16.
Nat Rev Mol Cell Biol ; 22(4): 266-282, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33495651

RESUMEN

The research field of ferroptosis has seen exponential growth over the past few years, since the term was coined in 2012. This unique modality of cell death, driven by iron-dependent phospholipid peroxidation, is regulated by multiple cellular metabolic pathways, including redox homeostasis, iron handling, mitochondrial activity and metabolism of amino acids, lipids and sugars, in addition to various signalling pathways relevant to disease. Numerous organ injuries and degenerative pathologies are driven by ferroptosis. Intriguingly, therapy-resistant cancer cells, particularly those in the mesenchymal state and prone to metastasis, are exquisitely vulnerable to ferroptosis. As such, pharmacological modulation of ferroptosis, via both its induction and its inhibition, holds great potential for the treatment of drug-resistant cancers, ischaemic organ injuries and other degenerative diseases linked to extensive lipid peroxidation. In this Review, we provide a critical analysis of the current molecular mechanisms and regulatory networks of ferroptosis, the potential physiological functions of ferroptosis in tumour suppression and immune surveillance, and its pathological roles, together with a potential for therapeutic targeting. Importantly, as in all rapidly evolving research areas, challenges exist due to misconceptions and inappropriate experimental methods. This Review also aims to address these issues and to provide practical guidelines for enhancing reproducibility and reliability in studies of ferroptosis. Finally, we discuss important concepts and pressing questions that should be the focus of future ferroptosis research.


Asunto(s)
Ferroptosis/genética , Neoplasias/genética , Animales , Redes Reguladoras de Genes/genética , Humanos , Peroxidación de Lípido , Oxidación-Reducción , Reproducibilidad de los Resultados
17.
Immunity ; 56(4): 797-812.e4, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36801011

RESUMEN

The aryl-hydrocarbon receptor (AHR) is a ligand-activated transcription factor that buoys intestinal immune responses. AHR induces its own negative regulator, the AHR repressor (AHRR). Here, we show that AHRR is vital to sustaining intestinal intraepithelial lymphocytes (IELs). AHRR deficiency reduced IEL representation in a cell-intrinsic fashion. Single-cell RNA sequencing revealed an oxidative stress profile in Ahrr-/- IELs. AHRR deficiency unleashed AHR-induced expression of CYP1A1, a monooxygenase that generates reactive oxygen species, increasing redox imbalance, lipid peroxidation, and ferroptosis in Ahrr-/- IELs. Dietary supplementation with selenium or vitamin E to restore redox homeostasis rescued Ahrr-/- IELs. Loss of IELs in Ahrr-/- mice caused susceptibility to Clostridium difficile infection and dextran sodium-sulfate-induced colitis. Inflamed tissue of inflammatory bowel disease patients showed reduced Ahrr expression that may contribute to disease. We conclude that AHR signaling must be tightly regulated to prevent oxidative stress and ferroptosis of IELs and to preserve intestinal immune responses.


Asunto(s)
Ferroptosis , Linfocitos Intraepiteliales , Animales , Ratones , Linfocitos Intraepiteliales/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estrés Oxidativo , Hidrocarburos
18.
Mol Cell ; 84(10): 1964-1979.e6, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759628

RESUMEN

The role of the mitochondrial electron transport chain (ETC) in regulating ferroptosis is not fully elucidated. Here, we reveal that pharmacological inhibition of the ETC complex I reduces ubiquinol levels while decreasing ATP levels and activating AMP-activated protein kinase (AMPK), the two effects known for their roles in promoting and suppressing ferroptosis, respectively. Consequently, the impact of complex I inhibitors on ferroptosis induced by glutathione peroxidase 4 (GPX4) inhibition is limited. The pharmacological inhibition of complex I in LKB1-AMPK-inactivated cells, or genetic ablation of complex I (which does not trigger apparent AMPK activation), abrogates the AMPK-mediated ferroptosis-suppressive effect and sensitizes cancer cells to GPX4-inactivation-induced ferroptosis. Furthermore, complex I inhibition synergizes with radiotherapy (RT) to selectively suppress the growth of LKB1-deficient tumors by inducing ferroptosis in mouse models. Our data demonstrate a multifaceted role of complex I in regulating ferroptosis and propose a ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Complejo I de Transporte de Electrón , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Proteínas Serina-Treonina Quinasas , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Animales , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Línea Celular Tumoral , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal , Femenino
19.
Mol Cell ; 83(16): 2837-2839, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37595553

RESUMEN

A recent study by Yang et al.1 uncovers the pyrimidinosome, a multienzyme complex where enzymes from different subcellular compartments collaborate to enable efficient pyrimidine biosynthesis and ferroptosis defense, highlighting the remarkable adaptability of cellular metabolism and new therapeutic opportunities.


Asunto(s)
Ferroptosis , Pirimidinas
20.
Mol Cell ; 83(18): 3347-3359.e9, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37647899

RESUMEN

The amino acid cysteine and its oxidized dimeric form cystine are commonly believed to be synonymous in metabolic functions. Cyst(e)ine depletion not only induces amino acid response but also triggers ferroptosis, a non-apoptotic cell death. Here, we report that unlike general amino acid starvation, cyst(e)ine deprivation triggers ATF4 induction at the transcriptional level. Unexpectedly, it is the shortage of lysosomal cystine, but not the cytosolic cysteine, that elicits the adaptative ATF4 response. The lysosome-nucleus signaling pathway involves the aryl hydrocarbon receptor (AhR) that senses lysosomal cystine via the kynurenine pathway. A blockade of lysosomal cystine efflux attenuates ATF4 induction and sensitizes ferroptosis. To potentiate ferroptosis in cancer, we develop a synthetic mRNA reagent, CysRx, that converts cytosolic cysteine to lysosomal cystine. CysRx maximizes cancer cell ferroptosis and effectively suppresses tumor growth in vivo. Thus, intracellular nutrient reprogramming has the potential to induce selective ferroptosis in cancer without systematic starvation.


Asunto(s)
Quistes , Ferroptosis , Humanos , Cisteína , Cistina , Ferroptosis/genética , Aminoácidos , Lisosomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA