Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.898
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 555(7697): 457-462, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29513653

RESUMEN

Diverse subsets of cortical interneurons have vital roles in higher-order brain functions. To investigate how this diversity is generated, here we used single-cell RNA sequencing to profile the transcriptomes of mouse cells collected along a developmental time course. Heterogeneity within mitotic progenitors in the ganglionic eminences is driven by a highly conserved maturation trajectory, alongside eminence-specific transcription factor expression that seeds the emergence of later diversity. Upon becoming postmitotic, progenitors diverge and differentiate into transcriptionally distinct states, including an interneuron precursor state. By integrating datasets across developmental time points, we identified shared sources of transcriptomic heterogeneity between adult interneurons and their precursors, and uncovered the embryonic emergence of cardinal interneuron subtypes. Our analysis revealed that the transcription factor Mef2c, which is linked to various neuropsychiatric and neurodevelopmental disorders, delineates early precursors of parvalbumin-expressing neurons, and is essential for their development. These findings shed new light on the molecular diversification of early inhibitory precursors, and identify gene modules that may influence the specification of human interneuron subtypes.


Asunto(s)
Diferenciación Celular , Interneuronas/citología , Interneuronas/fisiología , Inhibición Neural , Corteza Visual/citología , Animales , Diferenciación Celular/genética , Embrión de Mamíferos/citología , Femenino , Ganglios/citología , Ganglios/metabolismo , Perfilación de la Expresión Génica , Humanos , Factores de Transcripción MEF2/metabolismo , Masculino , Ratones , Mitosis/genética , Parvalbúminas/metabolismo , ARN Citoplasmático Pequeño/genética , Análisis de la Célula Individual
2.
Development ; 147(7)2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32122989

RESUMEN

The Gsx2 homeodomain transcription factor promotes neural progenitor identity in the lateral ganglionic eminence (LGE), despite upregulating the neurogenic factor Ascl1. How this balance in maturation is maintained is unclear. Here, we show that Gsx2 and Ascl1 are co-expressed in subapical progenitors that have unique transcriptional signatures in LGE ventricular zone (VZ) cells. Moreover, whereas Ascl1 misexpression promotes neurogenesis in dorsal telencephalic progenitors, the co-expression of Gsx2 with Ascl1 inhibits neurogenesis. Using luciferase assays, we found that Gsx2 reduces the ability of Ascl1 to activate gene expression in a dose-dependent and DNA binding-independent manner. Furthermore, Gsx2 physically interacts with the basic helix-loop-helix (bHLH) domain of Ascl1, and DNA-binding assays demonstrated that this interaction interferes with the ability of Ascl1 to bind DNA. Finally, we modified a proximity ligation assay for tissue sections and found that Ascl1-Gsx2 interactions are enriched within LGE VZ progenitors, whereas Ascl1-Tcf3 (E-protein) interactions predominate in the subventricular zone. Thus, Gsx2 contributes to the balance between progenitor maintenance and neurogenesis by physically interacting with Ascl1, interfering with its DNA binding and limiting neurogenesis within LGE progenitors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/embriología , Proliferación Celular , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Encéfalo/metabolismo , Proliferación Celular/genética , Células Cultivadas , Drosophila , Embrión de Mamíferos , Femenino , Ganglios/citología , Ganglios/embriología , Proteínas de Homeodominio/genética , Homeostasis/genética , Masculino , Ratones , Ratones Transgénicos , Unión Proteica , Telencéfalo/citología , Telencéfalo/embriología
3.
Nature ; 544(7648): 88-91, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28321127

RESUMEN

The enteric nervous system of jawed vertebrates arises primarily from vagal neural crest cells that migrate to the foregut and subsequently colonize and innervate the entire gastrointestinal tract. Here we examine development of the enteric nervous system in the basal jawless vertebrate the sea lamprey (Petromyzon marinus) to gain insight into its evolutionary origin. Surprisingly, we find no evidence for the existence of a vagally derived enteric neural crest population in the lamprey. Rather, labelling with the lipophilic dye DiI shows that late-migrating cells, originating from the trunk neural tube and associated with nerve fibres, differentiate into neurons within the gut wall and typhlosole. We propose that these trunk-derived neural crest cells may be homologous to Schwann cell precursors, recently shown in mammalian embryos to populate post-embryonic parasympathetic ganglia, including enteric ganglia. Our results suggest that neural-crest-derived Schwann cell precursors made an important contribution to the ancient enteric nervous system of early jawless vertebrates, a role that was largely subsumed by vagal neural crest cells in early gnathostomes.


Asunto(s)
Evolución Biológica , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/embriología , Cresta Neural/citología , Neuronas/citología , Petromyzon/embriología , Torso/embriología , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Ganglios/citología , Ganglios/embriología , Fibras Nerviosas , Cresta Neural/embriología , Tubo Neural/citología , Tubo Neural/embriología , Células de Schwann/citología , Nervio Vago/citología , Nervio Vago/embriología
4.
Nature ; 548(7667): 330-333, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28792937

RESUMEN

In mammals, taste buds typically contain 50-100 tightly packed taste-receptor cells (TRCs), representing all five basic qualities: sweet, sour, bitter, salty and umami. Notably, mature taste cells have life spans of only 5-20 days and, consequently, are constantly replenished by differentiation of taste stem cells. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (that is, ensuring that a labelled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, and so on), we examined how new connections are specified to retain fidelity of signal transmission. Here we show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (SEMA3A and SEMA7A). We demonstrate that targeted expression of SEMA3A or SEMA7A in different classes of TRCs produces peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered mice with bitter neurons that now responded to sweet tastants, sweet neurons that responded to bitter or sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labelled-line sensory circuit preserves signalling integrity despite rapid and stochastic turnover of receptor cells.


Asunto(s)
Células Madre/citología , Células Madre/metabolismo , Papilas Gustativas/citología , Papilas Gustativas/metabolismo , Gusto/fisiología , Animales , Antígenos CD/metabolismo , Ganglios/citología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Semaforina-3A/deficiencia , Semaforina-3A/metabolismo , Semaforinas/metabolismo , Células Madre/efectos de los fármacos , Edulcorantes/farmacología , Gusto/efectos de los fármacos , Papilas Gustativas/efectos de los fármacos
5.
J Neurosci ; 41(14): 3105-3119, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33637558

RESUMEN

Interneurons contribute to the complexity of neural circuits and maintenance of normal brain function. Rodent interneurons originate in embryonic ganglionic eminences, but developmental origins in other species are less understood. Here, we show that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents, delineating a distinct medial ganglionic eminence (MGE) progenitor domain. On the basis of Nkx2.1, Lhx6, and Dlx2 expression, in vitro differentiation into neurons expressing GABA, and robust migratory capacity in explant assays, we propose that cortical and hippocampal interneurons originate from a porcine MGE region. Following xenotransplantation into adult male and female rat hippocampus, we further demonstrate that porcine MGE progenitors, like those from rodents, migrate and differentiate into morphologically distinct interneurons expressing GABA. Our findings reveal that basic rules for interneuron development are conserved across species, and that porcine embryonic MGE progenitors could serve as a valuable source for interneuron-based xenotransplantation therapies.SIGNIFICANCE STATEMENT Here we demonstrate that porcine medial ganglionic eminence, like rodents, exhibit a distinct transcriptional and interneuron-specific antibody profile, in vitro migratory capacity and are amenable to xenotransplantation. This is the first comprehensive examination of embryonic interneuron origins in the pig; and because a rich neurodevelopmental literature on embryonic mouse medial ganglionic eminence exists (with some additional characterizations in other species, e.g., monkey and human), our work allows direct neurodevelopmental comparisons with this literature.


Asunto(s)
Ganglios/embriología , Ganglios/trasplante , Interneuronas/trasplante , Eminencia Media/embriología , Eminencia Media/trasplante , Trasplante Heterólogo/métodos , Animales , Femenino , Ganglios/citología , Masculino , Eminencia Media/citología , Ratas , Ratas Sprague-Dawley , Porcinos , Técnicas de Cultivo de Tejidos/métodos
6.
Proc Natl Acad Sci U S A ; 116(45): 22833-22843, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31636217

RESUMEN

Birdsong, like human speech, consists of a sequence of temporally precise movements acquired through vocal learning. The learning of such sequential vocalizations depends on the neural function of the motor cortex and basal ganglia. However, it is unknown how the connections between cortical and basal ganglia components contribute to vocal motor skill learning, as mammalian motor cortices serve multiple types of motor action and most experimentally tractable animals do not exhibit vocal learning. Here, we leveraged the zebra finch, a songbird, as an animal model to explore the function of the connectivity between cortex-like (HVC) and basal ganglia (area X), connected by HVC(X) projection neurons with temporally precise firing during singing. By specifically ablating HVC(X) neurons, juvenile zebra finches failed to copy tutored syllable acoustics and developed temporally unstable songs with less sequence consistency. In contrast, HVC(X)-ablated adults did not alter their learned song structure, but generated acoustic fluctuations and responded to auditory feedback disruption by the introduction of song deterioration, as did normal adults. These results indicate that the corticobasal ganglia input is important for learning the acoustic and temporal aspects of song structure, but not for generating vocal fluctuations that contribute to the maintenance of an already learned vocal pattern.


Asunto(s)
Comunicación Animal , Corteza Cerebral/fisiología , Ganglios/fisiología , Aprendizaje , Neuronas/fisiología , Pájaros Cantores/fisiología , Animales , Corteza Cerebral/citología , Ganglios/citología
8.
J Virol ; 93(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30404798

RESUMEN

Rhesus macaques intrabronchially inoculated with simian varicella virus (SVV), the counterpart of human varicella-zoster virus (VZV), developed primary infection with viremia and rash, which resolved upon clearance of viremia, followed by the establishment of latency. To assess the role of CD4 T cell immunity in reactivation, monkeys were treated with a single 50-mg/kg dose of a humanized monoclonal anti-CD4 antibody; within 1 week, circulating CD4 T cells were reduced from 40 to 60% to 5 to 30% of the total T cell population and remained low for 2 months. Very low viremia was seen only in some of the treated monkeys. Zoster rash developed after 7 days in the monkey with the most extensive CD4 T cell depletion (5%) and in all other monkeys at 10 to 49 days posttreatment, with recurrent zoster in one treated monkey. SVV DNA was detected in the lung from two of five monkeys, in bronchial lymph nodes from one of the five monkeys, and in ganglia from at least two dermatomes in three of five monkeys. Immunofluorescence analysis of skin rash, lungs, lymph nodes, and ganglia revealed SVV ORF63 protein at the following sites: sweat glands in skin; type II cells in lung alveoli, macrophages, and dendritic cells in lymph nodes; and the neuronal cytoplasm of ganglia. Detection of SVV antigen in multiple tissues upon CD4 T cell depletion and virus reactivation suggests a critical role for CD4 T cell immunity in controlling varicella virus latency.IMPORTANCE Reactivation of latent VZV in humans can result in serious neurological complications. VZV-specific cell-mediated immunity is critical for the maintenance of latency. Similar to VZV in humans, SVV causes varicella in monkeys, establishes latency in ganglia, and reactivates to produce shingles. Here, we show that depletion of CD4 T cells in rhesus macaques results in SVV reactivation, with virus antigens found in zoster rash and SVV DNA and antigens found in lungs, lymph nodes, and ganglia. These results suggest the critical role of CD4 T cell immunity in controlling varicella virus latency.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por Herpesviridae/inmunología , Depleción Linfocítica , Piel/inmunología , Varicellovirus/aislamiento & purificación , Activación Viral/inmunología , Latencia del Virus/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/virología , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/virología , Modelos Animales de Enfermedad , Femenino , Ganglios/citología , Ganglios/inmunología , Ganglios/virología , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Pulmón/citología , Pulmón/inmunología , Pulmón/virología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/virología , Macaca mulatta , Masculino , Piel/citología , Piel/virología
9.
Artículo en Inglés | MEDLINE | ID: mdl-31838572

RESUMEN

The butterfly Papilio xuthus has acute tetrachromatic color vision. Its eyes are furnished with eight spectral classes of photoreceptors, situated in three types of ommatidia, randomly distributed in the retinal mosaic. Here, we investigated early chromatic information processing by recording spectral, angular, and polarization sensitivities of photoreceptors and lamina monopolar cells (LMCs). We identified three spectral classes of LMCs whose spectral sensitivities corresponded to weighted linear sums of the spectral sensitivities of the photoreceptors present in the three ommatidial types. In ~ 25% of the photoreceptor axons, the spectral sensitivities differed from those recorded at the photoreceptor cell bodies. These axons showed spectral opponency, most likely mediated by chloride ion currents through histaminergic interphotoreceptor synapses. The opponency was most prominent in the processes of the long visual fibers in the medulla. We recalculated the wavelength discrimination function using the noise-limited opponency model to reflect the new spectral sensitivity data and found that it matched well with the behaviorally determined function. Our results reveal opponency at the first stage of Papilio's visual system, indicating that spectral information is preprocessed with signals from photoreceptors within each ommatidium in the lamina, before being conveyed downstream by the long visual fibers and the LMCs.


Asunto(s)
Mariposas Diurnas/fisiología , Canales de Cloruro/metabolismo , Percepción de Color , Visión de Colores , Ganglios/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Animales , Mariposas Diurnas/citología , Mariposas Diurnas/metabolismo , Cloruros/metabolismo , Potenciales Evocados Visuales , Femenino , Ganglios/citología , Ganglios/metabolismo , Histamina/metabolismo , Activación del Canal Iónico/genética , Masculino , Estimulación Luminosa , Células Fotorreceptoras de Invertebrados/metabolismo , Sinapsis/fisiología , Vías Visuales/fisiología
10.
Parasitol Res ; 119(1): 317-319, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31782012

RESUMEN

Muscle cells of a digenean fish blood fluke, Aporocotyle simplex, aggregate along the periphery of the cerebral ganglia. Solitary myocytons and sarcoplasmic processes with muscle fibres give rise to long, narrow lamellate projections, which are visible along the periphery and within ganglia. These ultrastructural observations suggest a switching of glial functions to muscle cells and represent additional evidence of the phylogenetic lability of glial cells in bilaterians.


Asunto(s)
Células Musculares/clasificación , Neuroglía/clasificación , Schistosomatidae/citología , Animales , Enfermedades de los Peces/parasitología , Ganglios/citología , Células Musculares/citología , Células Musculares/ultraestructura , Neuroglía/citología , Neuroglía/ultraestructura , Schistosomatidae/anatomía & histología , Schistosomatidae/ultraestructura , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/veterinaria
11.
J Neurosci ; 38(5): 1100-1113, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29246927

RESUMEN

Many Preterm-born children suffer from neurobehavioral disorders. Premature birth terminates the hypoxic in utero environment and supply of maternal hormones. As the production of interneurons continues until the end of pregnancy, we hypothesized that premature birth would disrupt interneuron production and that restoration of the hypoxic milieu or estrogen treatment might reverse interneuron generation. To test these hypotheses, we compared interneuronal progenitors in the medial ganglionic eminences (MGEs), lateral ganglionic eminences (LGEs), and caudal ganglionic eminences (CGEs) between preterm-born [born on embryonic day (E) 29; examined on postnatal day (D) 3 and D7] and term-born (born on E32; examined on D0 and D4) rabbits at equivalent postconceptional ages. We found that both total and cycling Nkx2.1+, Dlx2+, and Sox2+ cells were more abundant in the MGEs of preterm rabbits at D3 compared with term rabbits at D0, but not in D7 preterm relative to D4 term pups. Total Nkx2.1+ progenitors were also more numerous in the LGEs of preterm pups at D3 compared with term rabbits at D0. Dlx2+ cells in CGEs were comparable between preterm and term pups. Simulation of hypoxia by dimethyloxalylglycine treatment did not affect the number of interneuronal progenitors. However, estrogen treatment reduced the density of total and proliferating Nkx2.1+ and Dlx2+ cells in the MGEs and enhanced Ascl1 transcription factor. Estrogen treatment also reduced Ki67, c-Myc, and phosphorylation of retinoblastoma protein, suggesting inhibition of the G1-to-S phase transition. Hence, preterm birth disrupts interneuron neurogenesis in the MGE and estrogen treatment reverses interneuron neurogenesis in preterm newborns by cell-cycle inhibition and elevation of Ascl1. We speculate that estrogen replacement might partially restore neurogenesis in human premature infants.SIGNIFICANCE STATEMENT Prematurity results in developmental delays and neurobehavioral disorders, which might be ascribed to disturbances in the development of cortical interneurons. Here, we show that preterm birth disrupts interneuron neurogenesis in the medial ganglionic eminence (MGE) and, more importantly, that estrogen treatment reverses this perturbation in the population of interneuron progenitors in the MGE. The estrogen seems to restore neurogenesis by inhibiting the cell cycle and elevating Ascl1 expression. As preterm birth causes plasma estrogen level to drop 100-fold, the estrogen replacement in preterm infants is physiological. We speculate that estrogen replacement might ameliorate disruption in production of interneurons in human premature infants.


Asunto(s)
Animales Recién Nacidos/fisiología , Estrógenos/uso terapéutico , Interneuronas/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Animales , Femenino , Ganglios/citología , Ganglios/crecimiento & desarrollo , Ganglios/metabolismo , Proteínas de Homeodominio/metabolismo , Hipoxia Encefálica/inducido químicamente , Hipoxia Encefálica/patología , Antígeno Ki-67/metabolismo , Células-Madre Neurales/metabolismo , Embarazo , Nacimiento Prematuro , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Proteínas Proto-Oncogénicas c-myc/genética , Conejos , Factores de Transcripción SOXB1/metabolismo , Factor Nuclear Tiroideo 1/metabolismo
12.
J Anat ; 233(4): 401-410, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30022489

RESUMEN

The enteric nervous system shares embryological, morphological, neurochemical, and functional features with the central nervous system. In addition to neurons and glia, the CNS includes a third component, microglia, which are functionally and immunophenotypically similar to macrophages, but a similar cell type has not previously been identified in enteric ganglia. In this study we identify a population of macrophages in the enteric ganglia, intermingling with the neurons and glia. These intraganglionic macrophages (IMs) are highly ramified and express the hematopoietic marker CD45, major histocompatibility complex (MHC) class II antigen, and chB6, a marker specific for B cells and microglia in avians. These IMs do not express antigens typically associated with T cells or dendritic cells. The CD45+ /ChB6+ /MHCII+ signature supports a hematopoietic origin and this was confirmed using intestinal chimeras in GFP-transgenic chick embryos. The presence of green fluorescent protein positive (GFP+) /CD45+ cells in the intestinal graft ENS confirms that IMs residing within enteric ganglia have a hematopoietic origin. IMs are also found in the ganglia of CSF1RGFP chicken and CX3CR1GFP mice. Based on the expression pattern and location of IMs in avians and rodents, we conclude that they represent a novel non-neural crest-derived microglia-like cell population within the enteric ganglia.


Asunto(s)
Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/inmunología , Macrófagos/citología , Macrófagos/inmunología , Animales , Embrión de Pollo , Ganglios/citología , Ganglios/inmunología , Neuroinmunomodulación/fisiología
13.
Zoolog Sci ; 35(3): 276-280, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29882499

RESUMEN

In the central nervous system of insects, motor patterns are generated in the thoracic ganglia under the control of brain, where sensory information is integrated and behavioral decisions are made. Previously, we established neural activity-mapping methods using an immediate early gene, BmHr38, as a neural activity marker in the brain of male silkmoth Bombyx mori. In the present study, to gain insights into neural mechanisms of motor-pattern generation in the thoracic ganglia, we investigated expression of BmHr38 in response to sex pheromone-induced courtship behavior. Levels of BmHr38 expression were strongly correlated between the brain and thoracic ganglia, suggesting that neural activity in the thoracic ganglia is tightly controlled by the brain. In situ hybridization of BmHr38 revealed that 20-30% of thoracic neurons are activated by courtship behavior. Using serial sections, we constructed a comprehensive map of courtship behaviorinduced activity in the thoracic ganglia. These results provide important clues into how complex courtship behavior is generated in the neural circuits of thoracic ganglia.


Asunto(s)
Bombyx/fisiología , Ganglios/fisiología , Regulación de la Expresión Génica/fisiología , Genes Inmediatos-Precoces/fisiología , Conducta Sexual Animal/fisiología , Animales , Ganglios/citología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
14.
Development ; 141(24): 4681-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25395455

RESUMEN

Bilaterian neurogenesis is characterized by the generation of diverse neural cell types from dedicated neural stem/progenitor cells (NPCs). However, the evolutionary origin of NPCs is unclear, as neurogenesis in representatives of the bilaterian sister group, the Cnidaria, occurs via interstitial stem cells that also possess broader, non-neural, developmental potential. We address this question by analysing neurogenesis in an anthozoan cnidarian, Nematostella vectensis. Using a transgenic reporter line, we show that NvSoxB(2) - an orthologue of bilaterian SoxB genes that have conserved roles in neurogenesis - is expressed in a cell population that gives rise to sensory neurons, ganglion neurons and nematocytes: the three primary neural cell types of cnidarians. EdU labelling together with in situ hybridization, and within the NvSoxB(2)::mOrange transgenic line, demonstrates that cells express NvSoxB(2) before mitosis and identifies asymmetric behaviours of sibling cells within NvSoxB(2)(+) lineages. Morpholino-mediated gene knockdown of NvSoxB(2) blocks the formation of all three neural cell types, thereby identifying NvSoxB(2) as an essential positive regulator of nervous system development. Our results demonstrate that diverse neural cell types derive from an NvSoxB(2)-expressing population of mitotic cells in Nematostella and that SoxB genes are ancient components of a neurogenic program. To our knowledge this is the first description of a lineage-restricted, multipotent cell population outside the Bilateria and we propose that neurogenesis via dedicated, SoxB-expressing NPCs predates the split between cnidarians and bilaterians.


Asunto(s)
Evolución Biológica , Células Madre Multipotentes/fisiología , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Factores de Transcripción SOXB2/genética , Anémonas de Mar/citología , Anémonas de Mar/genética , Animales , Linaje de la Célula/fisiología , Ganglios/citología , Ganglios/metabolismo , Técnicas de Silenciamiento del Gen , Técnicas de Transferencia de Gen , Inmunohistoquímica , Hibridación in Situ , Hibridación Fluorescente in Situ , Morfolinos/genética , Nematocisto/citología , Nematocisto/metabolismo , Neurogénesis/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB2/metabolismo , Células Receptoras Sensoriales/metabolismo
15.
Cell Tissue Res ; 370(2): 195-209, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28856468

RESUMEN

Several concepts developed in the nineteenth century have formed the basis of much of our neuroanatomical teaching today. Not all of these were based on solid evidence nor have withstood the test of time. Recent evidence on the evolution and development of the autonomic nervous system, combined with molecular insights into the development and diversification of motor neurons, challenges some of the ideas held for over 100 years about the organization of autonomic motor outflow. This review provides an overview of the original ideas and quality of supporting data and contrasts this with a more accurate and in depth insight provided by studies using modern techniques. Several lines of data demonstrate that branchial motor neurons are a distinct motor neuron population within the vertebrate brainstem, from which parasympathetic visceral motor neurons of the brainstem evolved. The lack of an autonomic nervous system in jawless vertebrates implies that spinal visceral motor neurons evolved out of spinal somatic motor neurons. Consistent with the evolutionary origin of brainstem parasympathetic motor neurons out of branchial motor neurons and spinal sympathetic motor neurons out of spinal motor neurons is the recent revision of the organization of the autonomic nervous system into a cranial parasympathetic and a spinal sympathetic division (e.g., there is no sacral parasympathetic division). We propose a new nomenclature that takes all of these new insights into account and avoids the conceptual misunderstandings and incorrect interpretation of limited and technically inferior data inherent in the old nomenclature.


Asunto(s)
Sistema Nervioso Autónomo/citología , Evolución Biológica , Neuronas Motoras/clasificación , Neuronas Motoras/citología , Médula Espinal/citología , Animales , Sistema Nervioso Autónomo/anatomía & histología , Sistema Nervioso Autónomo/embriología , Tipificación del Cuerpo , Tronco Encefálico/anatomía & histología , Tronco Encefálico/citología , Tronco Encefálico/embriología , Ganglios/anatomía & histología , Ganglios/citología , Ganglios/embriología , Humanos , Cresta Neural/anatomía & histología , Cresta Neural/citología , Cresta Neural/embriología , Médula Espinal/anatomía & histología , Médula Espinal/embriología
16.
Pol J Vet Sci ; 20(2): 377-385, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28865207

RESUMEN

The study was carried out on three 4-month old female pigs. All the animals were deeply anesthetized and transcardially perfused with 4% buffered paraformaldehyde (pH 7.4). Left and right superior vagal ganglia (SVG) were collected and processed for immunofluorescence labeling method. The preparations were examined under a Zeiss LSM 710 confocal microscope equipped with adequate filter block. Neurons forming SVG were round or oval in shape with a round nucleus in the center. The majority of them (52%) were medium (M) (31-50 µm in diameter) while 7% and 41% were small (S) (up to 30µm in diameter) or large (L) (above 50 µm in diameter) in size, respectively. Double-labeling immunofluorescence revealed that SVG neurons stained for CGRP (approx. 57%; among them 37%, 9% and 54% were M, S and L in size, respectively), SP (14.5%; 72.4% M, 3.4% S, 24.2% L), VACHT (26%; 63% M, 24% S and 13% L), GAL (14%; 57% M, 29% S, 14% L), NPY (12%; 53% M, 12% S, 35% L), Met-Enk (5%; 40% M, 6% S and 54% L), PACAP (15%; 52% M, 24% S and 24% L), VIP (6.3%; 67% M, 8% S and 25% L), and NOS-positive (6%; 31% M and 69% L). The most abundant populations of intraganglionic nerve fibers were those which stained for CGRP or GAL, whereas only single SP-, PACAP- or Met-ENK-positive nerve terminals were observed.


Asunto(s)
Ganglios/citología , Ganglios/fisiología , Inmunohistoquímica/veterinaria , Neuronas/fisiología , Porcinos/fisiología , Animales , Femenino , Nervio Vago/anatomía & histología , Nervio Vago/fisiología
17.
J Neurosci ; 35(26): 9717-29, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26134654

RESUMEN

Taste perception begins in the oral cavity by interactions of taste stimuli with specific receptors. Specific subsets of taste receptor cells (TRCs) are activated upon tastant stimulation and transmit taste signals to afferent nerve fibers and ultimately to the brain. How specific TRCs impinge on the innervating nerves and how the activation of a subset of TRCs leads to the discrimination of tastants of different qualities and intensities is incompletely understood. To investigate the organization of taste circuits, we used gene targeting to express the transsynaptic tracer barley lectin (BL) in the gustatory system of mice. Because TRCs are not synaptically connected with the afferent nerve fibers, we first analyzed tracer production and transfer within the taste buds (TBs). Surprisingly, we found that BL is laterally transferred across all cell types in TBs of mice expressing the tracer under control of the endogenous Tas1r1 and Tas2r131 promotor, respectively. Furthermore, although we detected the BL tracer in both ganglia and brain, we also found local low-level Tas1r1 and Tas2r131 gene, and thus tracer expression in these tissues. Finally, we identified the Tas1r1 and Tas2r131-expressing cells in the peripheral and CNS using a binary genetic approach. Together, our data demonstrate that genetic transsynaptic tracing from bitter and umami receptor cells does not selectively label taste-specific neuronal circuits and reveal local taste receptor gene expression in the gustatory ganglia and the brain. SIGNIFICANCE STATEMENT: Previous papers described the organization of taste pathways in mice expressing a transsynaptic tracer from transgenes in bitter or sweet/umami-sensing taste receptor cells. However, reported results differ dramatically regarding the numbers of synapses crossed and the reduction of signal intensity after each transfer step. Nevertheless, all groups claimed this approach appropriate for quality-specific visualization of taste pathways. In the present study, we demonstrate that genetic transsynaptic tracing originating from umami and bitter taste receptor cells does not selectively label taste quality-specific neuronal circuits due to lateral transfer of the tracer in the taste bud and taste receptor expression in sensory ganglia and brain. Moreover, we visualized for the first time taste receptor-expressing cells in the PNS and CNS.


Asunto(s)
Encéfalo/citología , Ganglios/citología , Regulación de la Expresión Génica/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Encéfalo/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Lectinas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Fosfolipasa C beta/metabolismo , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/genética , Papilas Gustativas/citología , Aglutininas del Germen de Trigo/metabolismo
18.
Histochem Cell Biol ; 145(2): 175-84, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26537243

RESUMEN

Winged helix proteins have critical roles in a variety of developmental processes. During a screening for genes expressed in the developing forebrain, we identified HSPC280, a non-typical winged helix protein, which shares similarity with a protein-protein interaction domain found in the proteins of the actin-binding Rho-activating protein family. In this work, we analyzed HSPC280 expression during mouse development as well as during neuronal differentiation of mouse Neuro2a cells. HSPC280 expression is tightly regulated; during mouse development, it was detected predominantly in the ganglionic eminences of the ventral telencephalon, from their appearance at E11.5 to P0, with the highest levels between E13.5 and E15.5, a period that correlates with the peak of neurogenesis in these structures. Comparative expression analysis of HSPC280 with Dlx2, cyclinD2 and Lhx6 revealed that, within the ganglionic eminences, HSPC280 was restricted in the proliferating cell population of the subventricular zone, in a pattern similar to that of cyclinD2. Finally, we showed that HSPC280 is a nuclear protein which, when overexpressed in Neuro2a cells, it inhibited neuronal differentiation in vitro, suggesting its involvement in the mechanisms controlling neural progenitor cells proliferation.


Asunto(s)
Diferenciación Celular , Factores de Transcripción Forkhead/biosíntesis , Factores de Transcripción Forkhead/metabolismo , Ganglios/citología , Ganglios/metabolismo , Ventrículos Laterales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Animales , Femenino , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL , Telencéfalo/citología , Telencéfalo/metabolismo
19.
Genesis ; 53(11): 709-17, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26454009

RESUMEN

We have established a novel Cre mouse line, using genomic elements encompassing the Nrp2 locus, present within a bacterial artificial chromosome clone. By crossing this Cre driver line to R26R LacZ reporter mice, we have documented the temporal expression and lineage traced tissues in which Cre is expressed. Nrp2-Cre drives expression in primitive blood cells arising from the yolk sac, venous and lymphatic endothelial cells, peripheral sensory ganglia, and the lung bud. This mouse line will provide a new tool to researchers wishing to study the development of various tissues and organs in which this Cre driver is expressed, as well as allow tissue-specific knockout of genes of interest to study protein function. This work also presents the first evidence for expression of Nrp2 protein in a mesodermal progenitor with restricted hematopoietic potential, which will significantly advance the study of primitive erythropoiesis. genesis 53:709-717, 2015. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Linaje de la Célula , Integrasas/biosíntesis , Ratones Transgénicos , Neuropilina-2/genética , Células Madre/metabolismo , Animales , Desarrollo Embrionario/genética , Endotelio Vascular/citología , Eritrocitos/metabolismo , Ganglios/citología , Células Madre Hematopoyéticas/citología , Modelos Biológicos , Cresta Neural/citología , Células-Madre Neurales/citología
20.
Am J Physiol Lung Cell Mol Physiol ; 308(9): L922-30, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25747962

RESUMEN

Rat pups prenatally exposed to nicotine (PNE) present apneic (lethal ventilatory arrest) responses during severe hypoxia. To clarify whether these responses are of central origin, we tested PNE effects on ventilation and diaphragm electromyography (EMGdi) during hypoxia in conscious rat pups. PNE produced apnea (lethal ventilatory arrest) identical to EMGdi silencing during hypoxia, indicating a central origin of this apneic response. We further asked whether PNE would sensitize bronchopulmonary C-fibers (PCFs), a key player in generating central apnea, with increase of the density and transient receptor potential cation channel subfamily V member 1 (TRPV1) expression of C-fibers/neurons in the nodose/jugular (N/J) ganglia and neurotrophic factors in the airways and lungs. We compared 1) ventilatory and pulmonary C-neural responses to right atrial bolus injection of capsaicin (CAP, 0.5 µg/kg), 2) bronchial substance P-immunoreactive (SP-IR) fiber density, 3) gene and protein expressions of TRPV1 in the ganglia, and 4) nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) protein in bronchoalveolar lavage fluid (BALF) and TrkA and TrkB genes in the ganglia between control and PNE pups. PNE markedly strengthened the PCF-mediated apneic response to CAP via increasing pulmonary C-neural sensitivity. PNE also enhanced bronchial SP-IR fiber density and N/J ganglia neural TRPV1 expression associated with increased gene expression of TrkA in the N/G ganglia and decreased NGF and BDNF in BALF. Our results suggest that PNE enhances PCF sensitivity likely through increasing PCF density and TRPV1 expression via upregulation of neural TrkA and downregulation of pulmonary BDNF, which may contribute to the PNE-promoted central apnea (lethal ventilatory arrest) during hypoxia.


Asunto(s)
Apnea/inducido químicamente , Nicotina/farmacología , Efectos Tardíos de la Exposición Prenatal , Fumar/efectos adversos , Muerte Súbita del Lactante/etiología , Animales , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Líquido del Lavado Bronquioalveolar/química , Capsaicina/farmacología , Diafragma/fisiopatología , Electromiografía , Femenino , Ganglios/citología , Ganglios/metabolismo , Humanos , Hipoxia , Recién Nacido , Masculino , Cloruro de Metacolina/farmacología , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/metabolismo , Factor de Crecimiento Nervioso/biosíntesis , Factor de Crecimiento Nervioso/genética , Ganglio Nudoso/metabolismo , Embarazo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Receptor trkA/genética , Receptor trkB/genética , Proteínas Recombinantes , Fármacos del Sistema Sensorial/farmacología , Sustancia P/inmunología , Canales Catiónicos TRPV/biosíntesis , Canales Catiónicos TRPV/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA