Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Med Sci ; 21(9): 1681-1688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006850

RESUMEN

Hypertension affects a large number of individuals globally and is a common cause of nephropathy, stroke, ischaemic heart disease and other vascular diseases. While many anti-hypertensive medications are used safely and effectively in clinic practice, controlling hypertensive complications solely by reducing blood pressure (BP) can be challenging. α-Mangostin, a xanthone molecule extracted from the pericarp of Garcinia mangostana L., has shown various beneficial effects such as anti-tumor, anti-hyperuricemia, and anti-inflammatory properties. However, the effects of α-Mangostin on hypertension remain unknown. In this study, we observed that α-Mangostin significantly decreased systolic and diastolic blood pressure in spontaneously hypertensive rats (SHR), possibly through the down-regulation of angiotensin II (Ang II). We also identified early markers of hypertensive nephropathy, including urinary N-acetyl-ß-D-glucosaminidase (NAG) and ß2-microglobulin (ß2-MG), which were reduced by α-Mangostin treatment. Mechanistic studies suggested that α-Mangostin may inhibit renal tubular epithelial-to-mesenchymal transformation (EMT) by down-regulating the TGF-ß signaling pathway, thus potentially offering a new therapeutic approach for hypertension and hypertensive nephropathy.


Asunto(s)
Angiotensina II , Presión Sanguínea , Transición Epitelial-Mesenquimal , Hipertensión , Xantonas , Animales , Humanos , Masculino , Ratas , Angiotensina II/metabolismo , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Línea Celular , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Garcinia mangostana/química , Hipertensión/tratamiento farmacológico , Hipertensión/patología , Hipertensión Renal/tratamiento farmacológico , Hipertensión Renal/patología , Nefritis , Ratas Endogámicas SHR , Transducción de Señal/efectos de los fármacos , Xantonas/farmacología , Xantonas/uso terapéutico
2.
J Eur Acad Dermatol Venereol ; 38 Suppl 7: 12-20, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39051131

RESUMEN

BACKGROUND: Acne vulgaris is a common chronic inflammatory disorder of the pilosebaceous unit, characterized by papules, pustules and/or nodules manifesting primarily on the face and/or upper back that can leave scars, post-inflammatory hyperpigmentation (PIH) and erythema (PIE). OBJECTIVE: To evaluate the anti-inflammatory properties of a protein-free sap extruded from Rhealba® oat plantlets and a Garcinia mangostana extract on Cutibacterium acnes-induced inflammation in vitro and assess the tolerability and efficacy of a dermocosmetic product containing these actives in subjects with mild-to-moderate acne. METHODS: Monocyte-derived dendritic cells (Mo-DCs) from acne patients were stimulated with a planktonic culture of C. acnes and cytokine production was evaluated before and after addition of the test extracts by RT-PCR and ELISA. The clinical study was conducted in subjects with mild-to-moderate acne who applied the product to their face and upper back twice-daily for 2 months. RESULTS: Cutibacterium acnes-induced IL-6, IL-12p40, IL-10 and TNFα synthesis was reduced by the addition of the Garcinia mangostana extract and oat sap in vitro. The clinical study included 54 subjects. The 2-month, twice-daily application of the test product to the whole face and acne-affected areas on the upper back was well tolerated. It led to significant decreases in the number of retentional (-21% for 69% of subjects at D57) and inflammatory (-35% for 79% of subjects at D57) acne lesions, as well as a decrease in Global Acne Evaluation severity scores (2.5 at D1, 2.2 at D29 and 2.1 at D57). The dermatologist also rated the product as effective or very effective in most subjects with PIE (82%; n = 33/40) and PIH (70%; n = 8/11) at D57. CONCLUSION: The actives demonstrated anti-inflammatory effects in vitro, and the dermocosmetic product showed good clinical efficacy and tolerability in subjects with mild-to-moderate acne, supporting the use of this product in acne management.


Asunto(s)
Acné Vulgar , Avena , Garcinia mangostana , Extractos Vegetales , Humanos , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Garcinia mangostana/química , Extractos Vegetales/farmacología , Femenino , Masculino , Adulto , Adulto Joven , Adolescente , Índice de Severidad de la Enfermedad , Propionibacterium acnes/efectos de los fármacos
3.
Pharmacol Res ; 188: 106630, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36581166

RESUMEN

Mangosteen (Garcinia mangostana L.), also known as the "queen of fruits", is a tropical fruit of the Clusiacea family. While native to Southeast Asian countries, such as Thailand, Indonesia, Malaysia, Myanmar, Sri Lanka, India, and the Philippines, the fruit has gained popularity in the United States due to its health-promoting attributes. In traditional medicine, mangosteen has been used to treat a variety of illnesses, ranging from dysentery to wound healing. Mangosteen has been shown to exhibit numerous biological and pharmacological activities, such as antioxidant, anti-inflammatory, antibacterial, antifungal, antimalarial, antidiabetic, and anticancer properties. Disease-preventative and therapeutic properties of mangosteen have been ascribed to secondary metabolites called xanthones, present in several parts of the tree, including the pericarp, fruit rind, peel, stem bark, root bark, and leaf. Of the 68 mangosteen xanthones identified so far, the most widely-studied are α-mangostin and γ-mangostin. Emerging studies have found that mangosteen constituents and phytochemicals exert encouraging antineoplastic effects against a myriad of human malignancies. While there are a growing number of individual research papers on the anticancer properties of mangosteen, a complete and critical evaluation of published experimental findings has not been accomplished. Accordingly, the objective of this work is to present an in-depth analysis of the cancer preventive and anticancer potential of mangosteen constituents, with a special emphasis on the associated cellular and molecular mechanisms. Moreover, the bioavailability, pharmacokinetics, and safety of mangosteen-derived agents together with current challenges and future research avenues are also discussed.


Asunto(s)
Garcinia mangostana , Xantonas , Humanos , Garcinia mangostana/química , Garcinia mangostana/metabolismo , Xantonas/farmacología , Xantonas/uso terapéutico , Disponibilidad Biológica , Frutas/química , Extractos Vegetales/farmacología
4.
Molecules ; 28(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836835

RESUMEN

α-Mangostin, a major xanthone found in mangosteen (Garcinia mangostana L., Family Clusiaceae) pericarp, has been shown to exhibit anticancer effects through multiple mechanisms of action. However, its effects on immune checkpoint programmed death ligand-1 (PD-L1) have not been studied. This study investigated the effects of mangosteen pericarp extract and its active compound α-mangostin on PD-L1 by in vitro and in silico analyses. HPLC analysis showed that α-mangostin contained about 30% w/w of crude ethanol extract of mangosteen pericarp. In vitro experiments in MDA-MB-231 triple-negative breast cancer cells showed that α-mangostin and the ethanol extract significantly inhibit PD-L1 expression when treated for 72 h with 10 µM or 10 µg/mL, respectively, and partially inhibit glycosylation of PD-L1 when compared to untreated controls. In silico analysis revealed that α-mangostin effectively binds inside PD-L1 dimer pockets and that the complex was stable throughout the 100 ns simulation, suggesting that α-mangostin stabilized the dimer form that could potentially lead to degradation of PD-L1. The ADMET prediction showed that α-mangostin is lipophilic and has high plasma protein binding, suggesting its greater distribution to tissues and its ability to penetrate adipose tissue such as breast cancer. These findings suggest that α-mangostin-rich mangosteen pericarp extract could potentially be applied as a functional ingredient for cancer chemoprevention.


Asunto(s)
Garcinia mangostana , Xantonas , Garcinia mangostana/química , Antígeno B7-H1 , Xantonas/farmacología , Xantonas/química , Extractos Vegetales/farmacología , Etanol
5.
Molecules ; 28(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446849

RESUMEN

ACE2 and Mpro in the pathology of SARS-CoV-2 show great potential in developing COVID-19 drugs as therapeutic targets, due to their roles as the "gate" of viral entry and viral reproduction. Of the many potential compounds for ACE2 and Mpro inhibition, α-mangostin is a promising candidate. Unfortunately, the potential of α-mangostin as a secondary metabolite with the anti-SARS-CoV-2 activity is hindered due to its low solubility in water. Other xanthone isolates, which also possess the xanthone core structure like α-mangostin, are predicted to be potential alternatives to α-mangostin in COVID-19 treatment, addressing the low drug-likeness of α-mangostin. This study aims to assess the potential of xanthone derivative compounds in the pericarp of mangosteen (Garcinia mangostana L.) through computational study. The study was conducted through screening activity using molecular docking study, drug-likeness prediction using Lipinski's rule of five filtration, pharmacokinetic and toxicity prediction to evaluate the safety profile, and molecular dynamic study to evaluate the stability of formed interactions. The research results showed that there were 11 compounds with high potential to inhibit ACE2 and 12 compounds to inhibit Mpro. However, only garcinone B, in addition to being indicated as active, also possesses a drug-likeness, pharmacokinetic, and toxicity profile that was suitable. The molecular dynamic study exhibited proper stability interaction between garcinone B with ACE2 and Mpro. Therefore, garcinone B, as a xanthone derivative isolate compound, has promising potential for further study as a COVID-19 treatment as an ACE2 and Mpro inhibitor.


Asunto(s)
COVID-19 , Garcinia mangostana , Xantonas , Humanos , Garcinia mangostana/química , Enzima Convertidora de Angiotensina 2 , Simulación del Acoplamiento Molecular , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Xantonas/farmacología , Xantonas/uso terapéutico , Xantonas/química
6.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5817-5821, 2023 Nov.
Artículo en Zh | MEDLINE | ID: mdl-38114177

RESUMEN

Eight compounds were isolated from ethyl acetate fraction of 80% ethanol extract of the hulls of Garcinia mangostana by silica gel, Sephadex LH-20 column chromatography, as well as prep-HPLC methods. By HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the eight compounds were identified as 16-en mangostenone E(1), α-mangostin(2), 1,7-dihydroxy-2-(3-methy-lbut-2-enyl)-3-methoxyxanthone(3), cratoxyxanthone(4), 2,6-dimethoxy-para-benzoquinone(5), methyl orselinate(6), ficusol(7), and 4-(4-carboxy-2-methoxyphenoxy)-3,5-dimethoxybenzoic acid(8). Compound 1 was a new xanthone, and compound 4 was a xanthone dimer, compound 5 was a naphthoquinone. All compounds were isolated from this plant for the first time except compounds 2 and 3. Cytotoxic bioassay suggested that compounds 1, 2 and 4 possessed moderate cytotoxicity, suppressing HeLa cell line with IC_(50) va-lues of 24.3, 35.5 and 17.1 µmol·L~(-1), respectively. Compound 4 also could suppress K562 cells with an IC_(50) value of 39.8 µmol·L~(-1).


Asunto(s)
Antineoplásicos , Garcinia mangostana , Garcinia , Xantonas , Humanos , Garcinia mangostana/química , Células HeLa , Espectroscopía de Resonancia Magnética , Xantonas/farmacología , Garcinia/química , Extractos Vegetales/química , Estructura Molecular
7.
Lett Appl Microbiol ; 75(5): 1319-1329, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35934942

RESUMEN

The aim of this study is to assess the antifungal action of Averrhoa bilimbi fruit and Garcinia mangostana pericarp ethanolic extracts in altering the morphology and causing cellular damage of Fusarium oxysporum, Fusarium proliferatum, Colletotrichum gloeosporioides and Lasiodiplodia theobromae. The pathogens were cultured on media containing both extracts individually and carbendazim as positive control, whereas media alone as negative control. All samples were processed for microscopy observations using scanning (SEM) and transmission electron (TEM) microscopes. Observation via SEM showed significant alterations in the hyphae of F. oxysporum, F. proliferatum and C. gloeosporioides compared to the control in which the hyphae were in normal form. However, no significant alteration in hyphae had been observed in the treated plate compared to the control for L. theobromae. The development of calcium carbonate crystals was also observed abundantly in control compared to treated pathogens for F. oxysporum and F. proliferatum only. This indicated that the plant extracts can inhibit some metabolic processes in the pathogens too. Observations via TEM had been conducted for F. proliferatum and C. gloeosporioides, respectively. The results showed disintegration of cytoplasmic organelles and cell wall, intense vacuolization and lyses part of fungal cells. The plant extracts have equivalent or even greater effects compared to commercial fungicide carbendazim.


Asunto(s)
Averrhoa , Fungicidas Industriales , Garcinia mangostana , Garcinia mangostana/química , Averrhoa/química , Frutas/química , Antifúngicos/farmacología , Microscopía , Fungicidas Industriales/farmacología , Fungicidas Industriales/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Etanol/análisis , Carbonato de Calcio
8.
J Asian Nat Prod Res ; 24(7): 624-633, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34762536

RESUMEN

Two new prenylated xanthones, mangoxanthones A-B (1-2), together with four known compounds 3-6, were isolated from the ethanol extract of the pericarp of Garcinia mangostana. The structures of these compounds have been elucidated based on spectroscopic analysis. The analysis results of chiral HPLC revealed compounds 1 and 2 were scalemic mixtures respectively. All isolated compounds were biologically evaluated for their α-glucosidase and α-amylase inhibitory effects using in-vitro assays. Compound 1 showed moderate inhibitory activities against α-glucosidase and α-amylase with IC50 of 29.06 ± 1.86 and 22.74 ± 2.07 µM, respectively. Molecular docking predicted the binding sites of compound 1 to α-glucosidase and α-amylase. A preliminary structure-activity relationship was discussed.


Asunto(s)
Garcinia mangostana , Garcinia , Xantonas , Frutas/química , Garcinia mangostana/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Xantonas/química , Xantonas/farmacología , alfa-Amilasas/análisis , alfa-Glucosidasas
9.
Molecules ; 27(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36557908

RESUMEN

Xanthones are significant bioactive compounds and secondary metabolites in mangosteen pericarps. A xanthone is a phenolic compound and versatile scaffold that consists of a tricyclic xanthene-9-one structure. A xanthone may exist in glycosides, aglycones, monomers or polymers. It is well known that xanthones possess a multitude of beneficial properties, including antioxidant activity, anti-inflammatory activity, and antimicrobial properties. Additionally, xanthones can be used as raw material and/or an ingredient in many food, pharmaceutical, and cosmetic applications. Although xanthones can be used in various therapeutic and functional applications, their properties and stability are determined by their extraction procedures. Extracting high-quality xanthones from mangosteen with effective therapeutic effects could be challenging if the extraction method is insufficient. Although several extraction processes are in use today, their efficiency has not yet been rigorously evaluated. Therefore, selecting an appropriate extraction procedure is imperative to recover substantial yields of xanthones with enhanced functionality from mangosteens. Hence, the present review will assist in establishing a precise scenario for finding the most appropriate extraction method for xanthones from mangosteen pericarp by critically analyzing various conventional and unconventional extraction methods and their ability to preserve the stability and biological effects of xanthones.


Asunto(s)
Garcinia mangostana , Xantonas , Garcinia mangostana/química , Frutas/química , Extractos Vegetales/química , Antioxidantes/química , Xantonas/química
10.
Molecules ; 27(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630761

RESUMEN

Digestive enzymes such α-amylase (AA), α-glucosidase (AG) and pancreatic lipase (PL), play an important role in the metabolism of carbohydrates and lipids, being attractive therapeutic targets for the treatment of type 2 diabetes and obesity. Garcinia mangostana is an interesting species because there have been identified xanthones with the potential to inhibit these enzymes. In this study, the multitarget inhibitory potential of xanthones from G. mangostana against AA, AG and PL was assessed. The methodology included the isolation and identification of bioactive xanthones, the synthesis of some derivatives and a molecular docking study. The chemical study allowed the isolation of five xanthones (1-5). Six derivatives (6-11) were synthesized from the major compound, highlighting the proposal of a new solvent-free methodology with microwave irradiation for obtaining aromatic compounds with tetrahydropyran cycle. Compounds with multitarget activity correspond to 2, 4, 5, 6 and 9, highlighting 6 with IC50 values of 33.3 µM on AA, 69.2 µM on AG and 164.4 µM on PL. Enzymatic kinetics and molecular docking studies showed that the bioactive xanthones are mainly competitive inhibitors on AA, mixed inhibitors on AG and non-competitive inhibitors on PL. The molecular coupling study established that the presence of methoxy, hydroxyl and carbonyl groups are important in the activity and interaction of polyfunctional xanthones, highlighting their importance depending on the mode of inhibition.


Asunto(s)
Diabetes Mellitus Tipo 2 , Garcinia mangostana , Xantonas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Garcinia mangostana/química , Lipasa , Simulación del Acoplamiento Molecular , Xantonas/química , alfa-Amilasas , alfa-Glucosidasas
11.
Virol J ; 18(1): 47, 2021 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-33639977

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV), a serious health problem in several tropical countries, is the causative agent of chikungunya fever. Approved antiviral therapies or vaccines for the treatment or prevention of CHIKV infections are not available. As diverse natural phenolic compounds have been shown to possess antiviral activities, we explored the antiviral activity of α-Mangostin, a xanthanoid, against CHIKV infection. METHODS: The in vitro prophylactic and therapeutic effects of α-Mangostin on CHIKV replication in Vero E6 cells were investigated by administering it under pre, post and cotreatment conditions. The antiviral activity was determined by foci forming unit assay, quantitative RT-PCR and cell-based immune-fluorescence assay. The molecular mechanism of inhibitory action was further proposed using in silico molecular docking studies. RESULTS: In vitro studies revealed that 8 µM α-Mangostin completely inhibited CHIKV infectivity under the cotreatment condition. CHIKV replication was also inhibited in virus-infected mice. This is the first in vivo study which clearly showed that α-Mangostin is effective in vivo by significantly reducing virus replication in serum and muscles. Molecular docking indicated that α-Mangostin can efficiently interact with the E2-E1 heterodimeric glycoprotein and the ADP-ribose binding cavity of the nsP3 macrodomain. CONCLUSIONS: The findings suggest that α-Mangostin can inhibit CHIKV infection and replication through possible interaction with multiple CHIKV target proteins and might act as a prophylactic/therapeutic agent against CHIKV.


Asunto(s)
Antivirales/farmacología , Virus Chikungunya , Garcinia mangostana , Xantonas/farmacología , Animales , Fiebre Chikungunya/tratamiento farmacológico , Virus Chikungunya/efectos de los fármacos , Chlorocebus aethiops , Garcinia mangostana/química , Ratones , Simulación del Acoplamiento Molecular , Células Vero , Replicación Viral/efectos de los fármacos
12.
Molecules ; 26(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34500680

RESUMEN

The pharmacokinetic (PK) change in a drug by co-administered herbal products can alter the efficacy and toxicity. In the circumstances that herb-drug combinations have been increasingly attempted to alleviate Alzheimer's disease (AD), the PK evaluation of herb-drug interaction (HDI) is necessary. The change in systemic exposure as well as target tissue distribution of the drug have been issued in HDIs. Recently, the memory-enhancing effects of water extract of mangosteen pericarp (WMP) has been reported, suggesting a potential for the combination of WMP and donepezil (DNP) for AD treatment. Thus, it was evaluated how WMP affects the PK change of donepezil, including systemic exposure and tissue distribution in mice after simultaneous oral administration of DNP with WMP. Firstly, co-treatment of WMP and donepezil showed a stronger inhibitory effect (by 23.0%) on the neurotoxicity induced by Aß(25-35) in SH-SY5Y neuroblastoma cells than donepezil alone, suggesting that the combination of WMP and donepezil may be more effective in moderating neurotoxicity than donepezil alone. In PK interaction, WMP increased donepezil concentration in the brain at 4 h (by 63.6%) after administration without affecting systemic exposure of donepezil. Taken together, our results suggest that WMP might be used in combination with DNP as a therapy for AD.


Asunto(s)
Donepezilo/química , Garcinia mangostana/química , Agua/química , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo , Modelos Animales de Enfermedad , Ratones
13.
Molecules ; 26(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919710

RESUMEN

In recent years, instead of the use of chemical substances, alternative substances, especially plant extracts, have been characterized for an active packaging of antibacterial elements. In this study, the peels of mangosteen (Garcinia mangostana), rambutan (Nephelium lappaceum), and mango (Mangifera indica) were extracted to obtain bioactive compound by microwave-assisted extraction (MAE) and maceration with water, ethanol 95% and water-ethanol (40:60%). All extracts contained phenolics and flavonoids. However, mangosteen peel extracted by MAE and maceration with water/ethanol (MT-MAE-W/E and MT-Ma-W/E, respectively) contained higher phenolic and flavonoid contents, and exhibited greater antibacterial activity against Staphylococcus aureus and Escherichia coli. Thus, both extracts were analyzed by liquid chromatograph-mass spectrometer (LC-MS) analysis, α-mangostin conferring antibacterial property was found in both extracts. The MT-MAE-W/E and MT-Ma-W/E films exhibited 30.22 ± 2.14 and 30.60 ± 2.83 mm of growth inhibition zones against S. aureus and 26.50 ± 1.60 and 26.93 ± 3.92 mm of growth inhibition zones against E. coli. These clear zones were wider than its crude extract approximately 3 times, possibly because the film formulation enhanced antibacterial activity with sustained release of active compound. Thus, the mangosteen extracts have potential to be used as an antibacterial compound in active packaging.


Asunto(s)
Antibacterianos/farmacología , Frutas/química , Derivados de la Hipromelosa/química , Extractos Vegetales/química , Embalaje de Productos , Escherichia coli/efectos de los fármacos , Flavonoides/análisis , Garcinia mangostana/química , Mangifera/química , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Microondas , Fenoles/análisis , Quercetina/química , Sapindaceae/química , Staphylococcus aureus/efectos de los fármacos , Xantonas/análisis , Xantonas/química
14.
Molecules ; 26(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068232

RESUMEN

In this study, a potential hard tissue substitute was mimicked using collagen/mangosteen porous scaffolds. Collagen was extracted from Tilapia fish skin and mangosteen from the waste peel of the respective fruit. Sodium trimetaphosphate was used for the phosphorylation of these scaffolds to improve the nucleation sites for the mineralization process. Phosphate groups were incorporated in the collagen structure as confirmed by their attenuated total reflection Fourier transform infrared (ATR-FTIR) bands. The phosphorylation and mangosteen addition increased the thermal stability of the collagen triple helix structure, as demonstrated by differential scanning calorimetry (DSC) and thermogravimetry (TGA) characterizations. Mineralization was successfully achieved, and the presence of calcium phosphate was visualized by scanning electron microscopy (SEM). Nevertheless, the porous structure was maintained, which is an essential characteristic for the desired application. The deposited mineral was amorphous calcium phosphate, as confirmed by energy dispersive X-ray spectroscopy (EDX) results.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Huesos/fisiología , Calcificación Fisiológica , Colágeno/farmacología , Garcinia mangostana/química , Piel/química , Andamios del Tejido/química , Animales , Huesos/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Fosfatos de Calcio/química , Rastreo Diferencial de Calorimetría , Peces , Fosforilación/efectos de los fármacos , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termogravimetría
15.
Anal Chem ; 92(13): 8793-8801, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32479074

RESUMEN

Whether chemists or biologists, researchers dealing with metabolomics require tools to decipher complex mixtures. As a part of metabolomics and initially dedicated to identifying bioactive natural products, dereplication aims at reducing the usual time-consuming process of known compounds isolation. Mass spectrometry and nuclear magnetic resonance are the most commonly reported analytical tools during dereplication analysis. Though it has low sensitivity, 13C NMR has many advantages for such a study. Notably, it is nonspecific allowing simultaneous high-resolution analysis of any organic compounds including stereoisomers. Since NMR spectrometers nowadays provide useful data sets in a reasonable time frame, we have embarked upon writing software dedicated to 13C NMR dereplication. The present study describes the development of a freely distributed algorithm, namely MixONat and its ability to help researchers decipher complex mixtures. Based on Python 3.5, MixONat analyses a {1H}-13C NMR spectrum optionally combined with DEPT-135 and 90 data-to distinguish carbon types (i.e., CH3, CH2, CH, and C)-as well as a MW filtering. The software requires predicted or experimental carbon chemical shifts (δc) databases and displays results that can be refined based on user interactions. As a proof of concept, this 13C NMR dereplication strategy was evaluated on mixtures of increasing complexity and exhibiting pharmaceutical (poppy alkaloids), nutritional (rosemary extracts) or cosmetics (mangosteen peel extract) applications. Associated results were compared with other methods commonly used for dereplication. MixONat gave coherent results that rapidly oriented the user toward the correct structural types of secondary metabolites, allowing the user to distinguish between structurally close natural products, including stereoisomers.


Asunto(s)
Productos Biológicos/química , Espectroscopía de Resonancia Magnética/métodos , Programas Informáticos , Algoritmos , Alcaloides/química , Isótopos de Carbono/química , Bases de Datos de Compuestos Químicos , Garcinia mangostana/química , Garcinia mangostana/metabolismo , Papaver/química , Papaver/metabolismo , Extractos Vegetales/química , Rosmarinus/química , Rosmarinus/metabolismo
16.
Bioorg Med Chem Lett ; 30(20): 127494, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32795625

RESUMEN

Five isolated xanthones from the C. cochinchinense and G. mangostana were evaluated and tested for antibacterial activities. Isolated 4 and 5 exhibited potent anti-MRSA and P. aeruginosa activity, but showed poor pharmacokinetic properties via ADMET prediction. It led us to improve pharmacokinetic properties of 4 and 5 by partially modifying them in acidic condition yielding fourteen analogues. It was found that analogues 4b, 4d and 5b possessed proper pharmacokinetic properties, while only 4b exhibited the best anti-MRSA and P. aeruginosa activity. The SEM results indicated that 4b may interact with or damage the cell wall of MRSA and P. aeruginosa. Moreover, a combination of 4b and vancomycin exhibits synergistic effect against both MRSA and P. aeruginosa at MIC value of 4.98 (MIC = 18.75 µg/mL for 4b) and 9.52 µg/mL (MIC = 75 µg/mL for 4b), respectively.


Asunto(s)
Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Vancomicina/farmacología , Xantonas/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Clusiaceae/química , Relación Dosis-Respuesta a Droga , Garcinia mangostana/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Vancomicina/química , Xantonas/química , Xantonas/aislamiento & purificación
17.
Bioorg Chem ; 94: 103403, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31711765

RESUMEN

Studies have suggested that sirtuin inhibition may have beneficial effects on several age-related diseases such as neurodegenerative disorders and cancer. Garcinia mangostana is a well-known tropical plant found mostly in South East Asia with several positive health effects. Some of its phytochemicals such as α-mangostin was found to be able to modulate sirtuin activity in mice and was implicated with inflammation, diabetes and obesity. However, comprehensive studies on sirtuin activity by the prenylated xanthones extracted from Garcinia mangostana have yet to be reported. The present study led to the discovery and identification of γ-mangostin as a potent and selective SIRT2 inhibitor. It was demonstrated that γ-mangostin was able to increase the α-tubulin acetylation in MDA-MD-231 and MCF-7 breast cancer cells. It was also found to possess potent antiproliferative activity against both cell lines. In addition, it was able to induce neurite outgrowth in the N2a cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Garcinia mangostana/química , Sirtuina 2/antagonistas & inhibidores , Xantonas/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Sirtuina 2/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas , Xantonas/química , Xantonas/aislamiento & purificación
18.
J Enzyme Inhib Med Chem ; 35(1): 1433-1441, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32608273

RESUMEN

Mangosteen is one of the best tasting tropical fruit widely cultivated in Southeast Asia. This study aimed to quantify xanthone content in different parts of Garcinia mangostana by LC-QTOF-MS and determine its influence on their cholinesterase inhibitory activities. The total xanthone content in G. mangostana was in the following order: pericarp > calyx > bark > stalk > stem > leaves > aril. The total xanthone content of pericarp was 100 times higher than the aril. Methanol extracts of the pericarp and calyx demonstrated the most potent inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of 0.90 and 0.37 µg/mL, respectively. Statistical analysis showed a strong correlation between xanthone content and cholinesterase inhibition. Nonmetric multidimensional scaling analysis revealed α-mangostin and γ-mangostin of pericarp as the key metabolites contributing to cholinesterase inhibition. Due to the increasing demand of mangosteen products, repurposing of fruit waste (pericarp) has great potential for enhancement of the cognitive health of human beings.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Garcinia mangostana/química , Componentes Aéreos de las Plantas/química , Extractos Vegetales/farmacología , Xantonas/farmacología , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/aislamiento & purificación , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Relación Estructura-Actividad , Espectrometría de Masas en Tándem , Xantonas/química , Xantonas/aislamiento & purificación
19.
Phytother Res ; 34(12): 3211-3225, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32592535

RESUMEN

Mangosteen fruit has been used for various disorders, including pain. The effects of alpha-mangostin, the main component of mangosteen, on the neuropathic pain caused by chronic constriction injury (CCI) were evaluated in rats. In treatment groups, alpha-mangostin (10, 50, 100 mg/kg/day, i.p.) was administered from Day 0, the day of surgery, for 14 days. The degree of heat hyperalgesia, cold, and mechanical allodynia was assessed on Days 0, 3, 5, 7, 10, and 14. The lumbar spinal cord levels of MDA, GSH, inflammatory markers (TLR-4, TNF-α, MMP2, COX2, IL-1ß, iNOS, and NO), apoptotic markers (Bcl-2, Bax, and caspase-3) were measured by western blot on Days 7 and 14. Rats in the CCI group showed thermal hyperalgesia, cold, and mechanical allodynia on Days 3-14. All concentrations of alpha-mangostin alleviated CCI-induced behavioral alterations. MDA level augmented and GSH level decreased in the CCI group and alpha-mangostin (50, 100 mg/kg) reversed the alterations. An enhancement in the levels of all inflammatory markers, Bax, and caspase-3 was shown on Days 7 and 14, which was controlled by alpha-mangostin (50 mg/kg). The detected antinociceptive effects of alpha-mangostin may be mediated through antioxidant, anti-inflammatory, and antiapoptotic properties.


Asunto(s)
Neuralgia/tratamiento farmacológico , Neuralgia/prevención & control , Xantonas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Garcinia mangostana/química , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Hiperalgesia/prevención & control , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Neuralgia/patología , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología
20.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867357

RESUMEN

Alzheimer's disease (AD), Parkinson's disease (PD), and depression are growing burdens for society globally, partly due to a lack of effective treatments. Mangosteen (Garcinia mangostana L.,) pericarp (MP) and its xanthones may provide therapeutic advantages for these disorders. In this review, we discuss potential therapeutic value of MP-derived agents in AD, PD, and depression with their pharmacokinetic and safety profiles. MP-derived agents have shown multifunctional effects including neuroprotective, antioxidant, and anti-neuroinflammatory actions. In addition, they target specific disease pathologies, such as amyloid beta production and deposition as well as cholinergic dysfunction in AD; α-synuclein aggregation in PD; and modulation of monoamine disturbance in depression. Particularly, the xanthone derivatives, including α-mangostin and γ-mangostin, exhibit potent pharmacological actions. However, low oral bioavailability and poor brain penetration may limit their therapeutic applications. These challenges can be overcome in part by administering as a form of MP extract (MPE) or using specific carrier systems. MPE and α-mangostin are generally safe and well-tolerated in animals. Furthermore, mangosteen-based products are safe for humans. Therefore, MPE and its bioactive xanthones are promising candidates for the treatment of AD, PD, and depression. Further studies including clinical trials are essential to decipher their efficacy, and pharmacokinetic and safety profiles in these disorders.


Asunto(s)
Depresión/metabolismo , Garcinia mangostana/química , Enfermedades Neurodegenerativas/metabolismo , Xantonas/farmacocinética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Aminas/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Depresión/tratamiento farmacológico , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Extractos Vegetales/química , Xantonas/química , Xantonas/uso terapéutico , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA