Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.122
Filtrar
Más filtros

Intervalo de año de publicación
1.
FASEB J ; 38(13): e23784, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38953567

RESUMEN

To investigate the effects of heavy-load strength training during (neo-)adjuvant chemotherapy in women with breast cancer on muscle strength, body composition, muscle fiber size, satellite cells, and myonuclei. Women with stage I-III breast cancer were randomly assigned to a strength training group (ST, n = 23) performing supervised heavy-load strength training twice a week during chemotherapy, or a usual care control group (CON, n = 17). Muscle strength and body composition were measured and biopsies from m. vastus lateralis collected before the first cycle of chemotherapy (T0) and after chemotherapy and training (T1). Muscle strength increased significantly more in ST than in CON in chest-press (ST: +10 ± 8%, p < .001, CON: -3 ± 5%, p = .023) and leg-press (ST: +11 ± 8%, p < .001, CON: +3 ± 6%, p = .137). Both groups reduced fat-free mass (ST: -4.9 ± 4.0%, p < .001, CON: -5.2 ± 4.9%, p = .004), and increased fat mass (ST: +15.3 ± 16.5%, p < .001, CON: +16.3 ± 19.8%, p = .015) with no significant differences between groups. No significant changes from T0 to T1 and no significant differences between groups were observed in muscle fiber size. For myonuclei per fiber a non-statistically significant increase in CON and a non-statistically significant decrease in ST in type I fibers tended (p = .053) to be different between groups. Satellite cells tended to decrease in ST (type I: -14 ± 36%, p = .097, type II: -9 ± 55%, p = .084), with no changes in CON and no differences between groups. Strength training during chemotherapy improved muscle strength but did not significantly affect body composition, muscle fiber size, numbers of satellite cells, and myonuclei compared to usual care.


Asunto(s)
Neoplasias de la Mama , Fuerza Muscular , Entrenamiento de Fuerza , Células Satélite del Músculo Esquelético , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Entrenamiento de Fuerza/métodos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Persona de Mediana Edad , Adulto , Quimioterapia Adyuvante , Composición Corporal , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Terapia Neoadyuvante , Anciano
2.
Mol Cell ; 66(3): 332-344.e4, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475869

RESUMEN

Skeletal muscle is a major site of postprandial glucose disposal. Inadequate insulin action in skeletal myocytes contributes to hyperglycemia in diabetes. Although glucose is known to stimulate insulin secretion by ß cells, whether it directly engages nutrient signaling pathways in skeletal muscle to maintain systemic glucose homeostasis remains largely unexplored. Here we identified the Baf60c-Deptor-AKT pathway as a target of muscle glucose sensing that augments insulin action in skeletal myocytes. Genetic activation of this pathway improved postprandial glucose disposal in mice, whereas its muscle-specific ablation impaired insulin action and led to postprandial glucose intolerance. Mechanistically, glucose triggers KATP channel-dependent calcium signaling, which promotes HDAC5 phosphorylation and nuclear exclusion, leading to Baf60c induction and insulin-independent AKT activation. This pathway is engaged by the anti-diabetic sulfonylurea drugs to exert their full glucose-lowering effects. These findings uncover an unexpected mechanism of glucose sensing in skeletal myocytes that contributes to homeostasis and therapeutic action.


Asunto(s)
Glucemia/metabolismo , Metabolismo Energético , Fibras Musculares Esqueléticas/metabolismo , Transducción de Señal , Animales , Glucemia/efectos de los fármacos , Línea Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Metabolismo Energético/efectos de los fármacos , Activación Enzimática , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Homeostasis , Humanos , Hipoglucemiantes/farmacología , Insulina/sangre , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canales KATP/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musculares Esqueléticas/efectos de los fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Periodo Posprandial , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Compuestos de Sulfonilurea/farmacología , Factores de Tiempo , Técnicas de Cultivo de Tejidos
3.
Am J Physiol Cell Physiol ; 326(5): C1462-C1481, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690930

RESUMEN

Skeletal muscle mediates the beneficial effects of exercise, thereby improving insulin sensitivity and reducing the risk for type 2 diabetes. Current human skeletal muscle models in vitro are incapable of fully recapitulating its physiological functions especially muscle contractility. By supplementation of insulin-like growth factor 1 (IGF1), a growth factor secreted by myofibers in vivo, we aimed to overcome these limitations. We monitored the differentiation process starting from primary human CD56-positive myoblasts in the presence/absence of IGF1 in serum-free medium in daily collected samples for 10 days. IGF1-supported differentiation formed thicker multinucleated myotubes showing physiological contraction upon electrical pulse stimulation (EPS) following day 6. Myotubes without IGF1 were almost incapable of contraction. IGF1 treatment shifted the proteome toward skeletal muscle-specific proteins that contribute to myofibril and sarcomere assembly, striated muscle contraction, and ATP production. Elevated PPARGC1A, MYH7, and reduced MYH1/2 suggest a more oxidative phenotype further demonstrated by higher abundance of proteins of the respiratory chain and elevated mitochondrial respiration. IGF1-treatment also upregulated glucose transporter (GLUT)4 and increased insulin-dependent glucose uptake compared with myotubes differentiated without IGF1. To conclude, addition of IGF1 to serum-free medium significantly improves the differentiation of human myotubes that showed enhanced myofibril formation, response to electrical pulse stimulation, oxidative respiratory capacity, and glucose metabolism overcoming limitations of previous standards. This novel protocol enables investigation of muscular exercise on a molecular level.NEW & NOTEWORTHY Human skeletal muscle models are highly valuable to study how exercise prevents type 2 diabetes without invasive biopsies. Current models did not fully recapitulate the function of skeletal muscle especially during exercise. By supplementing insulin-like growth factor 1 (IGF1), the authors developed a functional human skeletal muscle model characterized by inducible contractility and increased oxidative and insulin-sensitive metabolism. The novel protocol overcomes the limitations of previous standards and enables investigation of exercise on a molecular level.


Asunto(s)
Diferenciación Celular , Factor I del Crecimiento Similar a la Insulina , Contracción Muscular , Fibras Musculares Esqueléticas , Fenotipo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Cultivadas , Transportador de Glucosa de Tipo 4/metabolismo , Transportador de Glucosa de Tipo 4/genética , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Glucosa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología
4.
Am J Physiol Cell Physiol ; 326(6): C1710-C1720, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38708524

RESUMEN

Ketone bodies (acetoacetate and ß-hydroxybutyrate) are oxidized in skeletal muscle mainly during fasting as an alternative source of energy to glucose. Previous studies suggest that there is a negative relationship between increased muscle ketolysis and muscle glucose metabolism in mice with obesity and/or type 2 diabetes. Therefore, we investigated the connection between increased ketone body exposure and muscle glucose metabolism by measuring the effect of a 3-h exposure to ketone bodies on glucose uptake in differentiated L6 myotubes. We showed that exposure to acetoacetate at a typical concentration (0.2 mM) resulted in increased basal glucose uptake in L6 myotubes, which was dependent on increased membrane glucose transporter type 4 (GLUT4) translocation. Basal and insulin-stimulated glucose uptake was also increased with a concentration of acetoacetate reflective of diabetic ketoacidosis or a ketogenic diet (1 mM). We found that ß-hydroxybutyrate had a variable effect on basal glucose uptake: a racemic mixture of the two ß-hydroxybutyrate enantiomers (d and l) appeared to decrease basal glucose uptake, while 3 mM d-ß-hydroxybutyrate alone increased basal glucose uptake. However, the effects of the ketone bodies individually were not observed when acetoacetate was present in combination with ß-hydroxybutyrate. These results provide insight that will help elucidate the effect of ketone bodies in the context of specific metabolic diseases and nutritional states (e.g., type 2 diabetes and ketogenic diets).NEW & NOTEWORTHY A limited number of studies investigate the effect of ketone bodies at concentrations reflective of both typical fasting and ketoacidosis. We tested a mix of physiologically relevant concentrations of ketone bodies, which allowed us to highlight the differential effects of d- and l-ß-hydroxybutyrate and acetoacetate on skeletal muscle cell glucose uptake. Our findings will assist in better understanding the mechanisms that contribute to muscle insulin resistance and provide guidance on recommendations regarding ketogenic diets.


Asunto(s)
Ácido 3-Hidroxibutírico , Acetoacetatos , Glucosa , Insulina , Fibras Musculares Esqueléticas , Acetoacetatos/metabolismo , Acetoacetatos/farmacología , Animales , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Insulina/farmacología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Línea Celular , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Ratas , Cuerpos Cetónicos/metabolismo , Ratones
5.
Am J Physiol Cell Physiol ; 327(1): C124-C139, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38766767

RESUMEN

Protein synthesis regulation is critical for skeletal muscle hypertrophy, yet other established cellular processes are necessary for growth-related cellular remodeling. Autophagy has a well-acknowledged role in muscle quality control, but evidence for its role in myofiber hypertrophy remains equivocal. Both mammalian target of rapamycin complex I (mTORC1) and bone morphogenetic protein (BMP)-Smad1/5 (Sma and Mad proteins from Caenorhabditis elegans and Drosophila, respectively) signaling are reported regulators of myofiber hypertrophy; however, gaps remain in our understanding of how this regulation is integrated with growth processes and autophagy regulation. Therefore, we investigated the mTORC1 and Smad1/5 regulation of protein synthesis and autophagy flux during serum-stimulated myotube growth. Chronic serum stimulation experiments were performed on day 5 differentiated C2C12 myotubes incubated in differentiation medium [2% horse serum (HS)] or growth medium [5% fetal bovine serum (FBS)] for 48 h. Rapamycin or LDN193189 was dosed for 48 h to inhibit mTORC1 and BMP-Smad1/5 signaling, respectively. Acute serum stimulation was examined in day 7 differentiated myotubes. Protein synthesis was measured by puromycin incorporation. Bafilomycin A1 and immunoblotting for LC3B were used to assess autophagy flux. Chronic serum stimulation increased myotube diameter 22%, total protein 21%, total RNA 100%, and Smad1/5 phosphorylation 404% and suppressed autophagy flux. Rapamycin, but not LDN193189, blocked serum-induced myotube hypertrophy and the increase in total RNA. Acute serum stimulation increased protein synthesis 111%, Smad1/5 phosphorylation 559%, and rpS6 phosphorylation 117% and suppressed autophagy flux. Rapamycin increased autophagy flux during acute serum stimulation. These results provide evidence for mTORC1, but not BMP-Smad1/5, signaling being required for serum-induced myotube hypertrophy and autophagy flux by measuring LC3BII/I expression. Further investigation is warranted to examine the role of autophagy flux in myotube hypertrophy.NEW & NOTEWORTHY The present study demonstrates that myotube hypertrophy caused by chronic serum stimulation requires mammalian target of rapamycin complex 1 (mTORC1) signaling but not bone morphogenetic protein (BMP)-Smad1/5 signaling. The suppression of autophagy flux was associated with serum-induced myotube hypertrophy and mTORC1 regulation of autophagy flux by measuring LC3BII/I expression. Rapamycin is widely investigated for beneficial effects in aging skeletal muscle and sarcopenia; our results provide evidence that rapamycin can regulate autophagy-related signaling during myotube growth, which could benefit skeletal muscle functional and metabolic health.


Asunto(s)
Autofagia , Hipertrofia , Diana Mecanicista del Complejo 1 de la Rapamicina , Fibras Musculares Esqueléticas , Transducción de Señal , Animales , Ratones , Autofagia/efectos de los fármacos , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Hipertrofia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/efectos de los fármacos , Suero/metabolismo , Proteína Smad1/metabolismo , Proteína Smad1/genética , Proteína Smad5/metabolismo , Proteína Smad5/genética
6.
Diabetologia ; 67(9): 1943-1954, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38814443

RESUMEN

AIMS/HYPOTHESIS: Hypoxia-inducible factor prolyl 4-hydroxylase (HIF-P4H) enzymes regulate adaptive cellular responses to low oxygen concentrations. Inhibition of HIF-P4Hs leads to stabilisation of hypoxia-inducible factors (HIFs) and activation of the HIF pathway affecting multiple biological processes to rescue cells from hypoxia. As evidence from animal models suggests that HIF-P4H inhibitors could be used to treat metabolic disorders associated with insulin resistance, we examined whether roxadustat, an HIF-P4H inhibitor approved for the treatment of renal anaemia, would have an effect on glucose metabolism in primary human myotubes. METHODS: Primary skeletal muscle cell cultures, established from biopsies of vastus lateralis muscle from men with normal glucose tolerance (NGT) (n=5) or type 2 diabetes (n=8), were treated with roxadustat. Induction of HIF target gene expression was detected with quantitative real-time PCR. Glucose uptake and glycogen synthesis were investigated with radioactive tracers. Glycolysis and mitochondrial respiration rates were measured with a Seahorse analyser. RESULTS: Exposure to roxadustat stabilised nuclear HIF1α protein expression in human myotubes. Treatment with roxadustat led to induction of HIF target gene mRNAs for GLUT1 (also known as SLC2A1), HK2, MCT4 (also known as SLC16A4) and HIF-P4H-2 (also known as PHD2 or EGLN1) in myotubes from donors with NGT, with a blunted response in myotubes from donors with type 2 diabetes. mRNAs for LDHA, PDK1 and GBE1 were induced to a similar degree in myotubes from donors with NGT or type 2 diabetes. Exposure of myotubes to roxadustat led to a 1.4-fold increase in glycolytic rate in myotubes from men with NGT (p=0.0370) and a 1.7-fold increase in myotubes from donors with type 2 diabetes (p=0.0044), with no difference between the groups (p=0.1391). Exposure to roxadustat led to a reduction in basal mitochondrial respiration in both groups (p<0.01). Basal glucose uptake rates were similar in myotubes from donors with NGT (20.2 ± 2.7 pmol mg-1 min-1) and type 2 diabetes (25.3 ± 4.4 pmol mg-1 min-1, p=0.4205). Treatment with roxadustat enhanced insulin-stimulated glucose uptake in myotubes from donors with NGT (1.4-fold vs insulin-only condition, p=0.0023). The basal rate of glucose incorporation into glycogen was lower in myotubes from donors with NGT (233 ± 12.4 nmol g-1 h-1) than in myotubes from donors with type 2 diabetes (360 ± 40.3 nmol g-1 h-1, p=0.0344). Insulin increased glycogen synthesis by 1.9-fold (p=0.0025) in myotubes from donors with NGT, whereas roxadustat did not affect their basal or insulin-stimulated glycogen synthesis. Insulin increased glycogen synthesis by 1.7-fold (p=0.0031) in myotubes from donors with type 2 diabetes. While basal glycogen synthesis was unaffected by roxadustat, pretreatment with roxadustat enhanced insulin-stimulated glycogen synthesis in myotubes from donors with type 2 diabetes (p=0.0345). CONCLUSIONS/INTERPRETATION: Roxadustat increases glycolysis and inhibits mitochondrial respiration in primary human myotubes regardless of diabetes status. Roxadustat may also improve insulin action on glycogen synthesis in myotubes from donors with type 2 diabetes.


Asunto(s)
Glucosa , Glicina , Isoquinolinas , Fibras Musculares Esqueléticas , Humanos , Masculino , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Glucosa/metabolismo , Glicina/análogos & derivados , Glicina/farmacología , Isoquinolinas/farmacología , Isoquinolinas/uso terapéutico , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Células Cultivadas , Persona de Mediana Edad , Glucólisis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Adulto
7.
J Cell Physiol ; 239(8): e31290, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38686599

RESUMEN

Lactate can serve as both an energy substrate and a signaling molecule, exerting diverse effects on skeletal muscle physiology. Due to the apparently positive effects, it would be interesting to consider it as a sports supplement. However, the mechanism behind these effects are yet to be comprehensively understood. In this study, we observed that lactate administration could improve the ability of antifatigue, and we further found that lactate upregulated the expression of myosin heavy chain (MYHC I) and MYHC IIa, while downregulating the expression of MYHC IIb. Besides, transcriptomics and metabolomics revealed significant changes in the metabolic profile of gastrocnemius muscle following lactate administration. Furthermore, lactate enhanced the activities of metabolic enzymes, including HK, LDHB, IDH, SDM, and MDH, and promoted the expression of lactate transport-related proteins MCT1 and CD147, thereby improving the transport and utilization of lactate in both vivo and vitro. More importantly, lactate administration increased cellular Ca2+ concentration and facilitated nuclear translocation of nuclear factor of activated T cells (NFATC1) in myotubes, whereas inhibition of NFATC1 significantly attenuated the effects of lactate treatment on NFATC1 nuclear translocation and MyHC expression. Our results elucidate the ability of lactate to induce metabolic remodeling in skeletal muscle and promote myofiber-type transitions by activating the Ca2+-NFATC1 signaling pathway. This study is useful in exploring the potential of lactate as a nutritional supplement for skeletal muscle adaptation and contributing to a mechanistic understanding of the central role of lactate in exercise physiology.


Asunto(s)
Ácido Láctico , Músculo Esquelético , Factores de Transcripción NFATC , Transducción de Señal , Factores de Transcripción NFATC/metabolismo , Animales , Ácido Láctico/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Calcio/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Ratones , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética
8.
BMC Genomics ; 25(1): 514, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789922

RESUMEN

BACKGROUND: In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of resveratrol's effect on the muscle of Siberian sturgeon is still unclear. RESULTS: In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways ("Oxidative phosphorylation" and "Chemical carcinogenes-reactive oxygen species") were enriched in KEGG analysis, and the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were up-regulated. CONCLUSIONS: In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain reference significance for the development of a new type of feed for Siberian sturgeon.


Asunto(s)
Antioxidantes , Peces , Resveratrol , Animales , Resveratrol/farmacología , Peces/metabolismo , Peces/crecimiento & desarrollo , Peces/genética , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nutrientes/metabolismo , Alimentación Animal/análisis , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Dieta/veterinaria , Perfilación de la Expresión Génica
9.
Biochem Biophys Res Commun ; 731: 150400, 2024 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024975

RESUMEN

Neuromuscular signal transmission is affected in various diseases including myasthenia gravis, congenital myasthenic syndromes, and sarcopenia. We used an ATF2-luciferase system to monitor the phosphorylation of MuSK in HEK293 cells introduced with MUSK and LRP4 cDNAs to find novel chemical compounds that enhanced agrin-mediated acetylcholine receptor (AChR) clustering. Four compounds with similar chemical structures carrying benzene rings and heterocyclic rings increased the luciferase activities 8- to 30-folds, and two of them showed continuously graded dose dependence. The effects were higher than that of disulfiram, a clinically available aldehyde dehydrogenase inhibitor, which we identified to be the most competent preapproved drug to enhance ATF2-luciferase activity in the same assay system. In C2C12 myotubes, all the compounds increased the area, intensity, length, and number of AChR clusters. Three of the four compounds increased the phosphorylation of MuSK, but not of Dok7, JNK. ERK, or p38. Monitoring cell toxicity using the neurite elongation of NSC34 neuronal cells as a surrogate marker showed that all the compounds had no effects on the neurite elongation up to 1 µM. Extensive docking simulation and binding structure prediction of the four compounds with all available human proteins using AutoDock Vina and DiffDock showed that the four compounds were unlikely to directly bind to MuSK or Dok7, and the exact target remained unknown. The identified compounds are expected to serve as a seed to develop a novel therapeutic agent to treat defective NMJ signal transmission.


Asunto(s)
Fibras Musculares Esqueléticas , Receptores Nicotínicos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Animales , Ratones , Línea Celular , Humanos , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Genes Reporteros , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Familia de Multigenes , Transducción de Señal/efectos de los fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neuritas , Bungarotoxinas/farmacología , Benceno/farmacología , Compuestos Heterocíclicos/farmacología , Simulación del Acoplamiento Molecular
10.
Biochem Biophys Res Commun ; 733: 150687, 2024 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-39278091

RESUMEN

This study investigates the effects of Aronia berries, their primary anthocyanins and other second metabolites-mimicking dietary anthocyanin consumption-on enhancing muscular myogenesis under chronic inflammation. Murine muscle satellite cells (MuSCs) were cultured ex vivo, allowing for expansion and differentiation into myotubes. Myogenic differentiation was disrupted by TNFα at both early and terminal stages, with treatment using Aronia berries applied at physiologically relevant concentrations alongside TNFα. The results demonstrated that Aronia berries treatments, particularly phenolic metabolites, significantly stimulated the proliferative capacity of MuSCs. Furthermore, Aronia berries treatment enhanced early-stage myogenesis, marked by increased MymX and MyoG expression and nascent myotube formation, with metabolites showing the most pronounced effects. Aronia berry powder and individual anthocyanins exerted milder regulatory effects. Similar trends were observed during terminal differentiation, where Aronia berries treatment promoted myotube growth and inhibited TNFα-induced inflammatory atrophic ubiquitin-conjugating activity. Additionally, the secondary metabolites of Aronia berries significantly prevented muscle-specific ubiquitination in the dexamethasone-induced atrophy model. Overall, the treatment with Aronia berries enhanced myogenesis in a cellular model of chronic muscular inflammation, with Aronia-derived metabolites showing the strongest response, likely through TLR4/NF-κB modulation. In this case, enhanced regeneration capacity and anti-atrophy potential were associated with TLR4/NF-κB modulation.


Asunto(s)
Antocianinas , Diferenciación Celular , Desarrollo de Músculos , Photinia , Células Satélite del Músculo Esquelético , Factor de Necrosis Tumoral alfa , Animales , Antocianinas/farmacología , Antocianinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Diferenciación Celular/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/citología , Photinia/química , Ratones , Células Cultivadas , Frutas/química , Frutas/metabolismo , Ratones Endogámicos C57BL , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/citología
11.
Biochem Biophys Res Commun ; 722: 150158, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-38795455

RESUMEN

The cytokine interleukin-38 (IL-38), a recently discovered member of the IL-1 family, has been shown to regulate inflammation and improve hepatic endoplasmic reticulum stress and lipid metabolism in individuals with obesity. However, its impact on insulin signaling in skeletal muscle cells and the underlying mechanisms remain unclear. In vitro obesity models were established using palmitate treatment, and Western blot analysis was performed to assess target proteins. Commercial kits were used to measure glucose uptake in cultured myocytes. Our study showed that IL-38 treatment alleviated the impairment of insulin signaling, including IRS-1 and Akt phosphorylation, and increased glucose uptake in palmitate-treated C2C12 myocytes. Increased levels of STAT3-mediated signaling and oxidative stress were observed in these cells following palmitate treatment, and these effects were reversed by IL-38 treatment. In addition, IL-38 treatment upregulated the expression of PPARδ, SIRT1 and antioxidants. Knockdown of PPARδ or SIRT1 using appropriate siRNAs abrogated the effects of IL-38 on insulin signaling, oxidative stress, and the STAT3-dependent pathway. These results suggest that IL-38 alleviates insulin resistance by inhibiting STAT3-mediated signaling and oxidative stress in skeletal muscle cells through PPARδ/SIRT1. This study provides fundamental evidence to support the potential use of IL-38 as a safe therapeutic agent for the treatment of insulin resistance and type 2 diabetes.


Asunto(s)
Hiperlipidemias , Resistencia a la Insulina , Estrés Oxidativo , Factor de Transcripción STAT3 , Transducción de Señal , Sirtuina 1 , Animales , Estrés Oxidativo/efectos de los fármacos , Sirtuina 1/metabolismo , Sirtuina 1/genética , Factor de Transcripción STAT3/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Línea Celular , Hiperlipidemias/metabolismo , Hiperlipidemias/tratamiento farmacológico , PPAR delta/metabolismo , PPAR delta/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Interleucinas/metabolismo , Interleucinas/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Interleucina-1/metabolismo , Interleucina-1/genética
12.
Calcif Tissue Int ; 115(5): 712-724, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39283327

RESUMEN

Muscle atrophy is a common complication of chronic kidney disease (CKD). Irisin, a novel muscle cytokine, protects against muscle atrophy, but its specific role in CKD-associated muscle atrophy requires further elucidation. Because the ubiquitin-proteasome system (UPS) plays an important role in CKD muscle atrophy, our study will explore whether irisin affects UPS and alleviate CKD-associated muscle atrophy. In this study, an adenine-fed mouse model of CKD and urotension II (UII)-induced C2C12 myotubes were used as in vivo and in vitro models of muscle atrophy. The results showed that renal function, mouse weight, and the cross-sectional area (CSA) of skeletal muscles were significantly improved in CKD mice treated with irisin. Moreover, irisin effectively mitigated the decreases in phosphorylated Forkhead box O 3a (p-FOXO3A) levels and increases in the levels of E3 ubiquitin ligases, such as muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx/atrogin1), in both the muscles of CKD mice and UII-induced C2C12 myotubes. In addition, irisin significantly increased the expression levels of myogenic differentiation factor D (MyoD) in the muscles of CKD mice. Our study is the first to demonstrate that irisin ameliorates skeletal muscle atrophy by inhibiting UPS upregulation and improving satellite cell differentiation in CKD.


Asunto(s)
Fibronectinas , Atrofia Muscular , Complejo de la Endopetidasa Proteasomal , Insuficiencia Renal Crónica , Ubiquitina , Regulación hacia Arriba , Animales , Atrofia Muscular/metabolismo , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Fibronectinas/metabolismo , Ratones , Regulación hacia Arriba/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Masculino , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología
13.
J Muscle Res Cell Motil ; 45(3): 155-169, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39080182

RESUMEN

Pyruvate dehydrogenase kinase (PDK), which phosphorylates the pyruvate dehydrogenase complex, regulates glucose metabolism in skeletal muscle. PDK1, an isozyme whose expression is controlled by hypoxia-inducible factor-1α (HIF-1α), is thought to play a role in muscle adaptation to hypoxia. While transcriptional upregulation of PDK1 by HIF-1α is well characterised, mechanisms controlling proteolysis of PDK1 in skeletal muscle have not been thoroughly investigated. Proteasome inhibitor MG132 paradoxically reduced the abundance of PDK1 in human cancer cells and rat L6 myotubes, suggesting that MG132 might direct PDK1 towards autophagic degradation. The objectives of our current study were to determine (1) whether MG132 suppresses PDK1 levels in primary human myotubes, (2) whether chloroquine, an inhibitor of autophagy, prevents MG132-induced suppression of PDK1 in L6 myotubes, and (3) whether PYR-41, an inhibitor of ubiquitination, suppresses PDK1 in L6 myotubes. Using qPCR and/or immunoblotting, we found that despite markedly upregulating HIF-1α protein, MG132 did not alter the PDK1 expression in cultured primary human myotubes, while it suppressed both PDK1 mRNA and protein in L6 myotubes. The PDK1 levels in L6 myotubes were suppressed also during co-treatment with chloroquine and MG132. PYR-41 markedly increased the abundance of HIF-1α in primary human and L6 myotubes, while reducing the abundance of PDK1. In L6 myotubes treated with PYR-41, chloroquine increased the abundance of the epidermal growth factor receptor, but did not prevent the suppression of PDK1. Collectively, our results suggest that cultured myotubes degrade PDK1 via a pathway that cannot be inhibited by MG132, PYR-41, and/or chloroquine.


Asunto(s)
Fibras Musculares Esqueléticas , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Animales , Humanos , Ratas , Células Cultivadas , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Leupeptinas/farmacología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Ubiquitina/metabolismo
14.
Exp Physiol ; 109(9): 1529-1544, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38980930

RESUMEN

Prematurity has physical consequences, such as lower birth weight, decreased muscle mass and increased risk of adult-onset metabolic disease. Insulin-like growth factor 1 (IGF-1) has therapeutic potential to improve the growth and quality of muscle and tendon in premature births, and thus attenuate some of these sequalae. We investigated the effect of IGF-1 on extensor carpi radialis muscle and biceps brachii tendon of preterm piglets. The preterm group consisted of 19-day-old preterm (10 days early) piglets, treated with either IGF-1 or vehicle. Term controls consisted of groups of 9-day-old piglets (D9) and 19-day-old piglets (D19). Muscle samples were analysed by immunofluorescence to determine the cross-sectional area (CSA) of muscle fibres, fibre type composition, satellite cell content and central nuclei-containing fibres in the muscle. Tendon samples were analysed for CSA, collagen content and maturation, and vascularization. Gene expression of the tendon was measured by RT-qPCR. Across all endpoints, we found no significant effect of IGF-1 treatment on preterm piglets. Preterm piglets had smaller muscle fibre CSA compared to D9 and D19 control group. Satellite cell content was similar across all groups. For tendon, we found an effect of age on tendon CSA, and mRNA levels of COL1A1, tenomodulin and scleraxis. Immunoreactivity for elastin and CD31, and several markers of tendon maturation, were increased in D9 compared to the preterm piglets. Collagen content was similar across groups. IGF-1 treatment of preterm-born piglets does not influence the growth and maturation of skeletal muscle and tendon.


Asunto(s)
Animales Recién Nacidos , Factor I del Crecimiento Similar a la Insulina , Músculo Esquelético , Tendones , Animales , Factor I del Crecimiento Similar a la Insulina/metabolismo , Porcinos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Tendones/efectos de los fármacos , Tendones/metabolismo , Nacimiento Prematuro , Femenino , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Péptidos Similares a la Insulina
15.
Mol Biol Rep ; 51(1): 1062, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39419905

RESUMEN

BACKGROUND: One of the probable causes of statin myotoxicity is an imbalance between protein synthesis and degradation. These processes are regulated by the PI3K/Akt/mTOR pathway and the ubiquitin‒proteasome system (UPS). The aim of this study was to assess whether the effects of atorvastatin on PI3K/Akt/mTOR pathway downstream proteins, the FoxO3a transcription factor and the UPS genes, i.e., MuRF-1 and MAFbx, depend on muscle fibre type. METHODS AND RESULTS: Atorvastatin (50 mg/kg) was administered to Wistar rats. The levels of selected PI3K/Akt/mTOR pathway proteins were assayed via Western blotting, whereas MuRF-1, MAFbx and FoxO3a mRNA levels were measured using reverse transcription quantitative polymerase chain reaction (RT‒qPCR). Gomöri trichrome staining was performed to assess skeletal muscle pathology. A decrease in the P-Akt/Akt ratio was observed in the gastrocnemius muscle (MG), whereas an increase in the P-Akt/Akt ratio was observed in the soleus muscle (SOL). FoxO3a gene expression increased in the SOL and extensor digitorum longus (EDL) muscles. MuRF-1 gene expression increased in the MG, and MAFbx expression increased in the EDL. No histopathological changes were observed in any of the tested muscles. CONCLUSIONS: In the absence of overt muscle damage, atorvastatin decreased the P-Akt/Akt ratio in the MG, indicating an increase in inactive Akt. Consistent with the decrease in Akt activation, rpS6 phosphorylation decreased. In SOL, atorvastatin increased the P-Akt/Akt ratio, indicating Akt activation. P-FoxO3a and the P-FoxO3a/FoxO3a ratio increased, suggesting that FoxO3a inactivation occurred. Moreover, in the SOL, atorvastatin did not affect the expression of atrophy-related genes. These findings indicate that atorvastatin has no adverse effect on the Akt pathway in the SOL. Our results showed that the effects of atorvastatin on the Akt signalling pathway and atrophy-related gene expression depend on muscle type.


Asunto(s)
Atorvastatina , Proteína Forkhead Box O3 , Fibras Musculares Esqueléticas , Proteínas Musculares , Atrofia Muscular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Animales , Masculino , Ratas , Atorvastatina/farmacología , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Regulación de la Expresión Génica/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/genética , Atrofia Muscular/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
16.
Br J Anaesth ; 133(5): 1093-1100, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39304470

RESUMEN

BACKGROUND: As the primary Ca2+ release channel in skeletal muscle sarcoplasmic reticulum (SR), mutations in type 1 ryanodine receptor (RyR1) or its binding partners underlie a constellation of muscle disorders, including malignant hyperthermia (MH). In patients with MH mutations, triggering agents including halogenated volatile anaesthetics bias RyR1 to an open state resulting in uncontrolled Ca2+ release, increased sarcomere tension, and heat production. Propofol does not trigger MH and is commonly used for patients at risk of MH. The atomic-level interactions of any anaesthetic with RyR1 are unknown. METHODS: RyR1 opening was measured by [3H]ryanodine binding in heavy SR vesicles (wild type) and single-channel recordings of MH mutant R615C RyR1 in planar lipid bilayers, each exposed to propofol or the photoaffinity ligand analogue m-azipropofol (AziPm). Activator-mediated wild-type RyR1 opening as a function of propofol concentration was measured by Fura-2 Ca2+ imaging of human skeletal myotubes. AziPm binding sites, reflecting propofol binding, were identified on RyR1 using photoaffinity labelling. Propofol binding affinity to a photoadducted site was predicted using molecular dynamics (MD) simulation. RESULTS: Both propofol and AziPm decreased RyR1 opening in planar lipid bilayers (P<0.01) and heavy SR vesicles, and inhibited activator-induced Ca2+ release from human skeletal myotube SR. Several putative propofol binding sites on RyR1 were photoadducted by AziPm. MD simulation predicted propofol KD values of 55.8 µM and 1.4 µM in the V4828 pocket in open and closed RyR1, respectively. CONCLUSIONS: Propofol demonstrated direct binding and inhibition of RyR1 at clinically plausible concentrations, consistent with the hypothesis that propofol partially mitigates malignant hyperthermia by inhibition of induced Ca2+ flux through RyR1.


Asunto(s)
Anestésicos Intravenosos , Músculo Esquelético , Propofol , Canal Liberador de Calcio Receptor de Rianodina , Propofol/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Anestésicos Intravenosos/farmacología , Hipertermia Maligna/metabolismo , Hipertermia Maligna/genética , Sitios de Unión/efectos de los fármacos , Calcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Simulación de Dinámica Molecular , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo
17.
Cell Biochem Funct ; 42(7): e4117, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39243192

RESUMEN

Elevated circulating branched-chain amino acids (BCAA) have been linked with the severity of insulin resistance across numerous populations, implicating heightened BCAA metabolism as a potential therapy for insulin resistance. Recently, the angiotensin II type 1 receptor (AT1R) inhibitor Valsartan (VAL) was identified as a potent inhibitor of branched-chain alpha-keto acid dehydrogenase kinase (BCKDK), a negative regulator of BCAA metabolism. This work investigated the effect of VAL on myotube metabolism and insulin sensitivity under both insulin sensitive and insulin resistant conditions. C2C12 myotubes were treated with or without VAL at 8 µM for 24 h, both with and without hyperinsulinemic-induced insulin resistance. Oxygen consumption and extracellular acidification were used to measure mitochondrial and glycolytic metabolism, respectively. Gene expression was assessed via qRT-PCR, and insulin sensitivity was assessed via Western blot. Insulin resistance significantly reduced both basal and peak mitochondrial function which were rescued to control levels by concurrent VAL. Changes in mitochondrial function occurred without substantial changes in mitochondrial content or related gene expression. Insulin sensitivity and glycolytic metabolism were unaffected by VAL, as was lipogenic signaling and lipid content. Additionally, both VAL and insulin resistance depressed Bckdha expression. Interestingly, an interaction effect was observed for extracellular isoleucine, valine, and total BCAA (but not leucine), suggesting VAL may alter BCAA utilization in an insulin sensitivity-dependent manner. Insulin resistance appears to suppress mitochondrial function in a myotube model which can be rescued by VAL. Further research will be required to explore the implications of these findings in more complex models.


Asunto(s)
Resistencia a la Insulina , Mitocondrias , Fibras Musculares Esqueléticas , Valsartán , Valsartán/farmacología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Animales , Ratones , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular , Aminoácidos de Cadena Ramificada/metabolismo , Aminoácidos de Cadena Ramificada/farmacología
18.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001596

RESUMEN

Most human cancer cells harbor loss-of-function mutations in the p53 tumor suppressor gene. Genetic experiments have shown that phosphatidylinositol 5-phosphate 4-kinase α and ß (PI5P4Kα and PI5P4Kß) are essential for the development of late-onset tumors in mice with germline p53 deletion, but the mechanism underlying this acquired dependence remains unclear. PI5P4K has been previously implicated in metabolic regulation. Here, we show that inhibition of PI5P4Kα/ß kinase activity by a potent and selective small-molecule probe disrupts cell energy homeostasis, causing AMPK activation and mTORC1 inhibition in a variety of cell types. Feedback through the S6K/insulin receptor substrate (IRS) loop contributes to insulin hypersensitivity and enhanced PI3K signaling in terminally differentiated myotubes. Most significantly, the energy stress induced by PI5P4Kαß inhibition is selectively toxic toward p53-null tumor cells. The chemical probe, and the structural basis for its exquisite specificity, provide a promising platform for further development, which may lead to a novel class of diabetes and cancer drugs.


Asunto(s)
Neoplasias/tratamiento farmacológico , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína p53 Supresora de Tumor/genética , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Animales , Metabolismo Energético/efectos de los fármacos , Humanos , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Neoplasias/genética , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/ultraestructura , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química
19.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260377

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating genetic disease leading to degeneration of skeletal muscles and premature death. How dystrophin absence leads to muscle wasting remains unclear. Here, we describe an optimized protocol to differentiate human induced pluripotent stem cells (iPSC) to a late myogenic stage. This allows us to recapitulate classical DMD phenotypes (mislocalization of proteins of the dystrophin-associated glycoprotein complex, increased fusion, myofiber branching, force contraction defects, and calcium hyperactivation) in isogenic DMD-mutant iPSC lines in vitro. Treatment of the myogenic cultures with prednisolone (the standard of care for DMD) can dramatically rescue force contraction, fusion, and branching defects in DMD iPSC lines. This argues that prednisolone acts directly on myofibers, challenging the largely prevalent view that its beneficial effects are caused by antiinflammatory properties. Our work introduces a human in vitro model to study the onset of DMD pathology and test novel therapeutic approaches.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Prednisolona/farmacología , Fenómenos Biomecánicos , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Distrofina/deficiencia , Distrofina/metabolismo , Glicoproteínas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/genética , Mutación/genética , Optogenética , Fenotipo
20.
Ecotoxicol Environ Saf ; 284: 116954, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208572

RESUMEN

Epidemiological studies have suggested a positive association between environmental cadmium (Cd) exposure and type 2 diabetes mellitus (T2DM). Skeletal muscle insulin resistance (IR) plays a critical role in the pathogenesis of T2DM. This study aimed to investigate the effects of chronic low-level Cd exposure on skeletal muscle IR and its potential mechanism. Rats were exposed to drinking water containing 2 or 10 mg/L Cd for 24 weeks. Differentiated L6 myotubes were treated with Cd for 72 h. Immunofluorescence, flow cytometry assay, RNA-sequencing, and Seahorse analysis were conducted to determine the effects of Cd and its underlying mechanism on relevant parameters, including insulin sensitivity, glucose uptake, oxidative stress, mitophagy, and mitochondrial function in skeletal muscle and L6 myotubes. N-acetyl-cysteine (NAC), a scavenger of reactive oxygen species (ROS), and mitophagy inhibitor Cyclosporin A (CsA) were used to confirm the role of oxidative stress in mitophagy and mitochondrial dysfunction caused by Cd. We found that rats exposed to 10 mg/L Cd exhibited hyperglycemia and skeletal muscle IR. Cd markedly increased IRS-1 phosphorylation at Ser612, while decreased levels of phosphorylated PI3K, Akt, AS160, inhibited GLUT4 translocation and glucose uptake. Mechanistically, Cd increased the intracellular ROS, hydrogen peroxide, and malondialdehyde levels and decreased antioxidase activity in L6 myotubes. Furthermore, Cd upregulated the mRNA and protein levels of LC3II/I, PINK1, and Parkin. In addition, Cd induced the formation of mitophagosomes, reduced the mitochondrial membrane potential, decreased the adenosine triphosphate content, and impaired the mitochondrial respiratory capacity. Strikingly, NAC ameliorated oxidative stress, excessive mitophagy, and the associated reduction in myotube insulin sensitivity, while inhibition of mitophagy by CsA alleviated skeletal muscle IR. In conclusion, this study reveals a previously unrecognized mechanism that chronic low-level Cd exposure may induce mitophagy by activating the PINK1/Parkin signal pathway by increasing ROS, thus causing skeletal muscle IR and elevated blood glucose.


Asunto(s)
Cadmio , Resistencia a la Insulina , Músculo Esquelético , Especies Reactivas de Oxígeno , Transducción de Señal , Animales , Masculino , Ratas , Cadmio/toxicidad , Mitofagia/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteínas Quinasas/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA