Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.592
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(5): 1127-1144.e21, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428393

RESUMEN

Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Plastidios , Cloroplastos/metabolismo , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/genética , Nicotiana/genética , Fotosíntesis , Plastidios/enzimología
2.
Cell ; 187(21): 5935-5950.e18, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39368476

RESUMEN

Diatoms are central to the global carbon cycle. At the heart of diatom carbon fixation is an overlooked organelle called the pyrenoid, where concentrated CO2 is delivered to densely packed Rubisco. Diatom pyrenoids fix approximately one-fifth of global CO2, but the protein composition of this organelle is largely unknown. Using fluorescence protein tagging and affinity purification-mass spectrometry, we generate a high-confidence spatially defined protein-protein interaction network for the diatom pyrenoid. Within our pyrenoid interaction network are 10 proteins with previously unknown functions. We show that six of these form a shell that encapsulates the Rubisco matrix and is critical for pyrenoid structural integrity, shape, and function. Although not conserved at a sequence or structural level, the diatom pyrenoid shares some architectural similarities to prokaryotic carboxysomes. Collectively, our results support the convergent evolution of pyrenoids across the two main plastid lineages and uncover a major structural and functional component of global CO2 fixation.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono , Diatomeas , Orgánulos , Ribulosa-Bifosfato Carboxilasa , Diatomeas/metabolismo , Dióxido de Carbono/metabolismo , Orgánulos/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Mapas de Interacción de Proteínas , Fotosíntesis
3.
Cell ; 187(21): 5919-5934.e19, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39357521

RESUMEN

Pyrenoids are subcompartments of algal chloroplasts that increase the efficiency of Rubisco-driven CO2 fixation. Diatoms fix up to 20% of global CO2, but their pyrenoids remain poorly characterized. Here, we used in vivo photo-crosslinking to identify pyrenoid shell (PyShell) proteins, which we localized to the pyrenoid periphery of model pennate and centric diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. In situ cryo-electron tomography revealed that pyrenoids of both diatom species are encased in a lattice-like protein sheath. Single-particle cryo-EM yielded a 2.4-Å-resolution structure of an in vitro TpPyShell1 lattice, which showed how protein subunits interlock. T. pseudonana TpPyShell1/2 knockout mutants had no PyShell sheath, altered pyrenoid morphology, and a high-CO2 requiring phenotype, with reduced photosynthetic efficiency and impaired growth under standard atmospheric conditions. The structure and function of the diatom PyShell provide a molecular view of how CO2 is assimilated in the ocean, a critical ecosystem undergoing rapid change.


Asunto(s)
Dióxido de Carbono , Diatomeas , Fotosíntesis , Diatomeas/metabolismo , Diatomeas/genética , Dióxido de Carbono/metabolismo , Microscopía por Crioelectrón , Cloroplastos/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética , Ciclo del Carbono
4.
Cell ; 187(18): 4859-4876.e22, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047726

RESUMEN

Chloroplast biogenesis is dependent on master regulators from the GOLDEN2-LIKE (GLK) family of transcription factors. However, glk mutants contain residual chlorophyll, indicating that other proteins must be involved. Here, we identify MYB-related transcription factors as regulators of chloroplast biogenesis in the liverwort Marchantia polymorpha and angiosperm Arabidopsis thaliana. In both species, double-mutant alleles in MYB-related genes show very limited chloroplast development, and photosynthesis gene expression is perturbed to a greater extent than in GLK mutants. Genes encoding enzymes of chlorophyll biosynthesis are controlled by MYB-related and GLK proteins, whereas those allowing CO2 fixation, photorespiration, and photosystem assembly and repair require MYB-related proteins. Regulation between the MYB-related and GLK transcription factors appears more extensive in A. thaliana than in M. polymorpha. Thus, MYB-related and GLK genes have overlapping as well as distinct targets. We conclude that MYB-related and GLK transcription factors orchestrate chloroplast development in land plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Cloroplastos/metabolismo , Cloroplastos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Marchantia/genética , Marchantia/metabolismo , Fotosíntesis/genética , Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutación , Biogénesis de Organelos
5.
Annu Rev Biochem ; 92: 385-410, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37127263

RESUMEN

Carbon fixation is the process by which CO2 is converted from a gas into biomass. The Calvin-Benson-Bassham cycle (CBB) is the dominant carbon-consuming pathway on Earth, driving >99.5% of the ∼120 billion tons of carbon that are converted to sugar by plants, algae, and cyanobacteria. The carboxylase enzyme in the CBB, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fixes one CO2 molecule per turn of the cycle into bioavailable sugars. Despite being critical to the assimilation of carbon, rubisco's kinetic rate is not very fast, limiting flux through the pathway. This bottleneck presents a paradox: Why has rubisco not evolved to be a better catalyst? Many hypothesize that the catalytic mechanism of rubisco is subject to one or more trade-offs and that rubisco variants have been optimized for their native physiological environment. Here, we review the evolution and biochemistry of rubisco through the lens of structure and mechanism in order to understand what trade-offs limit its improvement. We also review the many attempts to improve rubisco itself and thereby promote plant growth.


Asunto(s)
Dióxido de Carbono , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis
6.
Cell ; 186(25): 5638-5655.e25, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065083

RESUMEN

Photosynthesis is central to food production and the Earth's biogeochemistry, yet the molecular basis for its regulation remains poorly understood. Here, using high-throughput genetics in the model eukaryotic alga Chlamydomonas reinhardtii, we identify with high confidence (false discovery rate [FDR] < 0.11) 70 poorly characterized genes required for photosynthesis. We then enable the functional characterization of these genes by providing a resource of proteomes of mutant strains, each lacking one of these genes. The data allow assignment of 34 genes to the biogenesis or regulation of one or more specific photosynthetic complexes. Further analysis uncovers biogenesis/regulatory roles for at least seven proteins, including five photosystem I mRNA maturation factors, the chloroplast translation factor MTF1, and the master regulator PMR1, which regulates chloroplast genes via nuclear-expressed factors. Our work provides a rich resource identifying regulatory and functional genes and placing them into pathways, thereby opening the door to a system-level understanding of photosynthesis.


Asunto(s)
Chlamydomonas reinhardtii , Fotosíntesis , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fotosíntesis/genética , Regulación de la Expresión Génica , Proteínas/genética , Proteínas/metabolismo , Mutación , Ribosomas/genética , Ribosomas/metabolismo , ARN Mensajero/genética
7.
Cell ; 186(16): 3499-3518.e14, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37437571

RESUMEN

Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii. The localizations provide insights into the functions of poorly characterized proteins; identify novel components of nucleoids, plastoglobules, and the pyrenoid; and reveal widespread protein targeting to multiple compartments. We discovered and further characterized cellular organizational features, including eleven chloroplast punctate structures, cytosolic crescent structures, and unexpected spatial distributions of enzymes within the chloroplast. We also used machine learning to predict the localizations of other nuclear-encoded Chlamydomonas proteins. The strains and localization atlas developed here will serve as a resource to accelerate studies of chloroplast architecture and functions.


Asunto(s)
Vías Biosintéticas , Chlamydomonas reinhardtii , Proteínas de Cloroplastos , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Fotosíntesis
8.
Annu Rev Cell Dev Biol ; 40(1): 169-193, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38950450

RESUMEN

Oxygenic photosynthesis evolved billions of years ago, becoming Earth's main source of biologically available carbon and atmospheric oxygen. Since then, phototrophic organisms have diversified from prokaryotic cyanobacteria into several distinct clades of eukaryotic algae and plants through endosymbiosis events. This diversity can be seen in the thylakoid membranes, complex networks of lipids, proteins, and pigments that perform the light-dependent reactions of photosynthesis. In this review, we highlight the structural diversity of thylakoids, following the evolutionary history of phototrophic species. We begin with a molecular inventory of different thylakoid components and then illustrate how these building blocks are integrated to form membrane networks with diverse architectures. We conclude with an outlook on understanding how thylakoids remodel their architecture and molecular organization during dynamic processes such as biogenesis, repair, and environmental adaptation.


Asunto(s)
Evolución Biológica , Tilacoides , Tilacoides/metabolismo , Fotosíntesis , Plantas/metabolismo , Cianobacterias/metabolismo , Cianobacterias/genética
9.
Annu Rev Biochem ; 89: 795-820, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32208765

RESUMEN

The investigation of water oxidation in photosynthesis has remained a central topic in biochemical research for the last few decades due to the importance of this catalytic process for technological applications. Significant progress has been made following the 2011 report of a high-resolution X-ray crystallographic structure resolving the site of catalysis, a protein-bound Mn4CaOx complex, which passes through ≥5 intermediate states in the water-splitting cycle. Spectroscopic techniques complemented by quantum chemical calculations aided in understanding the electronic structure of the cofactor in all (detectable) states of the enzymatic process. Together with isotope labeling, these techniques also revealed the binding of the two substrate water molecules to the cluster. These results are described in the context of recent progress using X-ray crystallography with free-electron lasers on these intermediates. The data are instrumental for developing a model for the biological water oxidation cycle.


Asunto(s)
Coenzimas/química , Manganeso/química , Oxígeno/química , Complejo de Proteína del Fotosistema II/química , Agua/química , Coenzimas/metabolismo , Cristalografía por Rayos X , Expresión Génica , Rayos Láser , Manganeso/metabolismo , Modelos Moleculares , Oxidación-Reducción , Oxígeno/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Teoría Cuántica , Termodinámica , Thermosynechococcus/química , Thermosynechococcus/enzimología , Agua/metabolismo
10.
Cell ; 183(2): 457-473.e20, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32979320

RESUMEN

Rubisco, the key enzyme of CO2 fixation in photosynthesis, is prone to inactivation by inhibitory sugar phosphates. Inhibited Rubisco undergoes conformational repair by the hexameric AAA+ chaperone Rubisco activase (Rca) in a process that is not well understood. Here, we performed a structural and mechanistic analysis of cyanobacterial Rca, a close homolog of plant Rca. In the Rca:Rubisco complex, Rca is positioned over the Rubisco catalytic site under repair and pulls the N-terminal tail of the large Rubisco subunit (RbcL) into the hexamer pore. Simultaneous displacement of the C terminus of the adjacent RbcL opens the catalytic site for inhibitor release. An alternative interaction of Rca with Rubisco is mediated by C-terminal domains that resemble the small Rubisco subunit. These domains, together with the N-terminal AAA+ hexamer, ensure that Rca is packaged with Rubisco into carboxysomes. The cyanobacterial Rca is a dual-purpose protein with functions in Rubisco repair and carboxysome organization.


Asunto(s)
Cianobacterias/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Orgánulos/metabolismo , Fotosíntesis/fisiología , Ribulosa-Bifosfato Carboxilasa/fisiología , Activador de Tejido Plasminógeno/química , Activador de Tejido Plasminógeno/metabolismo
11.
Cell ; 171(1): 28-29, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28938119

RESUMEN

The pyrenoid is a membrane-less organelle that exists in various photosynthetic organisms, such as algae, and wherein most global CO2 fixation occurs. Two papers from the Jonikas lab in this issue of Cell provide new insights into the structure, protein composition, and dynamics of this important organelle.


Asunto(s)
Cloroplastos , Orgánulos , Fotosíntesis , Plantas
12.
Cell ; 171(1): 133-147.e14, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28938113

RESUMEN

Approximately one-third of global CO2 fixation is performed by eukaryotic algae. Nearly all algae enhance their carbon assimilation by operating a CO2-concentrating mechanism (CCM) built around an organelle called the pyrenoid, whose protein composition is largely unknown. Here, we developed tools in the model alga Chlamydomonas reinhardtii to determine the localizations of 135 candidate CCM proteins and physical interactors of 38 of these proteins. Our data reveal the identity of 89 pyrenoid proteins, including Rubisco-interacting proteins, photosystem I assembly factor candidates, and inorganic carbon flux components. We identify three previously undescribed protein layers of the pyrenoid: a plate-like layer, a mesh layer, and a punctate layer. We find that the carbonic anhydrase CAH6 is in the flagella, not in the stroma that surrounds the pyrenoid as in current models. These results provide an overview of proteins operating in the eukaryotic algal CCM, a key process that drives global carbon fixation.


Asunto(s)
Proteínas Algáceas/metabolismo , Ciclo del Carbono , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Proteínas Algáceas/química , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Chlamydomonas reinhardtii/química , Cloroplastos/química , Proteínas Luminiscentes/análisis , Microscopía Confocal , Fotosíntesis , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo
13.
Annu Rev Biochem ; 84: 631-57, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25839341

RESUMEN

Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.


Asunto(s)
Células Vegetales/enzimología , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Bacterias/clasificación , Bacterias/citología , Bacterias/enzimología , Respiración de la Célula , Cloroplastos/química , Cloroplastos/enzimología , Cianobacterias/citología , Cianobacterias/enzimología , Mitocondrias/química , Mitocondrias/enzimología , Fotosíntesis
14.
Cell ; 161(1): 56-66, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25815985

RESUMEN

Increase in demand for our primary foodstuffs is outstripping increase in yields, an expanding gap that indicates large potential food shortages by mid-century. This comes at a time when yield improvements are slowing or stagnating as the approaches of the Green Revolution reach their biological limits. Photosynthesis, which has been improved little in crops and falls far short of its biological limit, emerges as the key remaining route to increase the genetic yield potential of our major crops. Thus, there is a timely need to accelerate our understanding of the photosynthetic process in crops to allow informed and guided improvements via in-silico-assisted genetic engineering. Potential and emerging approaches to improving crop photosynthetic efficiency are discussed, and the new tools needed to realize these changes are presented.


Asunto(s)
Abastecimiento de Alimentos , Ingeniería Genética , Fotosíntesis , Plantas/genética , Agricultura , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Plantas/metabolismo
15.
Nature ; 625(7995): 529-534, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172638

RESUMEN

Today oxygenic photosynthesis is unique to cyanobacteria and their plastid relatives within eukaryotes. Although its origin before the Great Oxidation Event is still debated1-4, the accumulation of O2 profoundly modified the redox chemistry of the Earth and the evolution of the biosphere, including complex life. Understanding the diversification of cyanobacteria is thus crucial to grasping the coevolution of our planet and life, but their early fossil record remains ambiguous5. Extant cyanobacteria include the thylakoid-less Gloeobacter-like group and the remainder of cyanobacteria that acquired thylakoid membranes6,7. The timing of this divergence is indirectly estimated at between 2.7 and 2.0 billion years ago (Ga) based on molecular clocks and phylogenies8-11 and inferred from the earliest undisputed fossil record of Eoentophysalis belcherensis, a 2.018-1.854 Ga pleurocapsalean cyanobacterium preserved in silicified stromatolites12,13. Here we report the oldest direct evidence of thylakoid membranes in a parallel-to-contorted arrangement within the enigmatic cylindrical microfossils Navifusa majensis from the McDermott Formation, Tawallah Group, Australia (1.78-1.73 Ga), and in a parietal arrangement in specimens from the Grassy Bay Formation, Shaler Supergroup, Canada (1.01-0.9 Ga). This discovery extends their fossil record by at least 1.2 Ga and provides a minimum age for the divergence of thylakoid-bearing cyanobacteria at roughly 1.75 Ga. It allows the unambiguous identification of early oxygenic photosynthesizers and a new redox proxy for probing early Earth ecosystems, highlighting the importance of examining the ultrastructure of fossil cells to decipher their palaeobiology and early evolution.


Asunto(s)
Cianobacterias , Fósiles , Oxígeno , Fotosíntesis , Tilacoides , Evolución Biológica , Cianobacterias/clasificación , Cianobacterias/citología , Cianobacterias/metabolismo , Ecosistema , Evolución Química , Origen de la Vida , Oxidación-Reducción , Oxígeno/metabolismo , Tilacoides/metabolismo
16.
Nature ; 632(8025): 576-584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866052

RESUMEN

Increasing planting density is a key strategy for enhancing maize yields1-3. An ideotype for dense planting requires a 'smart canopy' with leaf angles at different canopy layers differentially optimized to maximize light interception and photosynthesis4-6, among other features. Here we identified leaf angle architecture of smart canopy 1 (lac1), a natural mutant with upright upper leaves, less erect middle leaves and relatively flat lower leaves. lac1 has improved photosynthetic capacity and attenuated responses to shade under dense planting. lac1 encodes a brassinosteroid C-22 hydroxylase that predominantly regulates upper leaf angle. Phytochrome A photoreceptors accumulate in shade and interact with the transcription factor RAVL1 to promote its degradation via the 26S proteasome, thereby inhibiting activation of lac1 by RAVL1 and decreasing brassinosteroid levels. This ultimately decreases upper leaf angle in dense fields. Large-scale field trials demonstrate that lac1 boosts maize yields under high planting densities. To quickly introduce lac1 into breeding germplasm, we transformed a haploid inducer and recovered homozygous lac1 edits from 20 diverse inbred lines. The tested doubled haploids uniformly acquired smart-canopy-like plant architecture. We provide an important target and an accelerated strategy for developing high-density-tolerant cultivars, with lac1 serving as a genetic chassis for further engineering of a smart canopy in maize.


Asunto(s)
Producción de Cultivos , Fotosíntesis , Hojas de la Planta , Zea mays , Brasinoesteroides/metabolismo , Producción de Cultivos/métodos , Oscuridad , Haploidia , Homocigoto , Luz , Mutación , Fotosíntesis/efectos de la radiación , Fitocromo A/metabolismo , Fitomejoramiento , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Zea mays/anatomía & histología , Zea mays/enzimología , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/efectos de la radiación
17.
Nature ; 634(8035): 855-861, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39415019

RESUMEN

Terrestrial photosynthesis, or gross primary production (GPP), is the largest carbon flux in the biosphere, but its global magnitude and spatiotemporal dynamics remain uncertain1. The global annual mean GPP is historically thought to be around 120 PgC yr-1 (refs. 2-6), which is about 30-50 PgC yr-1 lower than GPP inferred from the oxygen-18 (18O) isotope7 and soil respiration8. This disparity is a source of uncertainty in predicting climate-carbon cycle feedbacks9,10. Here we infer GPP from carbonyl sulfide, an innovative tracer for CO2 diffusion from ambient air to leaf chloroplasts through stomata and mesophyll layers. We demonstrate that explicitly representing mesophyll diffusion is important for accurately quantifying the spatiotemporal dynamics of carbonyl sulfide uptake by plants. From the estimate of carbonyl sulfide uptake by plants, we infer a global contemporary GPP of 157 (±8.5) PgC yr-1, which is consistent with estimates from 18O (150-175 PgC yr-1) and soil respiration ( 149 - 23 + 29 PgC yr-1), but with an improved confidence level. Our global GPP is higher than satellite optical observation-driven estimates (120-140 PgC yr-1) that are used for Earth system model benchmarking. This difference predominantly occurs in the pan-tropical rainforests and is corroborated by ground measurements11, suggesting a more productive tropics than satellite-based GPP products indicated. As GPP is a primary determinant of terrestrial carbon sinks and may shape climate trajectories9,10, our findings lay a physiological foundation on which the understanding and prediction of carbon-climate feedbacks can be advanced.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono , Cambio Climático , Fotosíntesis , Plantas , Óxidos de Azufre , Dióxido de Carbono/metabolismo , Respiración de la Célula , Cloroplastos/metabolismo , Difusión , Células del Mesófilo/metabolismo , Isótopos de Oxígeno/metabolismo , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo , Plantas/metabolismo , Suelo/química , Óxidos de Azufre/metabolismo , Incertidumbre , Bosque Lluvioso , Clima Tropical , Secuestro de Carbono , Modelos Climáticos
18.
Nature ; 627(8005): 915-922, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480893

RESUMEN

Scientific exploration of phototrophic bacteria over nearly 200 years has revealed large phylogenetic gaps between known phototrophic groups that limit understanding of how phototrophy evolved and diversified1,2. Here, through Boreal Shield lake water incubations, we cultivated an anoxygenic phototrophic bacterium from a previously unknown order within the Chloroflexota phylum that represents a highly novel transition form in the evolution of photosynthesis. Unlike all other known phototrophs, this bacterium uses a type I reaction centre (RCI) for light energy conversion yet belongs to the same bacterial phylum as organisms that use a type II reaction centre (RCII) for phototrophy. Using physiological, phylogenomic and environmental metatranscriptomic data, we demonstrate active RCI-utilizing metabolism by the strain alongside usage of chlorosomes3 and bacteriochlorophylls4 related to those of RCII-utilizing Chloroflexota members. Despite using different reaction centres, our phylogenomic data provide strong evidence that RCI-utilizing and RCII-utilizing Chloroflexia members inherited phototrophy from a most recent common phototrophic ancestor. The Chloroflexota phylum preserves an evolutionary record of the use of contrasting phototrophic modes among genetically related bacteria, giving new context for exploring the diversification of phototrophy on Earth.


Asunto(s)
Bacterias , Complejo de Proteína del Fotosistema I , Procesos Fototróficos , Bacterias/química , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterioclorofilas/metabolismo , Lagos/microbiología , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Filogenia , Anaerobiosis , Complejo de Proteína del Fotosistema II/metabolismo , Perfilación de la Expresión Génica
19.
Nature ; 631(8019): 111-117, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898277

RESUMEN

Amazonia contains the most extensive tropical forests on Earth, but Amazon carbon sinks of atmospheric CO2 are declining, as deforestation and climate-change-associated droughts1-4 threaten to push these forests past a tipping point towards collapse5-8. Forests exhibit complex drought responses, indicating both resilience (photosynthetic greening) and vulnerability (browning and tree mortality), that are difficult to explain by climate variation alone9-17. Here we combine remotely sensed photosynthetic indices with ground-measured tree demography to identify mechanisms underlying drought resilience/vulnerability in different intact forest ecotopes18,19 (defined by water-table depth, soil fertility and texture, and vegetation characteristics). In higher-fertility southern Amazonia, drought response was structured by water-table depth, with resilient greening in shallow-water-table forests (where greater water availability heightened response to excess sunlight), contrasting with vulnerability (browning and excess tree mortality) over deeper water tables. Notably, the resilience of shallow-water-table forest weakened as drought lengthened. By contrast, lower-fertility northern Amazonia, with slower-growing but hardier trees (or, alternatively, tall forests, with deep-rooted water access), supported more-drought-resilient forests independent of water-table depth. This functional biogeography of drought response provides a framework for conservation decisions and improved predictions of heterogeneous forest responses to future climate changes, warning that Amazonia's most productive forests are also at greatest risk, and that longer/more frequent droughts are undermining multiple ecohydrological strategies and capacities for Amazon forest resilience.


Asunto(s)
Resistencia a la Sequía , Sequías , Bosques , Agua Subterránea , Fotosíntesis , Suelo , Luz Solar , Árboles , Brasil , Secuestro de Carbono , Sequías/estadística & datos numéricos , Agua Subterránea/análisis , Suelo/química , Árboles/clasificación , Árboles/metabolismo , Árboles/fisiología , Clima Tropical , Resistencia a la Sequía/fisiología , Filogeografía , Conservación de los Recursos Naturales
20.
Nature ; 633(8029): 365-370, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39169192

RESUMEN

The nitrogen isotopic composition of sedimentary rocks (δ15N) can trace redox-dependent biological pathways and early Earth oxygenation1,2. However, there is no substantial change in the sedimentary δ15N record across the Great Oxidation Event about 2.45 billion years ago (Ga)3, a prominent redox change. This argues for a temporal decoupling between the emergence of the first oxygen-based oxidative pathways of the nitrogen cycle and the accumulation of atmospheric oxygen after 2.45 Ga (ref. 3). The transition between both states shows strongly positive δ15N values (10-50‰) in rocks deposited between 2.8 Ga and 2.6 Ga, but their origin and spatial extent remain uncertain4,5. Here we report strongly positive δ15N values (>30‰) in the 2.68-Gyr-old shallow to deep marine sedimentary deposit of the Serra Sul Formation6, Amazonian Craton, Brazil. Our findings are best explained by regionally variable extents of ammonium oxidation to N2 or N2O tied to a cryptic oxygen cycle, implying that oxygenic photosynthesis was operating at 2.7 Ga. Molecular oxygen production probably shifted the redox potential so that an intermediate N cycle based on ammonium oxidation developed before nitrate accumulation in surface waters. We propose to name this period, when strongly positive nitrogen isotopic compositions are superimposed on the usual range of Precambrian δ15N values, the Nitrogen Isotope Event. We suggest that it marks the earliest steps of the biogeochemical reorganizations that led to the Great Oxidation Event.


Asunto(s)
Archaea , Sedimentos Geológicos , Ciclo del Nitrógeno , Nitrógeno , Oxígeno , Compuestos de Amonio/metabolismo , Compuestos de Amonio/análisis , Atmósfera/química , Brasil , Sedimentos Geológicos/química , Historia Antigua , Nitrógeno/metabolismo , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Oxígeno/análisis , Fotosíntesis , Archaea/metabolismo , Nitratos/análisis , Nitratos/metabolismo , Biología Marina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA