Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.667
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 89: 769-793, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32243763

RESUMEN

Generating the barriers that protect our inner surfaces from bacteria and other challenges requires large glycoproteins called mucins. These come in two types, gel-forming and transmembrane, all characterized by large, highly O-glycosylated mucin domains that are diversely decorated by Golgi glycosyltransferases to become extended rodlike structures. The general functions of mucins on internal epithelial surfaces are to wash away microorganisms and, even more importantly, to build protective barriers. The latter function is most evident in the large intestine, where the inner mucus layer separates the numerous commensal bacteria from the epithelial cells. The host's conversion of MUC2 to the outer mucus layer allows bacteria to degrade the mucin glycans and recover the energy content that is then shared with the host. The molecular nature of the mucins is complex, and how they construct the extracellular complex glycocalyx and mucus is poorly understood and a future biochemical challenge.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Glicocálix/química , Glicosiltransferasas/química , Células Caliciformes/química , Mucinas/química , Moco/química , Animales , Conformación de Carbohidratos , Secuencia de Carbohidratos , Expresión Génica , Glicocálix/metabolismo , Glicosilación , Glicosiltransferasas/clasificación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Células Caliciformes/metabolismo , Células Caliciformes/microbiología , Humanos , Mucinas/clasificación , Mucinas/genética , Mucinas/metabolismo , Moco/metabolismo , Moco/microbiología , Simbiosis/fisiología
2.
Annu Rev Cell Dev Biol ; 37: 257-283, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34613816

RESUMEN

Morphological transitions are typically attributed to the actions of proteins and lipids. Largely overlooked in membrane shape regulation is the glycocalyx, a pericellular membrane coat that resides on all cells in the human body. Comprised of complex sugar polymers known as glycans as well as glycosylated lipids and proteins, the glycocalyx is ideally positioned to impart forces on the plasma membrane. Large, unstructured polysaccharides and glycoproteins in the glycocalyx can generate crowding pressures strong enough to induce membrane curvature. Stress may also originate from glycan chains that convey curvature preference on asymmetrically distributed lipids, which are exploited by binding factors and infectious agents to induce morphological changes. Through such forces, the glycocalyx can have profound effects on the biogenesis of functional cell surface structures as well as the secretion of extracellular vesicles. In this review, we discuss recent evidence and examples of these mechanisms in normal health and disease.


Asunto(s)
Glicocálix , Membrana Celular/metabolismo , Glicocálix/química , Glicocálix/metabolismo , Glicoproteínas , Humanos , Polisacáridos/análisis , Polisacáridos/química , Polisacáridos/metabolismo
3.
Cell ; 177(7): 1672-1674, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31199912

RESUMEN

Cell membranes can adopt a variety of shapes and curvatures, yet our understanding of the factors involved remains limited. In this issue of Cell, Shurer et al. (2019) demonstrate that the glycocalyx can regulate cell shape from the outside in.


Asunto(s)
Glicocálix , Azúcares , Membrana Celular , Forma de la Célula
4.
Cell ; 177(7): 1757-1770.e21, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31056282

RESUMEN

Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.


Asunto(s)
Forma de la Célula , Matriz Extracelular/metabolismo , Glicocálix/metabolismo , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Animales , Línea Celular , Matriz Extracelular/genética , Glicocálix/genética , Caballos , Humanos , Glicoproteínas de Membrana/genética , Mucinas/genética
5.
Immunity ; 54(3): 454-467.e6, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33561388

RESUMEN

Heparin, a mammalian polysaccharide, is a widely used anticoagulant medicine to treat thrombotic disorders. It is also known to improve outcomes in sepsis, a leading cause of mortality resulted from infection-induced immune dysfunction. Whereas it is relatively clear how heparin exerts its anticoagulant effect, the immunomodulatory mechanisms enabled by heparin remain enigmatic. Here, we show that heparin prevented caspase-11-dependent immune responses and lethality in sepsis independent of its anticoagulant properties. Heparin or a chemically modified form of heparin without anticoagulant function inhibited the alarmin HMGB1-lipopolysaccharide (LPS) interaction and prevented the macrophage glycocalyx degradation by heparanase. These events blocked the cytosolic delivery of LPS in macrophages and the activation of caspase-11, a cytosolic LPS receptor that mediates lethality in sepsis. Survival was higher in septic patients treated with heparin than those without heparin treatment. The identification of this previously unrecognized heparin function establishes a link between innate immune responses and coagulation.


Asunto(s)
Anticoagulantes/uso terapéutico , Caspasas/metabolismo , Heparina/uso terapéutico , Macrófagos/inmunología , Sepsis/tratamiento farmacológico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Caspasas/genética , Línea Celular , Femenino , Glucuronidasa/genética , Glucuronidasa/metabolismo , Glicocálix/metabolismo , Proteína HMGB1/metabolismo , Humanos , Inmunomodulación , Lipopolisacáridos/metabolismo , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Sepsis/mortalidad , Análisis de Supervivencia , Adulto Joven
6.
Proc Natl Acad Sci U S A ; 121(20): e2322688121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709925

RESUMEN

Brain metastatic breast cancer is particularly lethal largely due to therapeutic resistance. Almost half of the patients with metastatic HER2-positive breast cancer develop brain metastases, representing a major clinical challenge. We previously described that cancer-associated fibroblasts are an important source of resistance in primary tumors. Here, we report that breast cancer brain metastasis stromal cell interactions in 3D cocultures induce therapeutic resistance to HER2-targeting agents, particularly to the small molecule inhibitor of HER2/EGFR neratinib. We investigated the underlying mechanisms using a synthetic Notch reporter system enabling the sorting of cancer cells that directly interact with stromal cells. We identified mucins and bulky glycoprotein synthesis as top-up-regulated genes and pathways by comparing the gene expression and chromatin profiles of stroma-contact and no-contact cancer cells before and after neratinib treatment. Glycoprotein gene signatures were also enriched in human brain metastases compared to primary tumors. We confirmed increased glycocalyx surrounding cocultures by immunofluorescence and showed that mucinase treatment increased sensitivity to neratinib by enabling a more efficient inhibition of EGFR/HER2 signaling in cancer cells. Overexpression of truncated MUC1 lacking the intracellular domain as a model of increased glycocalyx-induced resistance to neratinib both in cell culture and in experimental brain metastases in immunodeficient mice. Our results highlight the importance of glycoproteins as a resistance mechanism to HER2-targeting therapies in breast cancer brain metastases.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Resistencia a Antineoplásicos , Glicocálix , Quinolinas , Receptor ErbB-2 , Células del Estroma , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Glicocálix/metabolismo , Animales , Línea Celular Tumoral , Células del Estroma/metabolismo , Células del Estroma/patología , Quinolinas/farmacología , Ratones , Comunicación Celular , Técnicas de Cocultivo , Mucina-1/metabolismo , Mucina-1/genética , Transducción de Señal , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores
7.
Nat Rev Mol Cell Biol ; 20(7): 388, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31065078

Asunto(s)
Glicocálix
8.
Proc Natl Acad Sci U S A ; 120(44): e2313825120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871217

RESUMEN

Lipoprotein lipase (LPL), the enzyme that carries out the lipolytic processing of triglyceride-rich lipoproteins (TRLs), is synthesized by adipocytes and myocytes and secreted into the interstitial spaces. The LPL is then bound by GPIHBP1, a GPI-anchored protein of endothelial cells (ECs), and transported across ECs to the capillary lumen. The assumption has been that the LPL that is moved into capillaries remains attached to GPIHBP1 and that GPIHBP1 serves as a platform for TRL processing. In the current studies, we examined the validity of that assumption. We found that an LPL-specific monoclonal antibody (mAb), 88B8, which lacks the ability to detect GPIHBP1-bound LPL, binds avidly to LPL within capillaries. We further demonstrated, by confocal microscopy, immunogold electron microscopy, and nanoscale secondary ion mass spectrometry analyses, that the LPL detected by mAb 88B8 is located within the EC glycocalyx, distant from the GPIHBP1 on the EC plasma membrane. The LPL within the glycocalyx mediates the margination of TRLs along capillaries and is active in TRL processing, resulting in the delivery of lipoprotein-derived lipids to immediately adjacent parenchymal cells. Thus, the LPL that GPIHBP1 transports into capillaries can detach and move into the EC glycocalyx, where it functions in the intravascular processing of TRLs.


Asunto(s)
Lipoproteína Lipasa , Receptores de Lipoproteína , Anticuerpos Monoclonales/metabolismo , Capilares/metabolismo , Células Endoteliales/metabolismo , Glicocálix/metabolismo , Lipoproteína Lipasa/metabolismo , Lipoproteínas/metabolismo , Receptores de Lipoproteína/metabolismo , Triglicéridos/metabolismo , Humanos , Animales
9.
J Biol Chem ; 300(8): 107493, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925330

RESUMEN

Diabetic nephropathy (DN) is one of the most important comorbidities for diabetic patients, which is the main factor leading to end-stage renal disease. Heparin analogs can delay the progression of DN, but the mechanism is not fully understood. In this study, we found that low molecular weight heparin therapy significantly upregulated some downstream proteins of the peroxisome proliferator-activated receptor (PPAR) signaling pathway by label-free quantification of the mouse kidney proteome. Through cell model verification, low molecular weight heparin can protect the heparan sulfate of renal tubular epithelial cells from being degraded by heparanase that is highly expressed in a high-glucose environment, enhance the endocytic recruitment of fatty acid-binding protein 1, a coactivator of the PPAR pathway, and then regulate the activation level of intracellular PPAR. In addition, we have elucidated for the first time the molecular mechanism of heparan sulfate and fatty acid-binding protein 1 interaction. These findings provide new insights into understanding the role of heparin in the pathogenesis of DN and developing corresponding treatments.


Asunto(s)
Nefropatías Diabéticas , Glicocálix , Heparina de Bajo-Peso-Molecular , Heparitina Sulfato , Transducción de Señal , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/tratamiento farmacológico , Animales , Ratones , Heparina de Bajo-Peso-Molecular/farmacología , Heparitina Sulfato/metabolismo , Transducción de Señal/efectos de los fármacos , Glicocálix/metabolismo , Glicocálix/efectos de los fármacos , Glucuronidasa/metabolismo , Glucuronidasa/genética , Humanos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Progresión de la Enfermedad
10.
Nat Mater ; 23(3): 429-438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361041

RESUMEN

Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Glicocálix/metabolismo , Mucinas/metabolismo , Antineoplásicos/metabolismo , Neoplasias/terapia
11.
FASEB J ; 38(13): e23785, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38949120

RESUMEN

Cancer metastasis is the leading cause of death for those afflicted with cancer. In cancer metastasis, the cancer cells break off from the primary tumor, penetrate nearby blood vessels, and attach and extravasate out of the vessels to form secondary tumors at distant organs. This makes extravasation a critical step of the metastatic cascade. Herein, with a focus on triple-negative breast cancer, the role that the prospective secondary tumor microenvironment's mechanical properties play in circulating tumor cells' extravasation is reviewed. Specifically, the effects of the physically regulated vascular endothelial glycocalyx barrier element, vascular flow factors, and subendothelial extracellular matrix mechanical properties on cancer cell extravasation are examined. The ultimate goal of this review is to clarify the physical mechanisms that drive triple-negative breast cancer extravasation, as these mechanisms may be potential new targets for anti-metastasis therapy.


Asunto(s)
Glicocálix , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Glicocálix/metabolismo , Glicocálix/patología , Humanos , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Femenino , Microambiente Tumoral/fisiología , Animales , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Metástasis de la Neoplasia , Endotelio Vascular/metabolismo , Endotelio Vascular/patología
12.
FASEB J ; 38(10): e23687, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38785390

RESUMEN

Mammalian spermatozoa have a surface covered with glycocalyx, consisting of heterogeneous glycoproteins and glycolipids. This complexity arises from diverse monosaccharides, distinct linkages, various isomeric glycans, branching levels, and saccharide sequences. The glycocalyx is synthesized by spermatozoa developing in the testis, and its subsequent alterations during their transit through the epididymis are a critical process for the sperm acquisition of fertilizing ability. In this study, we performed detailed analysis of the glycocalyx on the sperm surface of bull spermatozoa in relation to individual parts of the epididymis using a wide range (24) of lectins with specific carbohydrate binding preferences. Fluorescence analysis of intact sperm isolated from the bull epididymides was complemented by Western blot detection of protein extracts from the sperm plasma membrane fractions. Our experimental results revealed predominant sequential modification of bull sperm glycans with N-acetyllactosamine (LacNAc), followed by subsequent sialylation and fucosylation in a highly specific manner. Additionally, variations in the lectin detection on the sperm surface may indicate the acquisition or release of glycans or glycoproteins. Our study is the first to provide a complex analysis of the bull sperm glycocalyx modification during epididymal maturation.


Asunto(s)
Epidídimo , Glicocálix , Lectinas , Espermatozoides , Masculino , Animales , Glicocálix/metabolismo , Bovinos , Epidídimo/metabolismo , Epidídimo/citología , Espermatozoides/metabolismo , Lectinas/metabolismo , Polisacáridos/metabolismo , Glicoproteínas/metabolismo
13.
Exp Cell Res ; 434(2): 113873, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38092346

RESUMEN

Neurogenic pulmonary edema secondary to acute brain injury (ABI) is a common and fatal disease condition. However, the pathophysiology of brain-lung interactions is incompletely understood. This study aims to investigate whether sympathetic activation-mediated high fluid shear stress after ABI would damage pulmonary endothelial glycocalyx thus leading to increased pulmonary capillary permeability. The tricuspid annular plane systolic excursion (TAPSE) was detected in a rat model of controlled cortical impact (CCI) and CCI + transection of the cervical sympathetic trunk (TCST). Changes in pulmonary capillary permeability were assessed by analyzing the Evans blue, measuring the dry/wet weight ratio of the lungs and altering protein levels in the bronchoalveolar lavage fluid (BALF). The parallel-plate flow chamber system was used to simulate the fluid shear stress in vitro. Western blotting and immunofluorescence staining were used to determine the expression levels of hyaluronan-binding protein (CEMIP), syndecan-1 and tight junction proteins (TJPs, including claudin-5 and occludin). TCST could restrain cardiac overdrive and sympathetic activation in a rat model of CCI. Compared to the CCI group, the CCI + TCST group showed a reduction of CEMPI (which degrades hyaluronic acid), along with an increase of syndecan-1 and TJPs. CCI + TCST group presented decreasing pulmonary capillary permeability. In vitro, high shear stress (HSS) increased the expression of CEMIP and reduced syndecan-1 and TJPs, which was coordinated with the results in vivo. Our findings show that sympathetic activation-mediated high fluid shear stress after ABI would damage pulmonary endothelial glycocalyx thus leading to increased pulmonary capillary permeability.


Asunto(s)
Lesiones Encefálicas , Sindecano-1 , Ratas , Animales , Sindecano-1/metabolismo , Glicocálix/metabolismo , Permeabilidad Capilar , Pulmón/metabolismo , Lesiones Encefálicas/metabolismo
14.
J Cell Mol Med ; 28(16): e70033, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39180511

RESUMEN

The aim of this study was to review the roles of endothelial cells in normal tissue function and to show how COVID-19 disease impacts on endothelial cell properties that lead to much of its associated symptomatology. This places the endothelial cell as a prominent cell type to target therapeutically in the treatment of this disorder. Advances in glycosaminoglycan analytical techniques and functional glycomics have improved glycosaminoglycan mimetics development, providing agents that can more appropriately target various aspects of the behaviour of the endothelial cell in-situ and have also provided polymers with potential to prevent viral infection. Thus, promising approaches are being developed to combat COVID-19 disease and the plethora of symptoms this disease produces. Glycosaminoglycan mimetics that improve endothelial glycocalyx boundary functions have promising properties in the prevention of viral infection, improve endothelial cell function and have disease-modifying potential. Endothelial cell integrity, forming tight junctions in cerebral cell populations in the blood-brain barrier, prevents the exposure of the central nervous system to circulating toxins and harmful chemicals, which may contribute to the troublesome brain fogging phenomena reported in cognitive processing in long COVID disease.


Asunto(s)
Barrera Hematoencefálica , COVID-19 , Células Endoteliales , Glicocálix , SARS-CoV-2 , Humanos , Glicocálix/metabolismo , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , Células Endoteliales/metabolismo , Células Endoteliales/patología , SARS-CoV-2/metabolismo , SARS-CoV-2/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Glicosaminoglicanos/metabolismo
15.
J Biol Chem ; 299(5): 104611, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931394

RESUMEN

Adipose tissue plays a crucial role in maintaining metabolic homeostasis by storing lipids and glucose from circulation as intracellular fat. As peripheral tissues like adipose tissue become insulin resistant, decompensation of blood glucose levels occurs causing type 2 diabetes (T2D). Currently, modulating the glycocalyx, a layer of cell-surface glycans, is an underexplored pharmacological treatment strategy to improve glucose homeostasis in T2D patients. Here, we show a novel role for cell-surface heparan sulfate (HS) in establishing glucose uptake capacity and metabolic utilization in differentiated adipocytes. Using a combination of chemical and genetic interventions, we identified that HS modulates this metabolic phenotype by attenuating levels of Wnt signaling during adipogenesis. By engineering, the glycocalyx of pre-adipocytes with exogenous synthetic HS mimetics, we were able to enhance glucose clearance capacity after differentiation through modulation of Wnt ligand availability. These findings establish the cellular glycocalyx as a possible new target for therapeutic intervention in T2D patients by enhancing glucose clearance capacity independent of insulin secretion.


Asunto(s)
Adipogénesis , Diabetes Mellitus Tipo 2 , Humanos , Adipogénesis/genética , Glicocálix/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Heparitina Sulfato , Glucosa/metabolismo
16.
Am J Physiol Renal Physiol ; 326(5): F681-F693, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205540

RESUMEN

Intermittent fasting has become of interest for its possible metabolic benefits and reduction of inflammation and oxidative damage, all of which play a role in the pathophysiology of diabetic nephropathy. We tested in a streptozotocin (60 mg/kg)-induced diabetic apolipoprotein E knockout mouse model whether repeated fasting mimicking diet (FMD) prevents glomerular damage. Diabetic mice received 5 FMD cycles in 10 wk, and during cycles 1 and 5 caloric measurements were performed. After 10 wk, glomerular endothelial morphology was determined together with albuminuria, urinary heparanase-1 activity, and spatial mass spectrometry imaging to identify specific glomerular metabolic dysregulation. During FMD cycles, blood glucose levels dropped while a temporal metabolic switch was observed to increase fatty acid oxidation. Overall body weight at the end of the study was reduced together with albuminuria, although urine production was dramatically increased without affecting urinary heparanase-1 activity. Weight loss was found to be due to lean mass and water, not fat mass. Although capillary loop morphology and endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced together with the presence of UDP-glucuronic acid. Mass spectrometry imaging further revealed reduced protein catabolic breakdown products and increased oxidative stress, not different from diabetic mice. In conclusion, although FMD preserves partially glomerular endothelial glycocalyx, loss of lean mass and increased glomerular oxidative stress argue whether such diet regimes are safe in patients with diabetes.NEW & NOTEWORTHY Repeated fasting mimicking diet (FMD) partially prevents glomerular damage in a diabetic mouse model; however, although endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced in the presence of UDP-glucuronic acid. The weight loss observed was of lean mass, not fat mass, and increased glomerular oxidative stress argue whether such a diet is safe in patients with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ayuno , Glicocálix , Glomérulos Renales , Estrés Oxidativo , Animales , Glicocálix/metabolismo , Glicocálix/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Glucemia/metabolismo , Albuminuria/metabolismo , Ratones , Glucuronidasa/metabolismo , Ratones Noqueados para ApoE , Ratones Endogámicos C57BL , Dieta
17.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L524-L538, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375572

RESUMEN

Lung surfactant collectins, surfactant protein A (SP-A) and D (SP-D), are oligomeric C-type lectins involved in lung immunity. Through their carbohydrate recognition domain, they recognize carbohydrates at pathogen surfaces and initiate lung innate immune response. Here, we propose that they may also be able to bind to other carbohydrates present in typical cell surfaces, such as the alveolar epithelial glycocalyx. To test this hypothesis, we analyzed and quantified the binding affinity of SP-A and SP-D to different sugars and glycosaminoglycans (GAGs) by microscale thermophoresis (MST). In addition, by changing the calcium concentration, we aimed to characterize any consequences on the binding behavior. Our results show that both oligomeric proteins bind with high affinity (in nanomolar range) to GAGs, such as hyaluronan (HA), heparan sulfate (HS) and chondroitin sulfate (CS). Binding to HS and CS was calcium-independent, as it was not affected by changing calcium concentration in the buffer. Quantification of GAGs in bronchoalveolar lavage (BAL) fluid from animals deficient in either SP-A or SP-D showed changes in GAG composition, and electron micrographs showed differences in alveolar glycocalyx ultrastructure in vivo. Taken together, SP-A and SP-D bind to model sulfated glycosaminoglycans of the alveolar epithelial glycocalyx in a multivalent and calcium-independent way. These findings provide a potential mechanism for SP-A and SP-D as an integral part of the alveolar epithelial glycocalyx binding and interconnecting free GAGs, proteoglycans, and other glycans in glycoproteins, which may influence glycocalyx composition and structure.NEW & NOTEWORTHY SP-A and SP-D function has been related to innate immunity of the lung based on their binding to sugar residues at pathogen surfaces. However, their function in the healthy alveolus was considered as limited to interaction with surfactant lipids. Here, we demonstrated that these proteins bind to glycosaminoglycans present at typical cell surfaces like the alveolar epithelial glycocalyx. We propose a model where these proteins play an important role in interconnecting alveolar epithelial glycocalyx components.


Asunto(s)
Calcio , Glicocálix , Glicosaminoglicanos , Alveolos Pulmonares , Proteína A Asociada a Surfactante Pulmonar , Proteína D Asociada a Surfactante Pulmonar , Animales , Humanos , Ratones , Células Epiteliales Alveolares/metabolismo , Líquido del Lavado Bronquioalveolar , Calcio/metabolismo , Glicocálix/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Ratones Endogámicos C57BL , Unión Proteica , Alveolos Pulmonares/metabolismo , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo
18.
Angiogenesis ; 27(3): 411-422, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38598083

RESUMEN

Damage of the endothelial glycocalyx (eGC) plays a central role in the development of vascular hyperpermeability and organ damage during systemic inflammation. However, the specific signalling pathways for eGC damage remain poorly defined. Aim of this study was to combine sublingual video-microscopy, plasma proteomics and live cell imaging to uncover further pathways of eGC damage in patients with coronavirus disease 2019 (COVID-19) or bacterial sepsis. This secondary analysis of the prospective multicenter MICROCODE study included 22 patients with COVID-19 and 43 patients with bacterial sepsis admitted to intermediate or intensive care units and 10 healthy controls. Interleukin-6 (IL-6) was strongly associated with damaged eGC and correlated both with eGC dimensions (rs=0.36, p = 0.0015) and circulating eGC biomarkers. In vitro, IL-6 reduced eGC height and coverage, which was inhibited by blocking IL-6 signalling with the anti-IL-6 receptor antibody tocilizumab or the Janus kinase inhibitor tofacitinib. Exposure of endothelial cells to 5% serum from COVID-19 or sepsis patients resulted in a significant decrease in eGC height, which was attenuated by co-incubation with tocilizumab. In an external COVID-19 cohort of 219 patients from Massachusetts General Hospital, a previously identified proteomic eGC signature correlated with IL-6 (rs=-0.58, p < 0.0001) and predicted the combined endpoint of 28-day mortality and/or intubation (ROC-AUC: 0.86 [95% CI: 0.81-0.91], p < 0.001). The data suggest that IL-6 may significantly drive eGC damage in COVID-19 and bacterial sepsis. Our findings provide valuable insights into pathomechanisms of vascular dysfunction during systemic inflammation and highlight the need for further in vivo studies.


Asunto(s)
COVID-19 , Glicocálix , Interleucina-6 , Sepsis , Humanos , COVID-19/patología , COVID-19/metabolismo , COVID-19/complicaciones , Glicocálix/metabolismo , Glicocálix/patología , Interleucina-6/metabolismo , Interleucina-6/sangre , Masculino , Femenino , Persona de Mediana Edad , Sepsis/patología , Sepsis/metabolismo , Sepsis/complicaciones , Anciano , Estudios Prospectivos , SARS-CoV-2/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Anticuerpos Monoclonales Humanizados
19.
Am J Physiol Heart Circ Physiol ; 327(4): H989-H1003, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39178024

RESUMEN

The lining of blood vessels is constantly exposed to mechanical forces exerted by blood flow against the endothelium. Endothelial cells detect these tangential forces (i.e., shear stress), initiating a host of intracellular signaling cascades that regulate vascular physiology. Thus, vascular health is tethered to the endothelial cells' capacity to transduce shear stress. Indeed, the mechanotransduction of shear stress underlies a variety of cardiovascular benefits, including some of those associated with increased physical activity. However, endothelial mechanotransduction is impaired in aging and disease states such as obesity and type 2 diabetes, precipitating the development of vascular disease. Understanding endothelial mechanotransduction of shear stress, and the molecular and cellular mechanisms by which this process becomes defective, is critical for the identification and development of novel therapeutic targets against cardiovascular disease. In this review, we detail the primary mechanosensitive structures that have been implicated in detecting shear stress, including junctional proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1), the extracellular glycocalyx and its components, and ion channels such as piezo1. We delineate which molecules are truly mechanosensitive and which may simply be indispensable for the downstream transmission of force. Furthermore, we discuss how these mechanosensors interact with other cellular structures, such as the cytoskeleton and membrane lipid rafts, which are implicated in translating shear forces to biochemical signals. Based on findings to date, we also seek to integrate these cellular and molecular mechanisms with a view of deciphering endothelial mechanotransduction of shear stress, a tenet of vascular physiology.


Asunto(s)
Células Endoteliales , Mecanotransducción Celular , Estrés Mecánico , Humanos , Animales , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Glicocálix/metabolismo , Canales Iónicos/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 327(2): H390-H398, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38874615

RESUMEN

The endothelial glycocalyx (EG), covering the luminal side of endothelial cells, regulates vascular permeability and senses wall shear stress. In sepsis, EG undergoes degradation leading to increased permeability and edema formation. We hypothesized that restoring EG integrity using liposomal nanocarriers of preassembled glycocalyx (LNPG) will restore normal venular permeability in lipopolysaccharide (LPS)-induced sepsis model of mice. To test this hypothesis, we designed a unique perfusion microchamber in which the permeability of isolated venules could be assessed by measuring the concentration of Evans blue dye (EBD) in microliter samples of extravascular solution (ES). Histamine-induced time- and dose-dependent increases in EBD in the ES could be measured, confirming the sensitivity of the microchamber system. Notably, the histamine-induced increase in permeability was significantly attenuated by histamine receptor (H1) antagonist, triprolidine hydrochloride. Subsequently, mice were treated with LPS or LPS + LNPG. When compared with control mice, venules from LPS-treated mice showed a significant increased permeability, which was significantly reduced by LNPG administration. Moreover, in the presence of wall shear stress, intraluminal administration of LNPG significantly reduced the permeability in isolated venules from LPS-treated mice. We have found no sex differences. In conclusion, our newly developed microchamber system allows us to quantitatively measure the permeability of isolated venules. LPS-induced sepsis increases permeability of mesenteric venules that is attenuated by in vivo LNPG administration, which also reestablished endothelial responses to shear stress. Thus, LNPG presents a promising therapeutic potential for restoring EG function and thereby mitigating vasogenic edema due to increased permeability in sepsis.NEW & NOTEWORTHY In sepsis, the degradation of the endothelial glycocalyx leads to increased venular permeability. In this study, we developed a potentially new therapeutic approach by in vivo administration of liposomal nanocarriers of preassembled glycocalyx to mice, which restored venular sensitivity to wall shear stress and permeability in lipopolysaccharide-induced sepsis, likely by restoring the integrity of the endothelial glycocalyx. Using a new microchamber system, the permeability of Evans blue dye could be quantitatively determined.


Asunto(s)
Permeabilidad Capilar , Glicocálix , Lipopolisacáridos , Liposomas , Sepsis , Estrés Mecánico , Animales , Glicocálix/metabolismo , Glicocálix/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Lipopolisacáridos/toxicidad , Vénulas/metabolismo , Vénulas/fisiopatología , Vénulas/efectos de los fármacos , Masculino , Sepsis/fisiopatología , Sepsis/metabolismo , Sepsis/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Histamina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA