Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 141(1): 37-47, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27973735

RESUMEN

Myelination in the peripheral nervous system (PNS) is controlled by both positive and negative regulators within Schwann cells to ensure timely onset and correct myelin thickness for saltatory conduction by neurons. Transcription factors such as Sox10, octamer-binding transcription factor 6 (Oct6) and Krox20 form a positive regulatory network, whereas negative regulators such as cJun and Sox2 oppose myelination in Schwann cells. The role of the p38 MAPK pathway has been studied in PNS myelination, but its precise function remains unclear, with both positive and negative effects of p38 activity reported upon both myelination and processes of nerve repair. To clarify the role of p38 MAPK in the PNS, we have analysed mice with a Schwann cell-specific ablation of the major p38 isoform, p38alpha. In line with previous findings of an inhibitory role for p38 MAPK, we observe acceleration of post-natal myelination in p38alpha null nerves, a delay in myelin down-regulation following injury, together with a small increase in levels of re-myelination following injury. Finally we explored roles for p38alpha in controlling axonal regeneration and functional repair following PNS injury and observe that loss of p38alpha function in Schwann cells does not appear to affect these processes as previously reported. These studies therefore provide further proof for a role of p38 MAPK signalling in the control of myelination by Schwann cells in the PNS, but do not show an apparent role for signalling by this MAP kinase in Schwann cells controlling other elements of Wallerian degeneration and functional repair following injury. Cover Image for this issue: doi: 10.1111/jnc.13793.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos/fisiología , Fibras Nerviosas Mielínicas/enzimología , Traumatismos de los Nervios Periféricos/enzimología , Nervios Periféricos/enzimología , Recuperación de la Función/fisiología , Células de Schwann/enzimología , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Masculino , Ratones , Fibras Nerviosas Mielínicas/patología , Traumatismos de los Nervios Periféricos/patología , Nervios Periféricos/patología , Ratas , Células de Schwann/patología
2.
J Neurochem ; 141(2): 165-178, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28072455

RESUMEN

Schwann cells' (SCs) development and maturation require coordinate and complementary activation of several signals and intracellular pathways. Among factors controlling these processes, the signalling intermediates Src tyrosine kinase and focal adhesion kinase (FAK) are relevant for SCs', participating in regulation of their adhesion, motility and migration. Recently, the progesterone metabolite allopregnanolone (ALLO) was proved to be synthesized by SCs, whereas it acts autocrinally on SCs motility and proliferation, which are crucial processes for nerve development, maturation and regeneration. Herein, we investigate the hypothesis that the molecular mechanisms behind the ALLO's action on SCs involve the signalling intermediates Src and FAK. We first demonstrated that ALLO 10-6  M regulates SCs morphology, motility and myelination, also increasing the internode distance in the in vitro myelination model of neuron/SCs co-culture. ALLO's actions were mediated by the modulation of Src/FAK pathway, since they were counteracted by PP2 10-5  M, a selective inhibitor of Src kinase. Then, we proved that Src/FAK activation in SCs involves GABA-A dependent mechanisms and actin re-arrangements. In conclusion, our findings are the first to corroborate the importance of the neuroactive steroid ALLO in regulating SCs development and maturation via the Src and phospho-FAK signalling activation. Cover Image for this issue: doi: 10.1111/jnc.13795.


Asunto(s)
Movimiento Celular/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Fibras Nerviosas Mielínicas/enzimología , Pregnanolona/farmacología , Células de Schwann/enzimología , Familia-src Quinasas/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Fibras Nerviosas Mielínicas/efectos de los fármacos , Ratas , Células de Schwann/efectos de los fármacos
3.
Neurobiol Dis ; 106: 147-157, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28687442

RESUMEN

Axons of the peripheral nervous system possess the capacity to regenerate following injury. Previously, we showed that genetically knocking out Beta-Site APP-Cleaving Enzyme 1 (BACE1) leads to increased nerve regeneration. Two cellular components, macrophages and neurons, contribute to enhanced nerve regeneration in BACE1 knockout mice. Here, we utilized a transgenic mouse model that overexpresses BACE1 in its neurons to investigate whether neuronal BACE1 has an inverse effect on regeneration following nerve injury. We performed a sciatic nerve crush in BACE1 transgenic mice and control wild-type littermates, and evaluated the extent of both morphological and physiological improvements over time. At the earliest time point of 3days, we observed a significant decrease in the length of axonal sprouts growing out from the crush site in BACE1 transgenic mice. At later times (10 and 15days post-crush), there were significant reductions in the number of myelinated axons in the sciatic nerve and the percentage of re-innervated neuromuscular junctions in the gastrocnemius muscle. Transgenic mice had a functional electrophysiological delay in the recovery up to 8weeks post-crush compared to controls. These results indicate that BACE1 activity levels have an inverse effect on peripheral nerve repair after injury. The results obtained in this study provide evidence that neuronal BACE1 activity levels impact peripheral nerve regeneration. This data has clinical relevance by highlighting a novel drug target to enhance peripheral nerve repair, an area which currently does not have any approved therapeutics.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Axones/enzimología , Regeneración Nerviosa/fisiología , Recuperación de la Función/fisiología , Nervio Ciático/enzimología , Nervio Ciático/lesiones , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Axones/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Macrófagos/enzimología , Macrófagos/patología , Masculino , Ratones Transgénicos , Músculo Esquelético/enzimología , Músculo Esquelético/inervación , Músculo Esquelético/patología , Fibras Nerviosas Mielínicas/enzimología , Fibras Nerviosas Mielínicas/patología , Unión Neuromuscular/enzimología , Unión Neuromuscular/patología , Distribución Aleatoria , Nervio Ciático/patología
4.
J Neurosci ; 34(10): 3767-78, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24599474

RESUMEN

The protein tyrosine phosphatase Shp2 (PTPN11) is crucial for normal brain development and has been implicated in dorsal telencephalic neuronal and astroglia cell fate decisions. However, its roles in the ventral telencephalon and during oligodendrogenesis in the telencephalon remain largely unknown. Shp2 gain-of-function (GOF) mutations are observed in Noonan syndrome, a type of RASopathy associated with multiple phenotypes, including cardiovascular, craniofacial, and neurocognitive abnormalities. To gain insight into requirements for Shp2 (LOF) and the impact of abnormal Shp2 GOF mutations, we used a Shp2 conditional mutant allele (LOF) and a cre inducible Shp2-Q79R GOF transgenic mouse in combination with Olig2(cre/+) mice to target embryonic ventral telencephalic progenitors and the oligodendrocyte lineage. In the absence of Shp2 (LOF), neuronal cell types originating from progenitors in the ventral telencephalon were generated, but oligodendrocyte progenitor cell (OPC) generation was severely impaired. Late embryonic and postnatal Shp2 cKOs showed defects in the generation of OPCs throughout the telencephalon and subsequent reductions in white matter myelination. Conversely, transgenic expression of the Shp2 GOF Noonan syndrome mutation resulted in elevated OPC numbers in the embryo and postnatal brain. Interestingly, expression of this mutation negatively influenced myelination as mice displayed abnormal myelination and fewer myelinated axons in the white matter despite elevated OPC numbers. Increased proliferating OPCs and elevated MAPK activity were also observed during oligodendrogenesis after expression of Shp2 GOF mutation. These results support the notion that appropriate Shp2 activity levels control the number as well as the differentiation of oligodendrocytes during development.


Asunto(s)
Fibras Nerviosas Mielínicas/enzimología , Oligodendroglía/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/biosíntesis , Células Madre/enzimología , Telencéfalo/embriología , Telencéfalo/enzimología , Animales , Diferenciación Celular/fisiología , Ratones , Ratones Transgénicos , Telencéfalo/citología
5.
J Neurosci ; 32(5): 1517-27, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22302795

RESUMEN

Several key transcription factors and coregulators important to peripheral nerve myelination have been identified, but the contributions of specific chromatin remodeling complexes to peripheral nerve myelination have not been analyzed. Chromodomain helicase DNA-binding protein 4 (Chd4) is the core catalytic subunit of the nucleosome remodeling and deacetylase (NuRD) chromatin remodeling complex. Previous studies have shown Chd4 interacts with Nab (NGFI-A/Egr-binding) corepressors, which are required for early growth response 2 (Egr2/Krox20), to direct peripheral nerve myelination by Schwann cells. In this study, we examined the developmental importance of the NuRD complex in peripheral nerve myelination through the generation of conditional Chd4 knock-out mice in Schwann cells (Chd4(loxP/loxP); P0-cre). Chd4 conditional null mice were found to have delayed myelination, radial sorting defects, hypomyelination, and the persistence of promyelinating Schwann cells. Loss of Chd4 leads to elevated expression of immature Schwann cell genes (Id2, c-Jun, and p75), and sustained expression of the promyelinating Schwann cell gene, Oct6/Scip, without affecting the levels of Egr2/Krox20. Furthermore, Schwann cell proliferation is upregulated in Chd4-null sciatic nerve. In vivo chromatin immunoprecipitation studies reveal recruitment of Chd4 and another NuRD component, Mta2, to genes that are positively and negatively regulated by Egr2 during myelination. Together, these results underscore the necessity of Chd4 function to guide proper terminal differentiation of Schwann cells and implicate the NuRD chromatin remodeling complex as a requisite factor in timely and stable peripheral nerve myelination.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/fisiología , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/fisiología , Vaina de Mielina/enzimología , Fibras Nerviosas Mielínicas/enzimología , Nervios Periféricos/enzimología , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/deficiencia , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/deficiencia , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Vaina de Mielina/genética , Vaina de Mielina/ultraestructura , Fibras Nerviosas Mielínicas/fisiología , Nucleosomas/enzimología , Nucleosomas/genética , Nucleosomas/ultraestructura , Nervios Periféricos/ultraestructura , Células de Schwann/enzimología , Células de Schwann/ultraestructura
6.
J Neurosci ; 31(9): 3435-45, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21368055

RESUMEN

The epigenetic identity of oligodendrocytes is modulated by posttranslational modifications of histones. Acetylation of histone H3 results from the balance between the activity of histone acetyltransferases (HATs) and histone deacetylases and modulates transcriptional activation. We have previously shown that, in rodents, histone deacetylation favors oligodendrocyte differentiation, whereas acetylation is associated with increased levels of transcriptional inhibitors of oligodendrocyte differentiation. Here, we report, in humans brains, a shift toward histone acetylation in the white matter of the frontal lobes of aged subjects and in patients with chronic multiple sclerosis (MS). Increased immunoreactivity for acetylated histone H3 was observed in the nuclei of NogoA+ oligodendrocytes in a subset of MS samples. These changes were associated with high levels of transcriptional inhibitors of oligodendrocyte differentiation (i.e., TCF7L2, ID2, and SOX2) and higher HAT transcript levels (i.e., CBP, P300) in female MS patients compared with non-neurological controls and correlated with disease duration. Chromatin immunoprecipitation from samples of MS patients revealed enrichment of acetyl-histone H3 at the promoter of the increased target genes (i.e., TCF7L2). The data in chronic lesions contrasted with findings in early MS lesions, where a marked oligodendroglial histone deacetylation was observed. Together, these data suggest that histone deacetylation is a process that occurs at the early stages of the disease and whose efficiency decreases with disease duration.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Acetilación , Adulto , Anciano , Anciano de 80 o más Años , Diagnóstico Precoz , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/enzimología , Fibras Nerviosas Mielínicas/enzimología , Adulto Joven
7.
J Neuroinflammation ; 9: 175, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22805152

RESUMEN

BACKGROUND: White matter injury is the major form of brain damage in very preterm infants. Selective white matter injury in the immature brain can be induced by lipopolysaccharide (LPS)-sensitized hypoxic-ischemia (HI) in the postpartum (P) day 2 rat pups whose brain maturation status is equivalent to that in preterm infants less than 30 weeks of gestation. Neuroinflammation, blood-brain barrier (BBB) damage and oligodendrocyte progenitor apoptosis may affect the susceptibility of LPS-sensitized HI in white matter injury. c-Jun N-terminal kinases (JNK) are important stress-responsive kinases in various forms of insults. We hypothesized that LPS-sensitized HI causes white matter injury through JNK activation-mediated neuroinflammation, BBB leakage and oligodendroglial apoptosis in the white matter of P2 rat pups. METHODS: P2 pups received LPS (0.05 mg/kg) or normal saline injection followed by 90-min HI. Immunohistochemistry and immunoblotting were used to determine microglia activation, TNF-α, BBB damage, cleaved caspase-3, JNK and phospho-JNK (p-JNK), myelin basic protein (MBP), and glial fibrillary acidic protein (GFAP) expression. Immunofluorescence was performed to determine the cellular distribution of p-JNK. Pharmacological and genetic approaches were used to inhibit JNK activity. RESULTS: P2 pups had selective white matter injury associated with upregulation of activated microglia, TNF-α, IgG extravasation and oligodendroglial progenitor apoptosis after LPS-sensitized HI. Immunohistochemical analyses showed early and sustained JNK activation in the white matter at 6 and 24 h post-insult. Immunofluorescence demonstrated upregulation of p-JNK in activated microglia, vascular endothelial cells and oligodendrocyte progenitors, and also showed perivascular aggregation of p-JNK-positive cells around the vessels 24 h post-insult. JNK inhibition by AS601245 or by antisense oligodeoxynucleotides (ODN) significantly reduced microglial activation, TNF-α immunoreactivity, IgG extravasation, and cleaved caspase-3 in the endothelial cells and oligodendrocyte progenitors, and also attenuated perivascular aggregation of p-JNK-positive cells 24 h post-insult. The AS601245 or JNK antisense ODN group had significantly increased MBP and decreased GFAP expression in the white matter on P11 than the vehicle or scrambled ODN group. CONCLUSIONS: LPS-sensitized HI causes white matter injury through JNK activation-mediated upregulation of neuroinflammation, BBB leakage and oligodendrocyte progenitor apoptosis in the immature brain.


Asunto(s)
Barrera Hematoencefálica/enzimología , Encéfalo/enzimología , Hipoxia-Isquemia Encefálica/enzimología , Sistema de Señalización de MAP Quinasas/fisiología , Fibras Nerviosas Mielínicas/enzimología , Oligodendroglía/enzimología , Animales , Animales Recién Nacidos , Apoptosis/fisiología , Barrera Hematoencefálica/patología , Encéfalo/patología , Hipoxia-Isquemia Encefálica/patología , Inflamación/enzimología , Inflamación/patología , Fibras Nerviosas Mielínicas/patología , Oligodendroglía/patología , Ratas , Ratas Sprague-Dawley
8.
J Neurosci ; 30(11): 4120-31, 2010 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-20237282

RESUMEN

Diameter, organization, and length of the myelin sheath are important determinants of the nerve conduction velocity, but the basic molecular mechanisms that control these parameters are only partially understood. Cell polarization is an essential feature of differentiated cells, and relies on a set of evolutionarily conserved cell polarity proteins. We investigated the molecular nature of myelin sheath polarization in connection with the functional role of the cell polarity protein pals1 (Protein Associated with Lin Seven 1) during peripheral nerve myelin sheath extension. We found that, in regard to epithelial polarity, the Schwann cell outer abaxonal domain represents a basolateral-like domain, while the inner adaxonal domain and Schmidt-Lanterman incisures form an apical-like domain. Silencing of pals1 in myelinating Schwann cells in vivo resulted in a severe reduction of myelin sheath thickness and length. Except for some infoldings, the structure of compact myelin was not fundamentally affected, but cells produced less myelin turns. In addition, pals1 is required for the normal polarized localization of the vesicular markers sec8 and syntaxin4, and for the distribution of E-cadherin and myelin proteins PMP22 and MAG at the plasma membrane. Our data show that the polarity protein pals1 plays an essential role in the radial and longitudinal extension of the myelin sheath, likely involving a functional role in membrane protein trafficking. We conclude that regulation of epithelial-like polarization is a critical determinant of myelin sheath structure and function.


Asunto(s)
Polaridad Celular/fisiología , Células Epiteliales/enzimología , Proteínas de la Membrana/fisiología , Vaina de Mielina/enzimología , Nucleósido-Fosfato Quinasa/fisiología , Nervios Periféricos/enzimología , Animales , Animales Recién Nacidos , Células Cultivadas , Células Epiteliales/citología , Ratones , Ratones Transgénicos , Fibras Nerviosas Mielínicas/enzimología , Nervios Periféricos/citología , Transporte de Proteínas/fisiología , Ratas
9.
J Neurosci ; 30(10): 3555-66, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20219989

RESUMEN

The node of Ranvier is a tiny segment of a myelinated fiber with various types of specializations adapted for generation of high-speed nerve impulses. It is ionically specialized with respect to ion channel segregation and ionic fluxes, and metabolically specialized in ionic pump expression and mitochondrial density augmentation. This report examines the interplay of three important parameters (calcium fluxes, Na pumps, mitochondrial motility) at nodes of Ranvier in frog during normal nerve activity. First, we used calcium dyes to resolve a highly localized elevation in axonal calcium at a node of Ranvier during action potentials, and showed that this calcium elevation retards mitochondrial motility during nerve impulses. Second, we found, surprisingly, that physiologic activation of the Na pumps retards mitochondrial motility. Blocking Na pumps alone greatly prevents action potentials from retarding mitochondrial motility, which reveals that mitochondrial motility is coupled to Na/K-ATPase. In conclusion, we suggest that during normal nerve activity, Ca elevation and activation of Na/K-ATPase act, possibly in a synergistic manner, to recruit mitochondria to a node of Ranvier to match metabolic needs.


Asunto(s)
Potenciales de Acción/fisiología , Calcio/fisiología , Mitocondrias/enzimología , Fibras Nerviosas Mielínicas/enzimología , Nódulos de Ranvier/enzimología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Bloqueadores de los Canales de Calcio/farmacología , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/metabolismo , Nódulos de Ranvier/efectos de los fármacos , Nódulos de Ranvier/metabolismo , Xenopus laevis
10.
J Neurosci ; 30(33): 11011-27, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-20720108

RESUMEN

Many extracellular and intrinsic factors regulate oligodendrocyte development, but their signaling pathways remain poorly understood. Although the p38 mitogen-activated protein kinase (MAPK)-dependent pathway is implicated in oligodendrocyte progenitor cell (OPC) lineage progression, its molecular targets involved in myelinogenesis are mostly unidentified. We have analyzed mechanisms by which p38MAPK regulates oligodendrocyte development and demonstrate that p38MAPK inhibition prevents OPC lineage progression and inhibits MBP (myelin basic protein) promoter activity and Sox10 function. In white-matter tissue, differential levels of MAPK phosphorylation are observed in oligodendrocyte lineage cells. Phosphorylated p38MAPK was found in CC1- and CNP-expressing differentiated oligodendrocytes of the adult brain and was temporally associated with a decline in the levels of phosphorylated extracellular signal-regulated kinase (ERK) in cells of this lineage. PDGF stimulates the phosphorylation of ERK, p38MAPK, and c-Jun N-terminal kinase (JNK), and p38MAPK inhibition was associated with increased ERK, JNK, and c-Jun phosphorylation. In the presence of PDGF, simultaneous inhibition of p38MAPK and either MAPK kinase (MEK) or JNK significantly alleviates the repression of myelin gene expression and lineage progression induced by p38MAPK inhibition alone. Dominant-negative c-Jun reverses the inhibition of myelin promoter activity by active MEK1 or dominant-negative p38MAPKalpha mutants, and phosphorylated c-Jun was detected at the MBP promoter after p38MAPK inhibition, indicating c-Jun as a negative mediator of p38MAPK action. Our findings indicate that p38MAPK activity in the brain supports myelin gene expression through distinct mechanisms via positive and negative regulatory targets. We show that oligodendrocyte differentiation involves p38-mediated Sox10 regulation and cross talk with parallel ERK and JNK pathways to repress c-Jun activity.


Asunto(s)
Encéfalo/fisiología , Sistema de Señalización de MAP Quinasas , Oligodendroglía/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/fisiología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , ADN/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteína Básica de Mielina , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/enzimología , Fibras Nerviosas Mielínicas/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Ratas , Ratas Sprague-Dawley , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
11.
Stroke ; 42(2): 445-52, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21193743

RESUMEN

BACKGROUND AND PURPOSE: Diabetes mellitus leads to a higher risk of ischemic stroke and worse outcome compared to the general population. However, there have been few studies on white matter (WM) damage after stroke in diabetes mellitus. We therefore investigated WM damage after stroke in mice with diabetes mellitus. METHODS: BKS.Cg-m(+/+)Lepr(db)/J (db/db) type 2 diabetes mellitus mice and db(+) non-diabetes mellitus mice were subjected to middle cerebral artery occlusion. Functional outcome, immunostaining, zymography, Western blot, and polymerase chain reaction were used. RESULTS: After stroke, mice with diabetes mellitus exhibited significantly increased lesion volume and brain hemorrhagic and neurological deficits compared to mice without diabetes mellitus. Bielshowsky silver, luxol fast blue, amyloid precursor protein, and NG2 expression were significantly decreased, indicating WM damage, and matrix metalloproteinase (MMP)-9 activity was significantly increased in the ischemic brain of mice with diabetes mellitus. Subanalysis of similar lesions in mice with and without diabetes mellitus demonstrated mice with diabetes mellitus had significantly increased WM damage than in mice without diabetes mellitus (P<0.05). To investigate the mechanism underlying diabetes mellitus-induced WM damage, oxygen-glucose deprivation-stressed premature oligodendrocyte and primary cortical neuron cultures were used. High glucose increased MMP-2, MMP-9, cleaved caspase-3 levels, and apoptosis, as well as decreased cell survival and dendrite outgrowth in cultured primary cortical neuron. High glucose increased MMP-9, cleaved caspase-3 level, and apoptosis, and decreased cell proliferation and cell survival in cultured oligodendrocytes. Inhibition of MMP by GM6001 treatment significantly decreased high glucose-induced cell death and apoptosis in cultured primary cortical neuron and oligodendrocytes but did not alter dendrite outgrowth in primary cortical neuron. CONCLUSIONS: Mice with diabetes mellitus have increased brain hemorrhage and show more severely injured WM than mice without diabetes mellitus after stroke. MMP-9 upregulated in mice with diabetes mellitus may exacerbate WM damage after stroke in mice with diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 2/enzimología , Modelos Animales de Enfermedad , Metaloproteinasas de la Matriz/fisiología , Fibras Nerviosas Mielínicas/enzimología , Fibras Nerviosas Mielínicas/patología , Accidente Cerebrovascular/enzimología , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Masculino , Ratones , Ratones Transgénicos , Embarazo , Ratas , Ratas Wistar , Accidente Cerebrovascular/etiología
12.
J Neurochem ; 117(1): 143-53, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21235577

RESUMEN

Carbonylated (oxidized) proteins are known to accumulate in the cerebral white matter (WM) and gray matter (GM) of patients with multiple sclerosis (MS). Although oxidative stress is necessary for carbonyl generation, it is the failure of the degradation systems that ultimately leads to the build-up of carbonylated proteins within tissues. In this study, we measured the activity of the 20S proteasome and other proteolytic systems in the cerebral WM and GM of 13 MS patients and 13 controls. We report that the activities of the three peptidases of the 20S proteasome (i.e. chymotrypsin-like, caspase-like and trypsin-like) in both MS-WM and MS-GM are greatly reduced. Interestingly, neither the amount of proteasome nor the levels of the catalytic subunits (ß1, ß2, and ß5) are diminished in this disease. Proteins containing Lys-48 poly-ubiquitin also accumulate in MS tissues, indicating failure of the 26S proteasome as well. Levels of the regulatory caps 11S α and 19S are also lower in MS than in controls, suggesting that the activity of the more complex proteasomes may be reduced further. Finally, the activities of other proteases that might also remove oxidized proteins (calpain, cathepsin B, mitochondrial LonP) are not lessened in MS. Together, these studies suggest that direct inactivation of proteolytic centers in the 20S particle and/or the presence of specific inhibitors is the underlying cause of proteasomal dysfunction in MS.


Asunto(s)
Corteza Cerebral/enzimología , Esclerosis Múltiple/enzimología , Fibras Nerviosas Mielínicas/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Adulto , Anciano , Anciano de 80 o más Años , Corteza Cerebral/patología , Activación Enzimática/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/patología , Fibras Nerviosas Mielínicas/patología
13.
Am J Pathol ; 177(3): 1436-47, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20724598

RESUMEN

Up-regulation of 12/15-lipoxygenase, which converts arachidonic acid to 12(S)- and 15(S)-hydroxyeicosatetraenoic acids, causes impaired cell signaling, oxidative-nitrosative stress, and inflammation. This study evaluated the role for 12/15-lipoxygenase in diabetic large and small fiber peripheral and autonomic neuropathies. Control and streptozotocin-diabetic wild-type and 12/15-lipoxygenase-deficient mice were maintained for 14 to 16 weeks. 12/15-lipoxygenase gene deficiency did not affect weight gain or blood glucose concentrations. Diabetic wild-type mice displayed increased sciatic nerve 12/15-lipoxygenase and 12(S)-hydroxyeicosatetraenoic acid levels. 12/15-lipoxygenase deficiency prevented or alleviated diabetes-induced thermal hypoalgesia, tactile allodynia, motor and sensory nerve conduction velocity deficits, and reduction in tibial nerve myelinated fiber diameter, but not intraepidermal nerve fiber loss. The frequencies of superior mesenteric-celiac ganglion neuritic dystrophy, the hallmark of diabetic autonomic neuropathy in mouse prevertebral sympathetic ganglia, were increased 14.8-fold and 17.2-fold in diabetic wild-type and 12/15-lipoxygenase-deficient mice, respectively. In addition, both diabetic groups displayed small (<1%) numbers of degenerating sympathetic neurons. In conclusion, whereas 12/15-lipoxygenase up-regulation provides an important contribution to functional changes characteristic for both large and small fiber peripheral diabetic neuropathies and axonal atrophy of large myelinated fibers, its role in small sensory nerve fiber degeneration and neuritic dystrophy and neuronal degeneration characteristic for diabetic autonomic neuropathy is minor. This should be considered in the selection of endpoints for future clinical trials of 12/15-lipoxygenase inhibitors.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Diabetes Mellitus Experimental/enzimología , Neuropatías Diabéticas/enzimología , Fibras Nerviosas Mielínicas/enzimología , Fibras Nerviosas Amielínicas/enzimología , Análisis de Varianza , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Western Blotting , Peso Corporal/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Neuropatías Diabéticas/genética , Neuropatías Diabéticas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Nerviosas Mielínicas/patología , Fibras Nerviosas Amielínicas/patología , Nervio Ciático/enzimología
14.
Neuroimage ; 52(1): 1-8, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20399275

RESUMEN

Maternal infection during prenatal life is a risk factor for neurodevelopmental disorders, including schizophrenia and autism, in the offspring. We and others have reported white mater microstructure abnormalities in prefrontal-striato-temporal networks in these disorders. In addition we have shown that early rather than late maternal immune challenge in the mouse model precipitates ventricular volume change and impairs sensorimotor gating similar to that found in schizophrenia. However, it is not known whether the timing of maternal infection has a differential impact upon white matter microstructural indices. Therefore this study directly tested the effect of early or late gestation maternal immune activation on post-natal white matter microstructure in the mouse. The viral mimic PolyI:C was administered on day 9 or day 17 of gestation. In-vivo diffusion tensor imaging (DTI) was carried out when the offspring reached adulthood. We describe a novel application of voxel-based analysis to evaluate fractional anisotrophy (FA). In addition we conducted a preliminary immunohistochemical exploration of the oligodendrocyte marker, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), to determine whether differences in myelination might contribute to any changes in FA observed. Our results provide experimental evidence that prenatal exposure to inflammation elicits widespread differences in FA throughout fronto-striatal-limbic circuits compared to control saline exposure. Moreover, FA changes were more extensive in the group exposed earliest in gestation.


Asunto(s)
Encéfalo/patología , Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Complicaciones Infecciosas del Embarazo/inmunología , Efectos Tardíos de la Exposición Prenatal , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Animales , Anisotropía , Encéfalo/enzimología , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas Mielínicas/enzimología , Fibras Nerviosas Mielínicas/patología , Vías Nerviosas/enzimología , Vías Nerviosas/patología , Oligodendroglía/enzimología , Oligodendroglía/patología , Embarazo , Factores de Tiempo
15.
Nat Neurosci ; 9(12): 1520-5, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17099708

RESUMEN

Bace1 is an endopeptidase that cleaves the amyloid precursor protein at the beta-secretase site. Apart from this cleavage, the functional importance of Bace1 in other physiological events is unknown. We show here that Bace1 regulates the process of myelination and myelin sheath thickness in the central and peripheral nerves. In Bace1-null mice, the process of myelination was delayed and myelin thickness was markedly reduced, indicating that genetic deletion of Bace1 causes hypomyelination. Bace1-null mice also showed altered neurological behaviors such as elevated pain sensitivity and reduced grip strength. Further mechanistic studies showed an altered neuregulin-Akt signaling pathway in Bace1-null mice. Full-length neuregulin-1 was increased and its cleavage product was decreased in the CNS of Bace1-null mice. Furthermore, phosphorylated Akt was also reduced. Based upon these and previous studies, we postulate that neuronally enriched Bace1 cleaves neuregulin-1 and that processed neuregulin-1 regulates myelination by means of phosphorylation of Akt in myelin-forming cells.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Ácido Aspártico Endopeptidasas/fisiología , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/enzimología , Neurregulina-1/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Sistema Nervioso Central/enzimología , Sistema Nervioso Central/fisiología , Ratones , Ratones Noqueados , Sistema Nervioso Periférico/enzimología , Sistema Nervioso Periférico/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología
16.
Ann Neurol ; 63(4): 428-35, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18438950

RESUMEN

OBJECTIVE: Degeneration of chronically demyelinated axons is a major cause of irreversible neurological decline in the human central nervous system disease, multiple sclerosis (MS). Although the molecular mechanisms responsible for this axonal degeneration remain to be elucidated, dysfunction of axonal Na+/K+ ATPase is thought to be central. To date, however, the distribution of Na+/K+ ATPase has not been studied in MS lesions. METHODS: The percentage of axons with detectable Na+/K+ ATPase was determined in 3 acute and 36 chronically demyelinated lesions from 13 MS brains. In addition, we investigated whether postmortem magnetic resonance imaging profiles could predict Na+/K+ ATPase immunostaining in a subset (20) of the chronic lesions. RESULTS: Na+/K+ ATPase subunits alpha1, alpha3, and beta1 were detected in the internodal axolemma of myelinated fibers in both control and MS brains. In acutely demyelinated lesions, Na+/K+ ATPase was detectable on demyelinated axolemma. In contrast, 21 of the 36 chronic lesions (58%) contained less than 50% Na+/K+ ATPase-positive demyelinated axons. In addition, magnetic resonance imaging-pathology correlations of 20 chronic lesions identified a linear decrease in the percentage of Na+/K+ ATPase-positive axons and magnetization transfer ratios (p < 0.0001) and T1 contrast ratios (p < 0.0006). INTERPRETATION: Chronically demyelinated axons that lack Na+/K+ ATPase cannot exchange axoplasmic Na+ for K+ and are incapable of nerve transmission. Loss of axonal Na+/K+ ATPase is likely to be a major contributor to continuous neurological decline in chronic stages of MS, and quantitative magnetization transfer ratios and T1 contrast ratios may provide a noninvasive surrogate marker for monitoring this loss in MS patients.


Asunto(s)
Axones/enzimología , Axones/patología , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple Crónica Progresiva/enzimología , Esclerosis Múltiple Crónica Progresiva/patología , ATPasa Intercambiadora de Sodio-Potasio/deficiencia , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Axones/fisiología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/etiología , Fibras Nerviosas Mielínicas/enzimología , Fibras Nerviosas Mielínicas/patología , Fibras Nerviosas Mielínicas/fisiología , Subunidades de Proteína/deficiencia , Subunidades de Proteína/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/fisiología
17.
J Cell Biol ; 88(3): 581-90, 1981 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-7217205

RESUMEN

Cat superior cervical ganglia (SCG), denervated preganglionically 6-8 d previously, were stained for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) by the bis-(thioacetoxy)aurate (I), or Au(TA)2, method and compared by electron microscopy with normal SCG described previously (Davis, R., and G. B. Koelle. 1978. J. Cell Biol. 78:785-809). In confirmation of earlier light microscopic findings by the highly specific copper thiocholine method, there was nearly a total disappearance of AChE from the ganglion; no myelinated or unmyelinated axons with AChE-stained axolemmas were found, and only occasional traces of AChE staining were noted at dendritic and perikaryonal plasma membranes. Considerable staining for BuChE persisted at the latter sites, however. As in the normal SCG, physostigmine-resistant staining, caused by noncholinesterase enzymes plus the possible presence of very low concentrations of AChE or BuChE, was noted at external mitochondrial membranes, elements of the endoplasmic reticulum of neurites and Schwann cells, and also in lysosomes. These findings confirm the previous identification of AChE-stained myelinated fibers in the normal SCG as preganglionic and of the unstained myelinated fibers as postganglionic. It is proposed that the maintenance of AChE at postsynaptic sites in normal ganglia is caused by the release of a trophic factor(s) from presynaptic terminals. The source of the postsynaptic BuChE, which is apparently completely absent from the endoplasmic reticulum of the ganglion cells, remains unexplained.


Asunto(s)
Acetilcolinesterasa/análisis , Butirilcolinesterasa/análisis , Colinesterasas/análisis , Ganglios Simpáticos/enzimología , Animales , Axones/enzimología , Gatos , Dendritas/enzimología , Desnervación , Ganglios Simpáticos/ultraestructura , Microscopía Electrónica , Fibras Nerviosas Mielínicas/enzimología , Organoides/enzimología
18.
J Neural Transm (Vienna) ; 116(12): 1657-65, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19823762

RESUMEN

An important risk gene in schizophrenia is D-: amino acid oxidase (DAAO). To establish if expression of DAAO is altered in cortical, hippocampal or thalamic regions of schizophrenia patients, we measured gene expression of DAAO in a post-mortem study of elderly patients with schizophrenia and non-affected controls in both hemispheres differentiating between gray and white matter. We compared cerebral post-mortem samples (granular frontal cortex BA9, middle frontal cortex BA46, superior temporal cortex BA22, entorhinal cortex BA28, sensoric cortex BA1-3, hippocampus (CA4), mediodorsal nucleus of the thalamus) from 10 schizophrenia patients to 13 normal subjects investigating gene expression of DAAO in the gray and white matter of both hemispheres of the above-mentioned brain regions by in situ-hybridization. We found increased expression of DAAO-mRNA in the hippocampal CA4 of schizophrenic patients. Compared to the control group, both hemispheres of the hippocampus of schizophrenic patients showed an increased expression of 46% (right, P = 0.013) and 54% (left, P = 0.019), respectively. None of the other regions examined showed statistically significant differences in DAAO expression. This post-mortem study demonstrated increased gene expression of DAAO in the left and right hippocampus of schizophrenia patients. This increased expression could be responsible for a decrease in local D-: serine levels leading to a NMDA-receptor hypofunction that is hypothesized to play a major role in the pathophysiology of schizophrenia. However, our study group was small and results should be verified using larger samples.


Asunto(s)
D-Aminoácido Oxidasa/metabolismo , Giro Dentado/enzimología , Esquizofrenia/enzimología , Anciano , Corteza Cerebral/enzimología , Corteza Cerebral/metabolismo , D-Aminoácido Oxidasa/genética , Giro Dentado/metabolismo , Femenino , Lateralidad Funcional , Expresión Génica , Humanos , Hibridación in Situ , Masculino , Fibras Nerviosas Mielínicas/enzimología , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Amielínicas/enzimología , Fibras Nerviosas Amielínicas/metabolismo , ARN Mensajero/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Tálamo/enzimología , Tálamo/metabolismo
19.
Glia ; 56(14): 1508-1517, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18803320

RESUMEN

RhoGTPases are molecular switches that integrate extracellular signals to perform diverse cellular responses. This ability relies on the network of proteins regulating RhoGTPases activity and localization, and on the interaction of RhoGTPases with many different cellular effectors. Myelination is an ideal place for RhoGTPases regulation, as it is the result of fine orchestration of many stimuli from at least two cell types. Recent work has revealed that RhoGTPases are required for Schwann cells to sort, ensheath, and myelinate axons. Here, we will review these recent advances showing the critical roles for RhoGTPases in various aspects of Schwann development and myelination, including the recent discovery of their involvement in Charcot-Marie-Tooth disease. Comparison with potential roles of RhoGTPases in central nervous system myelination will be drawn.


Asunto(s)
Vaina de Mielina/enzimología , Fibras Nerviosas Mielínicas/enzimología , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/enzimología , Células de Schwann/enzimología , Proteínas de Unión al GTP rho/metabolismo , Animales , Axones/enzimología , Axones/ultraestructura , Diferenciación Celular/genética , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/enzimología , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Vaina de Mielina/ultraestructura , Fibras Nerviosas Mielínicas/ultraestructura , Sistema Nervioso Periférico/citología , Células de Schwann/citología , Proteínas de Unión al GTP rho/genética
20.
Stroke ; 39(6): 1862-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18420950

RESUMEN

BACKGROUND AND PURPOSE: Neonatal encephalopathy in human babies is a serious condition associated with permanent neurological deficits. Diffusion-weighted MRI (DWI) is increasingly used for early diagnosis of brain injury in human babies. The relationship between the presence of DWI abnormalities and cellular injury, including apoptosis, during the neonatal period are not well understood. We asked whether the extent of injury depicted on DWI can predict the presence of caspase-3 activation, a quantitative marker of apoptotic injury, after hypoxia-ischemia (H-I) in postnatal day 7 rats. METHODS: Injury volume was determined by DWI at 2 hours, 24 hours, and 7 days after H-I and compared with histology. Caspase-3 activation and microgliosis were determined at 24 hours post-H-I. RESULTS: DWI-defined lesions (eg, decreased apparent diffusion coefficient) at 24 hours post-H-I correlated with a major increase in caspase-3 activity in the injured hemisphere and predicted injury. A modest but significant increase in caspase-3 activity occurred in the cortex of rats that had no apparent diffusion coefficient decrease in the injured hemisphere but had unilaterally enlarged regions of high apparent diffusion coefficient at the ipsilateral ventricle/white matter interface. Caspase-3 activity was similar in both hemispheres in pups with unchanged DWI. CONCLUSIONS: Abnormal DWI signal at 24 hours post-H-I is predictive of caspase-3 activation and can be used as an indicator that injury involving an apoptotic-like mechanism is present. Our data also suggest that the presence of an enlarged unilateral region with high apparent diffusion coefficient at the ventricle/white matter interface without significant apparent diffusion coefficient decrease in the cortex is a sign of modest caspase-3 activation after H-I.


Asunto(s)
Encéfalo/enzimología , Encéfalo/patología , Caspasa 3/metabolismo , Imagen de Difusión por Resonancia Magnética/métodos , Hipoxia-Isquemia Encefálica/enzimología , Hipoxia-Isquemia Encefálica/patología , Animales , Animales Recién Nacidos , Anisotropía , Apoptosis , Biomarcadores/análisis , Biomarcadores/metabolismo , Infarto Encefálico/enzimología , Infarto Encefálico/patología , Infarto Encefálico/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Activación Enzimática , Hipoxia-Isquemia Encefálica/fisiopatología , Fibras Nerviosas Mielínicas/enzimología , Fibras Nerviosas Mielínicas/patología , Neuronas/enzimología , Neuronas/patología , Valor Predictivo de las Pruebas , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA