RESUMEN
Although they are staple foods in cuisines globally, many commercial fruit varieties have become progressively less flavorful over time. Due to the cost and difficulty associated with flavor phenotyping, breeding programs have long been challenged in selecting for this complex trait. To address this issue, we leveraged targeted metabolomics of diverse tomato and blueberry accessions and their corresponding consumer panel ratings to create statistical and machine learning models that can predict sensory perceptions of fruit flavor. Using these models, a breeding program can assess flavor ratings for a large number of genotypes, previously limited by the low throughput of consumer sensory panels. The ability to predict consumer ratings of liking, sweet, sour, umami, and flavor intensity was evaluated by a 10-fold cross-validation, and the accuracies of 18 different models were assessed. The prediction accuracies were high for most attributes and ranged from 0.87 for sourness intensity in blueberry using XGBoost to 0.46 for overall liking in tomato using linear regression. Further, the best-performing models were used to infer the flavor compounds (sugars, acids, and volatiles) that contribute most to each flavor attribute. We found that the variance decomposition of overall liking score estimates that 42% and 56% of the variance was explained by volatile organic compounds in tomato and blueberry, respectively. We expect that these models will enable an earlier incorporation of flavor as breeding targets and encourage selection and release of more flavorful fruit varieties.
Asunto(s)
Arándanos Azules (Planta)/metabolismo , Frutas/química , Fitomejoramiento , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Arándanos Azules (Planta)/genética , Comportamiento del Consumidor , Regulación de la Expresión Génica de las Plantas/fisiología , Humanos , Solanum lycopersicum/genética , Aprendizaje Automático , Proteínas de Plantas/genética , Gusto , Compuestos Orgánicos VolátilesRESUMEN
Tomato (Solanum lycopersicum) produces a wide range of volatile chemicals during fruit ripening, generating a distinct aroma and contributing to the overall flavor. Among these volatiles are several aromatic and aliphatic nitrogen-containing compounds for which the biosynthetic pathways are not known. While nitrogenous volatiles are abundant in tomato fruit, their content in fruits of the closely related species of the tomato clade is highly variable. For example, the green-fruited species Solanum pennellii are nearly devoid, while the red-fruited species S. lycopersicum and Solanum pimpinellifolium accumulate high amounts. Using an introgression population derived from S. pennellii, we identified a locus essential for the production of all the detectable nitrogenous volatiles in tomato fruit. Silencing of the underlying gene (SlTNH1;Solyc12g013690) in transgenic plants abolished production of aliphatic and aromatic nitrogenous volatiles in ripe fruit, and metabolomic analysis of these fruit revealed the accumulation of 2-isobutyl-tetrahydrothiazolidine-4-carboxylic acid, a known conjugate of cysteine and 3-methylbutanal. Biosynthetic incorporation of stable isotope-labeled precursors into 2-isobutylthiazole and 2-phenylacetonitrile confirmed that cysteine provides the nitrogen atom for all nitrogenous volatiles in tomato fruit. Nicotiana benthamiana plants expressing SlTNH1 readily transformed synthetic 2-substituted tetrahydrothiazolidine-4-carboxylic acid substrates into a mixture of the corresponding 2-substituted oxime, nitro, and nitrile volatiles. Distinct from other known flavin-dependent monooxygenase enzymes in plants, this tetrahydrothiazolidine-4-carboxylic acid N-hydroxylase catalyzes sequential hydroxylations. Elucidation of this pathway is a major step forward in understanding and ultimately improving tomato flavor quality.
Asunto(s)
Frutas/química , Oxigenasas de Función Mixta/metabolismo , Nitrógeno/metabolismo , Odorantes/análisis , Sitoesteroles/metabolismo , Solanum lycopersicum/metabolismo , Frutas/metabolismo , Oxigenasas de Función Mixta/genética , Nitrógeno/química , Compuestos Orgánicos VolátilesRESUMEN
Food safety is vital to human health, necessitating the development of nondestructive, convenient, and highly sensitive methods for detecting harmful substances. This study integrates cellulose dissolution, aligned regeneration, in situ nanoparticle synthesis, and structural reconstitution to create flexible, transparent, customizable, and nanowrinkled cellulose/Ag nanoparticle membranes (NWCM-Ag). These three-dimensional nanowrinkled structures considerably improve the spatial-electromagnetic-coupling effect of metal nanoparticles on the membrane surface, providing a 2.3 × 108 enhancement factor for the surface-enhanced Raman scattering (SERS) effect for trace detection of pesticides in foods. Notably, the distribution of pesticides in the apple peel and pulp layers is visualized through Raman imaging, confirming that the pesticides penetrate the peel layer into the pulp layer (â¼30 µm depth). Thus, the risk of pesticide ingestion from fruits cannot be avoided by simple washing other than peeling. This study provides a new idea for designing nanowrinkled structures and broadening cellulose utilization in food safety.
Asunto(s)
Celulosa , Inocuidad de los Alimentos , Nanopartículas del Metal , Plaguicidas , Espectrometría Raman , Celulosa/química , Plaguicidas/análisis , Plaguicidas/química , Nanopartículas del Metal/química , Espectrometría Raman/métodos , Plata/química , Malus/química , Humanos , Frutas/química , Nanotecnología/métodos , Propiedades de Superficie , Contaminación de Alimentos/análisisRESUMEN
BACKGROUND/AIMS: Lemons (Citrus limon ) contain various nutrients and are among the most popular citrus fruit. Besides their antioxidant, anticancer, antibacterial, and anti-inflammatory properties, clinical studies have indicated their anti-allergic properties. METHODS: Using the differential-interference contrast (DIC) microscopy, we examined the effects of lemon juice and peel constituents, such as citric acid, ascorbic acid, hesperetin and eriodictyol, on the degranulation from rat peritoneal mast cells. Using fluorescence imaging with a water-soluble dye, Lucifer Yellow, we also examined their effects on the deformation of the plasma membrane. RESULTS: Lemon juice dose-dependently decreased the number of degranulated mast cells. At concentrations equal to or higher than 0.25 mM, citric acid, hesperetin, and eriodictyol significantly reduced the number of degranulating mast cells in a dose-dependent manner, while ascorbic acid required much higher doses to exert significant effects. At 1 mM, citric acid, hesperetin, and eriodictyol almost completely inhibited exocytosis and washed out the Lucifer Yellow trapped on the mast cell surface, while ascorbic acid did not. CONCLUSION: This study provides in vitro evidence for the first time that lemon constituents, such as citric acid, hesperetin, and eriodictyol, potently exert mast cell-stabilizing properties. These properties are attributable to their inhibitory effects on plasma membrane deformation in degranulating mast cells.
Asunto(s)
Ácido Ascórbico , Citrus , Flavanonas , Hesperidina , Mastocitos , Animales , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Citrus/química , Ratas , Ácido Ascórbico/farmacología , Masculino , Hesperidina/farmacología , Hesperidina/química , Flavanonas/farmacología , Flavanonas/química , Ácido Cítrico/farmacología , Ácido Cítrico/química , Degranulación de la Célula/efectos de los fármacos , Jugos de Frutas y Vegetales/análisis , Peritoneo/citología , Ratas Sprague-Dawley , Exocitosis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Frutas/química , IsoquinolinasRESUMEN
BACKGROUND/AIMS: High Monomeric Polyphenols Berries Extract (HMPBE) is a formula highly rich in polyphenols clinically proven to enhance learning and memory. It is currently used to enhances cognitive performance including accuracy, working memory and concentration. METHODS: Here, we investigated for the first time the beneficial effects of HMPBE in a mouse model of acute and chronic traumatic brain injury (TBI). RESULTS: HMPBE, at the dose of 15 mg/kg was able to reduce histological alteration as well as inflammation and lipid peroxidation. HMPBE ameliorate TBI by improving Nrf-2 pathway, reducing Nf-kb nuclear translocation and apoptosis, and ameliorating behavioral alteration such as anxiety and depression. Moreover, in the chronic model of TBI, HMPBE administration restored the decline of Tyrosine Hydroxylase (TH) and dopamine transporter (DAT) and the accumulation of a-synuclein into the midbrain region. This finding correlates the beneficial effect of HMPBE administration with the onset of parkinsonism related to traumatic brain damage. CONCLUSION: The data may open a window for developing new support strategies to limit the neuroinflammation event of acute and chronic TBI.
Asunto(s)
Frutas , Factor 2 Relacionado con NF-E2 , FN-kappa B , Extractos Vegetales , Polifenoles , Proteína X Asociada a bcl-2 , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Polifenoles/farmacología , Polifenoles/química , Polifenoles/uso terapéutico , Ratones , FN-kappa B/metabolismo , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Frutas/química , Proteína X Asociada a bcl-2/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Tirosina 3-Monooxigenasa/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Apoptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Peroxidación de Lípido/efectos de los fármacosRESUMEN
This study investigates the effects of Aronia berries, their primary anthocyanins and other second metabolites-mimicking dietary anthocyanin consumption-on enhancing muscular myogenesis under chronic inflammation. Murine muscle satellite cells (MuSCs) were cultured ex vivo, allowing for expansion and differentiation into myotubes. Myogenic differentiation was disrupted by TNFα at both early and terminal stages, with treatment using Aronia berries applied at physiologically relevant concentrations alongside TNFα. The results demonstrated that Aronia berries treatments, particularly phenolic metabolites, significantly stimulated the proliferative capacity of MuSCs. Furthermore, Aronia berries treatment enhanced early-stage myogenesis, marked by increased MymX and MyoG expression and nascent myotube formation, with metabolites showing the most pronounced effects. Aronia berry powder and individual anthocyanins exerted milder regulatory effects. Similar trends were observed during terminal differentiation, where Aronia berries treatment promoted myotube growth and inhibited TNFα-induced inflammatory atrophic ubiquitin-conjugating activity. Additionally, the secondary metabolites of Aronia berries significantly prevented muscle-specific ubiquitination in the dexamethasone-induced atrophy model. Overall, the treatment with Aronia berries enhanced myogenesis in a cellular model of chronic muscular inflammation, with Aronia-derived metabolites showing the strongest response, likely through TLR4/NF-κB modulation. In this case, enhanced regeneration capacity and anti-atrophy potential were associated with TLR4/NF-κB modulation.
Asunto(s)
Antocianinas , Diferenciación Celular , Desarrollo de Músculos , Photinia , Células Satélite del Músculo Esquelético , Factor de Necrosis Tumoral alfa , Animales , Antocianinas/farmacología , Antocianinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Diferenciación Celular/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/citología , Photinia/química , Ratones , Células Cultivadas , Frutas/química , Frutas/metabolismo , Ratones Endogámicos C57BL , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/citologíaRESUMEN
In this study, a simple green synthesis of vanadium pentoxide nanoparticles (VNPs) was prepared by the extract of Kaffir lime fruit (Citrus hystrix) as a green reducing and stabilizing agent, along with the investigation of calcination temperature was carried out at 450 and 550 °C. It was affirmed that, at higher temperature (550 °C), the VNPs possessed a high degree crystalline following the construction of (001) lattice diffraction within an increase in crystalline size from 47.12 to 53.51 nm, although the band gap of the materials at 450 °C was lower than that of the VNPs-550 (2.53 versus 2.66 eV, respectively). Besides, the materials were assessed for the potential bioactivities toward antibacterial, antifungal, DNA cleavage, anti-inflammatory, and hemolytic performances. As a result, the antibacterial activity, with minimal inhalation concentration (MIC) < 6.25 µg/mL for both strains, and fungicidal one of the materials depicted the dose-dependent effects. Once, both VNPs exhibited the noticeable efficacy of the DNA microbial damage, meanwhile, the outstanding anti-inflammatory agent was involved with the IC50 of 123.636 and 227.706 µg/mL, accounting for VNPs-450 and VNPs-550, respectively. Furthermore, this study also demonstrated the hemolytic potential of the VNPs materials. These consequences declare the prospects of the VNPs as the smart and alternative material from the green procedure in biomedicine.
Asunto(s)
Antibacterianos , Citrus , Frutas , Extractos Vegetales , Compuestos de Vanadio , Citrus/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Compuestos de Vanadio/química , Compuestos de Vanadio/farmacología , Frutas/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Nanopartículas/química , Pruebas de Sensibilidad Microbiana , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Temperatura , Hemólisis/efectos de los fármacos , Tecnología Química Verde , HumanosRESUMEN
Orange (Citrus sinensis L.) is a common fruit crop widely distributed worldwide with the peel of its fruits representing about 50% of fruit mass. In the current study, orange peel was employed to mediate the synthesis of silver nanoparticles (AgNPs) in a low-cost green approach. Aqueous extracts of suitably-processed peel were prepared using different extraction methods; and their phytochemical profile was identified. Based on phytochemical screening, amount of main phytochemicals, free radical-scavenging ability, reducing power and antioxidant activity, the peel extract prepared by boiling seemed to be the most promising. Thus, major compounds of this extract were identified by gas chromatography-mass spectrometry. Potency of the peel extract to mediate the synthesis of AgNPs was then monitored by visual observation, UV-visible spectroscopy, energy dispersive X-ray analysis, transmission electron microscopy and zetametry. Color change of the reaction mixture to brown and absorption peak at 450 nm indicated AgNPs formation. Characterization of AgNPs revealed spherical shape, size of 30-40 nm, zeta potential of -18.2 mV and yield conversion of 82%. The as-synthesized AgNPs had antioxidant capacity (free radical-scavenging ability, reducing power and antioxidant activity) lower than that of the orange peel extract. However, these biogenic AgNPs had antitumor activity (IC50 of 16 ppm against HCT-116 and 1.6 ppm against HepG2 cell lines) much higher than the peel extract that was completely non-toxic to the considered cell lines.
Asunto(s)
Antineoplásicos , Antioxidantes , Citrus sinensis , Nanopartículas del Metal , Extractos Vegetales , Plata , Citrus sinensis/química , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Antioxidantes/farmacología , Antioxidantes/química , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Frutas/química , Línea Celular Tumoral , Tecnología Química VerdeRESUMEN
BACKGROUND: Red-flesh apples (Malus sieversii f. niedzwetzkyana) have attracted attention from consumers and researchers due to their pleasant appearance and taste. These exotic apples are rich sources of nutrients and health-promoting polyphenols and phenolics. This study aimed to investigate morphological (40 quantitative and 13 qualitative traits) and biochemical (5 traits) characteristics of four socioeconomically important red-fleshed apple populations in North and Northeast region of Iran, which are understudied and under serious extinction risk. RESULTS: The examined characters exhibited wide and statistically significant variations, especially in leaf color (68.86%) and the number of seeds per fruit (61.61%), and more dramatically in the total flavonoids (146.64%) and total phenolics contents (105.81%). There were also strong variations in fresh fruit weight and fruit length, diameter, and flesh thickness. Red, with 34 accessions, was the dominant ripe fruit skin color. All biochemical traits also showed high variations, particularly in total flavonoid content. Red-fleshed Gavramak and Kalateh Khij apples contained the highest biochemical and morphological values, respectively. Principal component analysis (PCA) revealed that the first five principal components together accounted for more than 60.83% variation of the total observed variations. Moreover, the cluster dendrogram analysis based on Ward's method indicated three different clusters based on the characters measured, indicating high variation among the accessions. CONCLUSION: red-flesh apples can be considered suitable sources of natural antioxidants with great potential as healthy foods and nutraceutical applications. Based on the commercial characters, Red-fleshed Gavramak and Kalateh Khij apples showed the highest fruit quality with proper size and thus can be suggested as superior for cultivation or use in breeding programs due to having higher quality fruits.
Asunto(s)
Flavonoides , Frutas , Malus , Malus/anatomía & histología , Irán , Frutas/anatomía & histología , Frutas/química , Flavonoides/análisis , Flavonoides/metabolismo , Fenoles/análisis , Fenoles/metabolismo , ColorRESUMEN
BACKGROUND: Amomum tsao-ko is an important aromatic crop used in medicines and food. It can be categorized into three main types based on the fruit shape: long (L), oval (O), and round (R). However, limited information is available on the volatile substances present in differently shaped A. tsao-ko fruits. This study investigated the characteristics and biosynthesis of volatile organic compounds (VOCs) in fresh and dried A. tsao-ko fruits of different shapes using widely targeted volatilomics and transcriptome analyses. RESULTS: In total, 978 VOCs, primarily terpenoids, esters, and heterocyclic compounds, were detected. The number of differentially accumulated volatile organic compounds (DAVOCs) in dried fruits of various shapes was significantly higher than that in fresh fruits, with terpenoids, esters, and heterocyclic compounds accounting for approximately 50% of the total DAVOCs. Notably, α-phellandrene, identified as a shared differential accumulated terpenoid across various fruit shapes, was detected in both fresh and dried fruits. Through transcriptome analysis, 40 candidate genes implicated in the terpenoid biosynthesis pathway were screened. An integrated analysis of the metabolome and transcriptome revealed that the structural genes HMGR-2, TPS7, TPS5-10, TPS21-3, TPS21-5, TPS21-6, TPS21-7, and TPS21-9, along with 81 transcription factors (including 17 NACs, 16 MYBs, 16 AP2/ERFs, 13 WRKYs, 13 bHLHs, and 6 bZIPs), co-regulate the biosynthesis of volatile terpenoids. CONCLUSIONS: This study expands our understanding of the volatile metabolism profile of A. tsao-ko and provides a solid foundation for future investigations of the mechanisms governing fruit quality.
Asunto(s)
Amomum , Frutas , Perfilación de la Expresión Génica , Terpenos , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/química , Amomum/genética , Amomum/metabolismo , Amomum/química , Terpenos/metabolismo , Transcriptoma , Regulación de la Expresión Génica de las PlantasRESUMEN
BACKGROUND: The Mexican lime (Citrus aurantifolia cv.), widely consumed in Iran and globally, is known for its high perishability. Edible coatings have emerged as a popular method to extend the shelf life of fruits, with xanthan gum-based coatings being particularly favored for their environmental benefits. This study aims to evaluate the effectiveness of an edible coating formulated from xanthan gum, enriched with Spirulina platensis (Sp) and pomegranate seed oil (PSO), in improving the quality and reducing the weight loss of Mexican lime fruit under conditions of 20 ± 2 °C and 50-60% relative humidity. RESULTS: Based on the results, the application of coatings was generally effective in reducing fruit weight loss, with the least weight loss observed in the xanthan gum 0.2%+ Spirulina platensis extract (1%) treatment. Additionally, the levels of total phenols and flavonoids in the treated fruits exceeded those in the control group, with xanthan gum 0.2%+ Spirulina platensis extract (1%) and xanthan gum 0.2% exhibiting the highest concentrations of these compounds. The antioxidant capacity of the fruits was also enhanced by the coatings, surpassing that of the control group, with xanthan gum 0.2%+ Spirulina platensis extract (1%) achieving the highest levels. The treatments significantly suppressed the activity of the polyphenol oxidase (PPO) enzyme, with xanthan gum 0.2% demonstrating the most potent inhibitory effect. Furthermore, the treatments resulted in increased activities of catalase (CAT) and peroxidase (POD) enzymes compared to the control. Except for xanthan gum 0.2%+ pomegranate seed oil (0.05%), all treatments maintained the fruit's greenness (a*) more effectively than the control. CONCLUSIONS: Peel browning is a major factor contributing to the decline in quality and shelf life of lime fruit. The application of 0.1% and 0.2% xanthan gum coatings, as well as a combination of 0.2% xanthan gum and Spirulina platensis extract, significantly inhibited PPO activity and enhanced the activity of CAT and POD and phenolic compound in Mexican lime fruits stored at of 20 ± 2 °C for 24 days. Consequently, these treatments comprehensively preserved lime fruit quality by significantly reducing browning, maintaining green color, and preserving internal quality parameters such as TA, thereby enhancing both visual appeal and overall fruit quality.
Asunto(s)
Aceites de Plantas , Polisacáridos Bacterianos , Granada (Fruta) , Semillas , Spirulina , Spirulina/química , Aceites de Plantas/farmacología , Granada (Fruta)/química , Semillas/química , Frutas/química , Citrus aurantiifolia , Conservación de Alimentos/métodos , Almacenamiento de Alimentos , AntioxidantesRESUMEN
BACKGROUND: Guava is a fruit prone to rapid spoilage following harvest, attributed to continuous and swift physicochemical transformations, leading to substantial postharvest losses. This study explored the efficacy of xanthan gum (XG) coatings applied at various concentrations (0.25, 0.5, and 0.75%) on guava fruits (Gola cultivar) over a 15-day storage period. RESULTS: The results indicated that XG coatings, particularly at 0.75%, substantially mitigated moisture loss and decay, presenting an optimal concentration. The coated fruits exhibited a modified total soluble soluble solids, an increased total titratable acidity, and an enhanced sugar-acid ratio, collectively enhancing overall quality. Furthermore, the XG coatings demonstrated the remarkable ability to preserve bioactive compounds, such as total phenolics, flavonoids, and antioxidants, while minimizing the levels of oxidative stress markers, such as electrolyte leakage, malondialdehyde, and H2O2. The coatings also influenced cell wall components, maintaining levels of hemicellulose, cellulose, and protopectin while reducing water-soluble pectin. Quantitative analysis of ROS-scavenging enzymes, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, revealed significant increases in their activities in the XG-coated fruits compared to those in the control fruits. Specifically, on day 15, the 0.75% XG coating demonstrated the highest SOD and CAT activities while minimizing the reduction in APX activity. Moreover, XG coatings mitigated the activities of fruit-softening enzymes, including pectin methylesterase, polygalacturonase, and cellulase. CONCLUSIONS: This study concludes that XG coatings play a crucial role in preserving postharvest quality of guava fruits by regulating various physiological and biochemical processes. These findings offer valuable insights into the potential application of XG as a natural coating to extend the shelf life and maintain the quality of guava fruits during storage.
Asunto(s)
Frutas , Polisacáridos Bacterianos , Psidium , Psidium/química , Polisacáridos Bacterianos/farmacología , Frutas/química , Frutas/efectos de los fármacos , Conservación de Alimentos/métodos , Antioxidantes/metabolismoRESUMEN
BACKGROUND: The Fructus Ligustri Lucidi, the fruit of Ligustrum lucidum, contains a variety of bioactive compounds, such as flavonoids, triterpenoids, and secoiridoids. The proportions of these compounds vary greatly during the different fruit development periods of Fructus Ligustri Lucidi. However, a clear understanding of how the proportions of the compounds and their regulatory biosynthetic mechanisms change across the different fruit development periods of Fructus Ligustri Lucidi is still lacking. RESULTS: In this study, metabolite profiling and transcriptome analysis of six fruit development periods (45 DAF, 75 DAF, 112 DAF, 135 DAF, 170 DAF, and 195 DAF) were performed. Seventy compounds were tentatively identified, of which secoiridoids were the most abundant. Eleven identified compounds were quantified by high performance liquid chromatography. A total of 103,058 unigenes were obtained from six periods of Fructus Ligustri Lucidi. Furthermore, candidate genes involved in triterpenoids, phenylethanols, and oleoside-type secoiridoid biosynthesis were identified and analyzed. The in vitro enzyme activities of nine glycosyltransferases involved in salidroside biosynthesis revealed that they can catalyze trysol and hydroxytyrosol to salidroside and hydroxylsalidroside. CONCLUSIONS: These results provide valuable information to clarify the profile and molecular regulatory mechanisms of metabolite biosynthesis, and also in optimizing the harvest time of this fruit.
Asunto(s)
Frutas , Ligustrum , Metaboloma , Transcriptoma , Frutas/genética , Frutas/metabolismo , Frutas/química , Ligustrum/genética , Ligustrum/metabolismo , Ligustrum/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las PlantasRESUMEN
BACKGROUND: Zanthoxylum bungeanum Maxim. is widely distributed across China, and the aroma of its peel is primarily determined by its volatile components. In this study, we analyzed the characteristics of volatile components in Z. bungeanum peels from different regions and investigated their correlation with climatic factors. RESULTS: The results identified 126 compounds in Z. bungeanum, with 27 compounds exhibiting distinct odor characteristics. Linalool was the most abundant, with an average relative content of 21.664%. The volatile oil of Z. bungeanum predominantly features spicy, floral, citrus, and mint aromas. The classification results indicated a significant difference in elevation at the ZB10 collection points in Shaanxi Province compared to other groups. Temperature, average annual precipitation, and wind speed were crucial factors influencing the accumulation of volatile components. CONCLUSIONS: This study is beneficial for enhancing the quality of Z. bungeanum, expanding the understanding of how climatic factors influence the accumulation of volatile substances, and promoting agricultural practices in regions with similar climatic conditions.
Asunto(s)
Clima , Aceites Volátiles , Compuestos Orgánicos Volátiles , Zanthoxylum , Zanthoxylum/química , Compuestos Orgánicos Volátiles/análisis , China , Aceites Volátiles/metabolismo , Odorantes/análisis , Frutas/químicaRESUMEN
BACKGROUND: Geographical factors affect the nutritional, therapeutic and commercial values of fruits. Dragon fruit (Hylocereus spp) is a popular fruit in Asia and a potential functional food with diverse pharmacological attributes. Although it is produced in various localities, the information related to the altitudinal variation of dragon fruit nutrients and active compounds is scarce. Hence, this study aimed to investigate the variations in metabolite profiles of H. polyrhizus (variety Jindu1) fruit pulps from three different altitudes of China, including Wangmo (WM, 650 m), Luodian (LD, 420 m), and Zhenning (ZN, 356 m). Jindu1 is the main cultivated pitaya variety in Guizhou province, China. RESULTS: The LC-MS (liquid chromatography-mass spectroscopy)-based widely targeted metabolic profiling identified 645 metabolites, of which flavonoids (22.64%), lipids (13.80%), phenolic acids (12.40%), amino acids and derivatives (10.39%), alkaloids (8.84%), and organic acids (8.37%) were dominant. Multivariate analyses unveiled that the metabolite profiles of the fruit differed regarding the altitude. Fruits from WM (highest altitude) were prime in quality, with higher levels of flavonoids, alkaloids, nucleotides and derivatives, amino acids and derivatives, and vitamins. Fruits from LD and ZN had the highest relative content of phenolic acids and terpenoids, respectively. We identified 69 significantly differentially accumulated metabolites across the pulps of the fruits from the three locations. KEGG analysis revealed that flavone and flavonol biosynthesis and isoflavonoid biosynthesis were the most differentially regulated. It was noteworthy that most active flavonoid compounds exhibited an increasing accumulation pattern along with the increase in altitude. Vitexin and isovitexin were the major differentially accumulated flavonoids. Furthermore, we identified two potential metabolic biomarkers (vitexin and kaempferol 3-O-[2-O-ß-D-galactose-6-O-a-L-rhamnose]-ß-D-glucoside) to discriminate between dragon fruits from different geographical origins. CONCLUSION: Our findings provide insights into metabolic changes in dragon fruits grown at different altitudes. Furthermore, they show that growing pitaya at high altitudes can produce fruit with higher levels of bioactive compounds, particularly flavonoids.
Asunto(s)
Altitud , Cactaceae , Frutas , Metabolómica , Cactaceae/metabolismo , Cactaceae/química , China , Cromatografía Líquida de Alta Presión , Cromatografía Liquida/métodos , Flavonoides/metabolismo , Frutas/metabolismo , Frutas/química , Cromatografía Líquida con Espectrometría de Masas , Metaboloma , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodosRESUMEN
Chilli peppers are widely consumed for their pungency, as used in flavoring the food and has many pharmaceutical and medicinal properties. Based on these properties an experiment was held using 83 varieties of chilli (Hot pepper and sweet pepper) were grown in suitable environment using Augment Block design and evaluated for fruit pungency and phytochemical contents using high proficiency liquid chromatography. Analysis of variance (ANOVA) of traits showed highly significant for all traits except for fruit length and capsaicin contents. The value of Least significant increase (LSI)was ranged 0.27-1289.9 for all traits showed high variation among varieties. Highly significant correlation was found among fruit diameter to fruit weight 0.98, while moderate to high correlation was present among all traits. The most pungent genotype 24,634 was 4.8 g in weight, while the least pungent genotypes i.e. PPE-311 (32.8 g), green wonder (40.67) had higher in weight. The genotypes 24,627, 32,344, 32,368 and 1108 marked as higher number of seeds in their placental region. It was observed that chilli genotype 24,621 had maximum length with considerable high amount of pungency act as novel cultivar. Principal component analysis (PCA) showed the high variability of 46.97 for two PCs with the eigen value 2.6 and 1.63 was recorded. Biplot analysis showed a considerable variability for fruit pungency, while huge variability was found for all traits among given varieties. PPE-311, T5 and T3 are found as highly divergent for all traits. The findings of this study are instrumental for selecting parents to improve desirable traits in future chilli pepper breeding programs. It will help plant/vegetable breeders for development of highly nutrient and pungent varieties and attractive for the consumer of food sector.
Asunto(s)
Capsicum , Frutas , Variación Genética , Fitoquímicos , Frutas/genética , Frutas/química , Cromatografía Líquida de Alta Presión , Capsicum/genética , Capsicum/química , Genotipo , Semillas/genética , Semillas/químicaRESUMEN
BACKGROUND: While water availability is important for quality at harvest, it also continues to influence the quality of pomegranates during storage. Reducing the amount of irrigation, in addition to water saving has different effects on bioactive compounds of pomegranate during storage time. This study was conducted to determine the influence of irrigation level on fruit quality changes during storage period of two commercial Iranian pomegranate cultivars ('Shishecap' and 'Malas-Yazdi'). Sustained deficit irrigation (SDI) was applied to plants that received 75% (moderate stress) or 50% (severe stress) of their normal water requirement. A control group received 100% of their water requirement. RESULTS: At harvest time and during storage period, fruit weight loss and some biochemical traits such as fruit total soluble solids (TSS), titratable acidity (TA), pH, total phenolic compounds (TPC), total anthocyanins content (TAC), antioxidant activity and vitamin C were measured in pomegranate fruits. Also, the quantity of the produced product was also measured at the time of harvesting. Results indicated that control fruits exhibited more weight loss than those produced under water deficit during the storage period in both years. According to results, fruit TSS, TAC, and antioxidant activity significantly increased during storage period but fruit TA and vitamin C significantly decreased throughout storage period. Also, reduction in irrigation level resulted in a decline in the yield. CONCLUSIONS: This study revealed a crucial link between irrigation level and the quality of pomegranate fruits, despite a reduction in the yield. This included affecting weight loss and the content of bioactive compounds, both at harvest and during storage.
Asunto(s)
Riego Agrícola , Almacenamiento de Alimentos , Frutas , Valor Nutritivo , Granada (Fruta) , Granada (Fruta)/fisiología , Frutas/crecimiento & desarrollo , Frutas/química , Riego Agrícola/métodos , Almacenamiento de Alimentos/métodos , Antioxidantes/metabolismo , Ácido Ascórbico/análisis , Ácido Ascórbico/metabolismo , Irán , Fenoles/metabolismo , Fenoles/análisis , Antocianinas/análisis , Antocianinas/metabolismo , AguaRESUMEN
Bitter melon (Momordica charantia L.) is well-known for its high protein, steroid, alkaloid, mineral, lipid, triterpene, and phenolic compound content, as well as its medicinal properties, particularly its anti-diabetic effects. To investigate the impact of elicitors on the morphology and phytochemical characteristics of bitter melon (Jounpouri cultivar) over two consecutive years (2018 and 2019), we conducted a field experiment. The study aimed to determine the effects of Ethrel, brassinosteroids (BRs), and k-carrageenan on yield and the production of anti-diabetic agents in M. charantia farm crops. The elicitors included ten levels, ranging from a control group to Ethrel (100, 300, and 600 mg l- 1), brassinosteroids (BRs) (0.1, 0.5, and 1 mg l- 1), and k-carrageenan (200, 400, and 600 mg l- 1). These characteristics included leaf area, leaf length, leaf width, fruit parameters, carbohydrate content, total phenols and flavonoid accumulation, antioxidant activity, total acid, ascorbic acid, momordicine, and charantin. Across both years, we observed the highest flavonoid accumulation and antioxidant activity in the Ethrel treatment group. Specifically, applying 0.5 mg l- 1 BRs and 300 mg l- 1 Ethrel led to an 18.8% and 14.8% increase in momordicine content, respectively. All elicitor treatments, particularly at 0.1 mg l- 1 BRs, significantly increased leaf area, leaf length, and leaf width compared to the control group in both cropping years. Additionally, the application of all elicitors resulted in increased fruit weight, dimensions, and yield over the two consecutive years. Notably, in 2018, 600 mg l- 1 Ethrel contributed to enhanced fruit weight and yield, while in 2019, 0.5 mg l- 1 BRs exhibited the same effect. Metabolic and physiological changes in bitter squash induced by employed elicitors over two different years (2018-2019) are strongly dependent on a variety of environmental factors such as temperature and rainfall. In conclusion, using BRs as an elicitor has the potential to optimize the health benefits of bitter melon by increasing the content of two bioactive molecules, momordicine and charantin.
Asunto(s)
Brasinoesteroides , Carragenina , Momordica charantia , Fitoquímicos , Momordica charantia/química , Momordica charantia/efectos de los fármacos , Brasinoesteroides/farmacología , Carragenina/farmacología , Frutas/química , Frutas/efectos de los fármacos , Antioxidantes/metabolismo , Fenoles/metabolismoRESUMEN
BACKGROUND: The changes in the physical structures of the products are the first things that consumers pay attention to. Therefore, it is essential and significant importance to take measures to improve the storage conditions of products and to minimize quality losses. The main objective of the study was to evaluate the effects of agro-ecological conditions on bioactive compounds and fruit quality of kiwifruit during cold storage. The 'Hayward' kiwifruit cultivar grown in Ordu, Giresun, Samsun, Rize, and Yalova provinces of Türkiye were kept at 0 ± 0.5 °C and relative humidity of 90 ± 5% for 150 d. RESULTS: The kiwifruit obtained from the provinces of Yalova, Ordu, and Giresun experienced the least weight loss during cold storage. Kiwifruit from Samsun and Yalova provinces had the lowest fruit firmness, while those from Giresun had the highest on 150th d. The changes were observed in the skin and flesh colors of the kiwifruit belonging to all cultivation areas. The amount of vitamin C increased throughout the study in all ecological conditions, but the Yalova province's kiwifruit was found to have the highest levels. Additionally, in all ecologies, kiwifruit showed an increase in antioxidant activity, total phenolics, and total flavonoids, all known to have beneficial effects on human health. The total antioxidant activity and total phenolics were highest in the kiwifruit of Yalova province, but the total flavonoids were found in the kiwifruit of Rize and Ordu provinces. CONCLUSION: The study's results revealed that kiwifruit's bioactive compounds and quality parameters may vary depending on the cultivation area. Additionally, it can be stated that Yalova province kiwifruit experiences the least amount of postharvest quality losses.
Asunto(s)
Actinidia , Frío , Almacenamiento de Alimentos , Frutas , Actinidia/crecimiento & desarrollo , Actinidia/química , Actinidia/fisiología , Frutas/crecimiento & desarrollo , Frutas/química , Almacenamiento de Alimentos/métodos , Ácido Ascórbico/análisis , Ácido Ascórbico/metabolismo , Fitoquímicos , Antioxidantes/metabolismo , Agricultura/métodosRESUMEN
This study was carried out to investigate the effects of melatonin applications on postharvest quality changes of organic and conventionally grown plum fruit. Melatonin was applied in 0, 50, and 100 µmol L- 1 for organic and conventional samples. The fruits were stored at + 2.0 °C and 90% relative humidity for 28 days. During the storage period, the color, weight loss, firmness, Soluble solids concentration (SSC), titratable acidity (TA), pH, total antioxidant content, and total phenolics were evaluated at 7-day intervals. While no effect of melatonin applications on weight loss of organically grown plums was observed, it was determined that weight loss decreased as the dose of melatonin increased in conventionally grown plums. The lowest weight loss during storage was determined in conventionally grown plums treated with 100 µmolL- 1 melatonin. It was observed that the firmness values decreased as the storage period increased in both cultivation methods. The firmness decreased as the dose of melatonin application increased in organically grown plums, while the firmness increased as the dose of melatonin application increased in conventional cultivation. Melatonin application did not positively affect SSC, pH, and color values. However, it was determined that the mean TA values decreased as the dose of melatonin increased in both cultivation methods. When the total phenol content of organic and conventional plums was examined, it was determined that melatonin application decreased the number of phenolic compounds. The highest phenolic content was determined in the control samples. The total amount of antioxidants was 1.71 µmol TE g- 1 on the 28th day in the highest (100 µmol L- 1) melatonin-treated conventionally grown plums.