RESUMEN
BACKGROUND: Highland hulless barley has garnered attention as a promising economic product and a potential healthy food ingredient. The present study aimed to comprehensively investigate the molecular structure of extractable fibers obtained from a specific highland hulless barley. Water-soluble fiber (WSF) and alkaline-soluble fiber (ASF) were extracted using enzymatic digestion and an alkaline method, respectively. The purified fibers underwent a thorough investigation for their structural characterization. RESULTS: The monosaccharide composition revealed that WSF primarily consisted of glucose (91.7%), whereas ASF was composed of arabinose (54.5%) and xylose (45.5%), indicating the presence of an arabinoxylan molecule with an A/X ratio of 1.2. The refined structural information was further confirmed through methylation, 1 H NMR and Fourier-transform infrared spectroscopy analyses. WSF fiber exclusively exhibited α-anomeric patterns, suggesting it was an α-glucan. It has a low molecular weight of 5 kDa, as determined by gel permeation chromatography. Conversely, ASF was identified as a heavily branched arabinoxylan with 41.55% of 'â2,3,4)-Xylp-(1â' linkages. ASF and WSF exhibited notable differences in their morphology, water absorption capabilities and rheological properties. CONCLUSION: Based on these findings, molecular models of WSF and ASF were proposed. The deep characterization of these fiber structures provides valuable insights into their physicochemical and functional properties, thereby unlocking their potential applications in the food industry. © 2023 Society of Chemical Industry.
Asunto(s)
Hordeum , Hordeum/química , Glucanos/análisis , Monosacáridos , Industria de Alimentos , Industria de Procesamiento de AlimentosRESUMEN
Marine microalgae sequester as much CO2 into carbohydrates as terrestrial plants. Polymeric carbohydrates (i.e., glycans) provide carbon for heterotrophic organisms and constitute a carbon sink in the global oceans. The quantitative contributions of different algal glycans to cycling and sequestration of carbon remain unknown, partly because of the analytical challenge to quantify glycans in complex biological matrices. Here, we quantified a glycan structural type using a recently developed biocatalytic strategy, which involves laminarinase enzymes that specifically cleave the algal glycan laminarin into readily analyzable fragments. We measured laminarin along transects in the Arctic, Atlantic, and Pacific oceans and during three time series in the North Sea. These data revealed a median of 26 ± 17% laminarin within the particulate organic carbon pool. The observed correlation between chlorophyll and laminarin suggests an annual production of algal laminarin of 12 ± 8 gigatons: that is, approximately three times the annual atmospheric carbon dioxide increase by fossil fuel burning. Moreover, our data revealed that laminarin accounted for up to 50% of organic carbon in sinking diatom-containing particles, thus substantially contributing to carbon export from surface waters. Spatially and temporally variable laminarin concentrations in the sunlit ocean are driven by light availability. Collectively, these observations highlight the prominent ecological role and biogeochemical function of laminarin in oceanic carbon export and energy flow to higher trophic levels.
Asunto(s)
Ciclo del Carbono , Carbono/metabolismo , Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Glucanos/metabolismo , Dióxido de Carbono/análisis , Clorofila/análisis , Diatomeas/química , Glucanos/análisis , Océanos y Mares , Agua de MarRESUMEN
Aconitum septentrionale is known to contain toxic diterpene alkaloids, while other bioactive compounds in the plant remain unclear. The aim of this study was to explore the phenolic compounds and polysaccharides from the water extract of A. septentrionale roots. Fifteen phenolic compounds were isolated and identified by NMR and MS, including fourteen known and one new dianthramide glucoside (2-[[2-(ß-D-glucopyranosyloxy)-5-hydroxybenzoyl]amino]-4,5-dihydroxybenzoic acid methyl ester, 14). One neutral (complex of glucans with minor amounts of mannans) and two acidic polysaccharide fractions (complexes of pectic polysaccharides and glucans) were also obtained. Hydroxytyrosol (1), hydroxytyrosol-1-O-ß-glucoside (2) and bracteanolide A (7) inhibited the release of nitric oxide by dendritic cells. Magnoflorine (8) and 2-[[2-(ß-D-glucopyranosyloxy)-5-hydroxybenzoyl]amino]-5-hydroxybenzoic acid methyl ester (12) inhibited 15-lipoxygenase, and bracteanolide A (7) was a moderate inhibitor of xanthine oxidase. This study is the first to describe the diversity of phenolics and polysaccharides from A. septentrionale and their anti-inflammatory and anti-oxidant activities.
Asunto(s)
Aconitum , Aconitum/química , Glucanos/análisis , Glucósidos/química , Fenoles/farmacología , Fenoles/análisis , Raíces de Plantas/química , Polisacáridos/farmacología , Polisacáridos/químicaRESUMEN
It has long been known that containers for sample analysis or storage can play a role in endotoxin recovery and have to be taken into account when determining endotoxin concentrations. However, there is little data on the effects of containers regarding (1â3)-ß-D-glucan, which plays a role as a contaminant in endotoxin measurements. To determine the effect of the container on (1â3)-ß-D-glucan measurements, four different types of containers were investigated at different temperatures and stored for up to 28 days. For short-term storage for 3 h at room temperature, no effect of the container on the (1â3)-ß-D-glucan recovery could be observed, but for storage at -20 °C, the results indicate that the storage time and temperature influences (1â3)-ß-D-glucan detection. All containers showed a trend of lower recoveries over time, but the polyethylene container showed a significantly lower recovery compared to the other containers. We also showed that freeze/thaw cycles had a strong influence on the recovery of (1â3)-ß-D-glucan in polyethylene containers. Our study showed that the container can affect not only the detection of endotoxins but also the detection of (1â3)-ß-D-glucans.
Asunto(s)
Glucanos , beta-Glucanos , Glucanos/análisis , beta-Glucanos/análisis , Endotoxinas , Temperatura , PolietilenosRESUMEN
The development of an intracellular metabolite imaging platform for live microorganisms has been a challenge in the study of microbes. Herein, we performed metabolite imaging in live microalgal cells using a graphene oxide (GO)/aptamer complex. The properties of the GO were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM), which were determined to have 140 ± 3 nm in mean diameter. An ATP-specific aptamer was mixed with GO to form a GO/aptamer complex, and the feasibility of the complex was tested in vitro. The high correlation between the fluorescence intensity and concentration of ATP was observed in the range 0-10 mM. Next, the feasibility of the complex was confirmed in vivo. Under both phototrophic and heterotrophic culture conditions, Euglena gracilis internalized the complex, and bright fluorescence was observed as the aptamer was bound to the target metabolite (ATP). The fluorescence intensity of cells was correlated to the ATP concentration in the cells. Imaging of dual intracellular metabolites (ATP and paramylon) was achieved by simply using two different aptamers (ATP-specific aptamer and paramylon-specific aptamer) together, showing the great potential of the complex as a dual-sensing/imaging platform. In addition, the GO/aptamer complex exhibited low cytotoxicity; the proliferation and viability of E. gracilis cells were not significantly affected by the complex. Our results suggested that this new imaging platform can be efficiently used for detecting dual intracellular metabolites in live microalgal cells.
Asunto(s)
Adenosina Trifosfato/análisis , Aptámeros de Nucleótidos/química , Euglena gracilis/química , Glucanos/análisis , Grafito/química , Nanopartículas/química , Adenosina Trifosfato/metabolismo , Técnicas Biosensibles , Euglena gracilis/citología , Euglena gracilis/metabolismo , Glucanos/metabolismoRESUMEN
The soluble α-polyglucan glycogen is a central metabolite enabling transient glucose storage to suit cellular energy needs. Glycogen storage diseases (GSDs) comprise over 15 entities caused by generalized or tissue-specific defects in enzymes of glycogen metabolism. In several, e.g. in Lafora disease caused by the absence of the glycogen phosphatase laforin or its interacting partner malin, degradation-resistant abnormally structured insoluble glycogen accumulates. Sensitive quantification methods for soluble and insoluble glycogen are critical to research, including therapeutic studies, in such diseases. This paper establishes methodological advancements relevant to glycogen metabolism investigations generally, and GSDs. Introducing a pre-extraction incubation method, we measure degradation-resistant glycogen in as little as 30 mg of skeletal muscle or a single hippocampus from Lafora disease mouse models. The digestion-resistant glycogen correlates with the disease-pathogenic insoluble glycogen and can readily be detected in very young mice where glycogen accumulation has just begun. Second, we establish a high-sensitivity glucose assay with detection of ATP depletion, enabling 1) quantification of α-glucans in cell culture using a medium-throughput assay suitable for assessment of candidate glycogen synthesis inhibitors, and 2) discovery of α-glucan material in healthy human cerebrospinal fluid, establishing a novel methodological platform for biomarker analyses in Lafora disease and other GSDs.
Asunto(s)
Glucanos/análisis , Glucanos/líquido cefalorraquídeo , Animales , Técnicas de Cultivo de Célula , Femenino , Enfermedad del Almacenamiento de Glucógeno/líquido cefalorraquídeo , Enfermedad del Almacenamiento de Glucógeno/patología , Células HEK293 , Hipocampo/patología , Humanos , Enfermedad de Lafora/líquido cefalorraquídeo , Enfermedad de Lafora/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patologíaRESUMEN
In this research communication we evaluate the impact of the addition of prebiotic components (inulin, polydextrose, and modified starch, 40 g/l) as fat substitutes on the physicochemical characteristics, probiotic survival, and sensory acceptance of probiotic (Lacticaseibacillus casei 01, 108 CFU/ml) Greek yogurts during storage (7 °C, 28 d). All formulations had probiotic counts higher than 107 CFU/ml during storage and simulated gastrointestinal conditions (SGIC). The prebiotic components increased the probiotic survival to the enteric phase of the SGIC, with inulin producing the most pronounced effect. Inulin addition resulted in products with lower pH values and consistency and higher titratable acidity during storage, with negative impact on the sensory acceptance (flavor, texture, and overall impression) at the end of the storage period. Modified starch addition impacted negatively on the acceptance of the products (appearance, flavor, texture, and overall impression). Polydextrose addition resulted in products with lower consistency, but similar sensory acceptance to the full-fat yogurt. It can be concluded that it is possible to prepare potentially synbiotic Greek yogurts by desorption technique using L. casei as probiotic culture and inulin, polydextrose or modified starch as prebiotic components, with the utilization of polydextrose being advisable.
Asunto(s)
Sustitutos de Grasa/análisis , Prebióticos/análisis , Probióticos/análisis , Sensación , Yogur/análisis , Yogur/microbiología , Fenómenos Químicos , Comportamiento del Consumidor , Glucanos/análisis , Inulina/análisis , Almidón/análisisRESUMEN
Interspecific hybridization between Ganoderma lingzhi and G. applanatum was attempted through polyethylene glycol (PEG) induced fusion technique. The protoplast isolation procedure was simplified, and we obtained a significant number of protoplasts from both Ganoderma species. The number of protoplasts obtained was 5.27 ± 0.31 × 107/mL in G. lingzhi and 5.57 ± 0.49 × 106/mL in G. applanatum. Osmotic stabilizer NaCl (0.4 M) at pH 5.8 and enzymolysis time 3.5 h have supported high frequency of protoplast regeneration. G. lingzhi and G. applanatum regeneration frequency was 1.73 ± 0.04% and 0.23 ± 0.02%, respectively. 40% of PEG induced high number of protoplast fusion the regeneration frequency was 0.09% on a minimal medium. Two hundred fifty-two fusant colonies were isolated from the following four individual experiments. Among them, ten fusants showed the mycelial morphological difference compared to their parents and other fusant isolates. The fruiting body could be generated on oak sawdust and wheat bran substrate, and a few of them showed recombined morphology of the parental strains. The highest yield and biological efficacy (BE) were recorded in GF248, while least in GF244. The hybridity of the fusant was established based on mycelia, fruiting morphology, and PCR fingerprinting. ISSR and RAPD profile analysis of ten fusants and parents depicted that fusants contained polymorphic bands, which specified the rearrangement and deletion of DNA in the fusants. A Dendrogram was constructed based on the RAPD profile, and the clustering data exhibited two major clusters: cluster I included the G. lingzhi and Cluster II, including the G. applanatum and fusant lines. Total polysaccharide (α, ß and total glucan) content was compared with fusants and parental strains. The present study highlighted the efficient methods for protoplast isolation from Ganoderma species. PEG-induced fusants showed high polymorphic frequency index, while the phenotypic characters showed high similarity to G. applanatum. A significant difference was observed in the mushroom yield and its total polysaccharide between the fusants and parental strains.
Asunto(s)
Ganoderma/fisiología , Glucanos/análisis , Protoplastos/fisiología , Medios de Cultivo/química , Dermatoglifia del ADN , Fibras de la Dieta/microbiología , Ganoderma/química , Hibridación Genética , Polietilenglicoles/química , Protoplastos/química , Quercus/microbiología , Técnica del ADN Polimorfo Amplificado AleatorioRESUMEN
The design of scaffolds for solubilizing/dispersing poorly water-soluble bioactive molecules in neutral aqueous media is a major challenge of functional food, pharmaceuticals, and cosmetics development, as highlighted by the plethora of corresponding solubilization/dispersion strategies. Herein, renatured ß-1,3-1,6-glucan (r-glucan) nanoparticles prepared by neutralization of alkali-denatured ß-1,3-1,6-glucan and subsequent centrifugation are used as a host to disperse water-insoluble bioactive molecules (curcumin, all-trans-retinoic acid, and rebamipide) by simple mixing of host and guest solutions. Curcumin in the r-glucan cavity is found to be stacked in the form of J-aggregates and twisted along the helix, and is demonstrated to be retained for significantly longer than curcumin in the corresponding γ-cyclodextrin (γ-CD) complex. Specifically, curcumin incorporated in γ-CD is released within 5.5 hours, whereas that in the r-glucan complex is released very slowly, with 12% of curcumin in the latter complex retained after 31-day incubation at 37°C. Thus, inclusion protocol simplicity and slow release ability make r-glucan nanoparticles a potential carrier scaffold for various applications.
Asunto(s)
Curcumina/química , Glucanos/química , Nanopartículas/química , Agua/química , Alanina/análogos & derivados , Alanina/química , Glucanos/análisis , Glucanos/síntesis química , Glucósidos/química , Quinolonas/química , Solubilidad , Tretinoina/química , gamma-Ciclodextrinas/químicaRESUMEN
Pythium insidiosum is an oomycete that affects mammals, especially humans and horses, causing a difficult-to-treat disease. Typically, surgical interventions associated with antimicrobial therapy, immunotherapy, or both are the preferred treatment choices. PitiumVac® is a therapeutic vaccine prepared from the mycelial mass of P. insidiosum and is used to treat Brazilian equine pythiosis. To better understand how PitiumVac® works, we analyzed the composition of PitiumVac® and the immune response triggered by this immunotherapy in mice. We performed an enzymatic quantification that showed a total glucan content of 21.05% ± 0.94 (α-glucan, 6.37% ± 0.77 and (1,3)(1,6)-ß-glucan, 14.68% ± 0.60) and mannose content of 1.39% ± 0.26; the protein content was 0.52 mg ml-1 ± 0.07 mg ml-1. Healthy Swiss mice (n = 3) were subcutaneously preimmunized with one, two, or three shots of PitiumVac®, and immunization promoted a relevant Th1 and Th17 responses compared to nonimmunization of mice. The highest cytokine levels were observed after the third immunization, principally for IFN-γ, IL-17A, IL-6, and IL-10 levels. Results of infected untreated (Pythiosis) and infected treated (Pythiosis + PVAC) mice (n = 3) showed that PitiumVac® reinforces the Th1/Th17 response displayed by untreated mice. The (1,3)(1,6)-ß-glucan content can be, at least in part, related to this Th1/Th17 response.
Asunto(s)
Inmunoterapia , Pitiosis/terapia , Pythium/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Citocinas/inmunología , Glucanos/análisis , Glucanos/inmunología , Inmunización , Ratones , Micelio/química , Micelio/inmunología , Pitiosis/inmunología , Vacunas/administración & dosificación , Vacunas/química , Vacunas/inmunologíaRESUMEN
α-Glucans that were enzymatically synthesized from sucrose using glucansucrase cloned from Leuconostoc mesenteroides NRRL B-1118 were found to have a glass transition temperature of approximately 80 °C. Using high-pressure homogenization (~70 MPa), the α-glucans were converted into nanoparticles of ~120 nm in diameter with a surface potential of ~-3 mV. Fluorescence measurements using 1,6-diphenyl-1,3,5-hexatriene (DPH) indicate that the α-glucan nanoparticles have a hydrophobic core that remains intact from 10 to 85 °C. α-Glucan nanoparticles were found to be stable for over 220 days and able to form at three pH levels. Accelerated exposure measurements demonstrated that the α-glucan nanoparticles can endure exposure to elevated temperatures up to 60 °C for 6 h intervals.
Asunto(s)
Glucanos/análisis , Glucanos/química , Nanopartículas/análisis , Nanopartículas/química , Cinética , TemperaturaRESUMEN
The extensive characterization of glycosidic linkages in carbohydrates remains a challenge because of the lack of known standards and limitations in current analytical techniques. This study encompasses the construction of an extensive glycosidic linkage library built from synthesized standards. It includes an improved liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitation of glycosidic linkages derived from disaccharides, oligosaccharides, and polysaccharides present in complicated matrices. We present a method capable of the simultaneous identification of over 90 unique glycosidic linkages using ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC/QqQ MS) operated in dynamic multiple reaction monitoring (dMRM) mode. To build the library, known monosaccharides commonly found in plants were subjected to partial methylation to yield partially derivatized species representing trisecting, bisecting, linear, and terminal structures. The library includes glycosidic linkage information for three hexoses (glucose, galactose, and mannose), three pentoses (xylose, arabinose, and ribose), two deoxyhexoses (fucose and rhamnose), and two hexuronic acids (glucuronic acid and galacturonic acid). The resulting partially methylated monosaccharides were then labeled with 1-phenyl-3-methyl-5-pyrazolone (PMP) followed by separation and analysis by UHPLC/dMRM MS. Validation of the synthesized standards was performed using disaccharide, oligosaccharide, and polysaccharide standards. Accuracy, reproducibility, and robustness of the method was demonstrated by analysis of xyloglucan (tamarind) and whole carrot root. The synthesized standards represent the most comprehensive group of carbohydrate linkages to date.
Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Glicósidos/análisis , Bibliotecas de Moléculas Pequeñas/análisis , Espectrometría de Masas en Tándem/métodos , Edaravona/química , Glucanos/análisis , Glucanos/química , Glicósidos/química , Metilación , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/química , Tamarindus/química , Xilanos/análisis , Xilanos/químicaRESUMEN
Enzymatic degradation of the ß-1,3-glucan paramylon could enable the production of bioactive compounds for healthcare and renewable substrates for biofuels. However, few enzymes have been found to degrade paramylon efficiently and their enzymatic mechanisms remain poorly understood. Thus, the aim of this work was to find paramylon-degrading enzymes and ways to facilitate their identification. Towards this end, a Euglena gracilis-derived cDNA expression library was generated and introduced into Escherichia coli. A flow cytometry-based screening assay was developed to identify E. gracilis enzymes that could hydrolyse the fluorogenic substrate fluorescein di-ß-D-glucopyranoside in combination with time-saving auto-induction medium. In parallel, four amino acid sequences of potential E. gracilis ß-1,3-glucanases were identified from proteomic data. The open reading frame encoding one of these candidate sequences (light_m.20624) was heterologously expressed in E. coli. Finally, a Congo Red dye plate assay was developed for the screening of enzyme preparations potentially able to degrade paramylon. This assay was validated with enzymes assumed to have paramylon-degrading activity and then used to identify four commercial preparations with previously unknown paramylon degradation ability.
Asunto(s)
Euglena gracilis/enzimología , Citometría de Flujo/métodos , Glucanos/análisis , Escherichia coli/metabolismo , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Hidrólisis , ProteómicaRESUMEN
Marine macroalgae are considered as promising sustainable alternatives to conventional terrestrial animal feed resources. The advantages include high growth rate, potential cultivation in saltwater, and no occupation of arable land. Macroalgae are broadly classified as brown (Phaeophyta), red (Rhodophyta) and green (Chlorophyta) algae, and are a diverse group of marine organisms. The nutritional value of macroalgae is highly variable. The protein and essential amino acid content can be low, especially in brown species, and indigestible polysaccharides adversely affect the energy value. Optimal use of macroalgae in feeds requires suitable processing, and biorefinery approaches may increase protein content and improve nutrient availability. Macroalgae are rich in unique bioactive components and there is a growing interest in the potentially beneficial health effects of compounds such as laminarin and fucoidan in different macroalgal and macroalgal products. This review summarizes current literature on different aspects of the use of macroalgae as sources of protein and health-promoting bioactive compounds in feed for monogastric animal species. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Alimentación Animal/análisis , Proteínas/análisis , Algas Marinas/química , Animales , Glucanos/análisis , Glucanos/metabolismo , Valor Nutritivo , Polisacáridos/análisis , Polisacáridos/metabolismo , Proteínas/metabolismo , Algas Marinas/metabolismoRESUMEN
MAIN CONCLUSION: Treatment with aluminum triggers a unique response in tea seedlings resulting in biochemical modification of the cell wall, regulation of the activity of the loosening agents, and elongation of root. Unlike most terrestrial plants, tea (Camellia sinensis L.) responds to aluminum (Al) through the promotion of its root elongation; but the real mechanism(s) behind this phenomenon is not well understood. A plausible relationship between the modifications of the cell wall and the promotion of root elongation was examined in tea seedlings treated for 8 days with 400 µM Al. The mechanical properties of the cell wall, the composition of its polysaccharides and their capacity to absorb Al, the expression of genes, and the activities of the wall-modifying proteins were studied. With 6 h of the treatment, about 40% of the absorbed Al was bound to the cell wall; however, the amount did not increase thereafter. Meanwhile, the activity of pectin methylesterase, the level of pectin demethylation, the amounts and the average molecular mass of xyloglucan in the root apices significantly decreased upon exposure to Al, resulting in the reduction of Al binding sites. On the other hand, the activity and the gene expression of peroxidase decreased, whereas the activity and gene expression of xyloglucan-degrading enzymes, the expression of expansin A and the H +-ATPase4 genes increased in the Al-treated plants. Interestingly, it was accompanied by the increase of elastic and viscous extensibility of the root apices. From the results, it can be suggested that the biochemical modification of the cell walls reduces sites of Al binding to roots and triggers the activity of the loosening agents, thereby increasing the length of tea roots.
Asunto(s)
Aluminio/toxicidad , Camellia sinensis/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Plantas/metabolismo , Camellia sinensis/efectos de los fármacos , Camellia sinensis/crecimiento & desarrollo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Glucanos/análisis , Pectinas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Xilanos/análisisRESUMEN
Development of aluminium (Al) resistant genotypes through molecular breeding is a major approach for increasing seed yield under acidic conditions. There are no available reports on mapping of Al resistance loci and molecular breeding for Al resistant varieties in lentil. The present study reports a major quantitative trait loci (QTL) for Al resistance using simple sequence repeat (SSR) markers in F2 and F3 mapping populations derived from contrasting parents. Phenotypic response to Al was measured on the bases of root re-growth (RRG), fluorescent signals (callose accumulation) and Al contents in hydroponic assay. After screening 495 SSR markers to search polymorphism between two contrasting parents, 73 polymorphic markers were used for bulk segregation analysis. Two major QTLs were identified using seven trait linked markers, one each for fluorescent signals and RRG mapped on linkage group (LG) 1 under Al stress conditions in F2 mapping population of cross BM-4 × L-4602. One major QTL (qAlt_fs) was localised between PLC_88 and PBA_LC_373, covering 25.9 cM with adjacent marker PLC_88 at a distance of 0.4 cM. Another major QTL (qAlt_rrg) for RRG was in the marker interval of PBA_LC_1247 and PLC_51, covering a distance of 45.7 cM with nearest marker PBA_LC_1247 at a distance of 21.2 cM. Similarly, in F3 families of BM-4 × L-4602 and BM-4 × L-7903, LG-1 was extended to 285.9 and 216.4 cM respectively, having four newly developed genic-SSR markers. These QTLs had a logarithm of odd (LOD) value of 140.5 and 28.8 along with phenotypic variation of 52% and 11% for fluorescent signals and RRG respectively, whereas, qAlt_rrg had LOD of 36 and phenotypic variance of 25% in F3 population of BM-4 × L-4602. Two major QTLs identified in the present study can be further dissected for candidate gene discovery and development of molecular markers for breeding improved varieties with high Al resistance.
Asunto(s)
Aluminio/metabolismo , Ligamiento Genético/genética , Lens (Planta)/genética , Agricultura/métodos , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Genes de Plantas/genética , Marcadores Genéticos/genética , Genotipo , Glucanos/análisis , Lens (Planta)/crecimiento & desarrollo , Repeticiones de Microsatélite/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Polimorfismo Genético/genética , Sitios de Carácter Cuantitativo/genética , Semillas/genéticaRESUMEN
OBJECTIVES: To develop preventive canine oral health bio-materials consisting of probiotics and glucanase to reduce insoluble glucan and volatile sulfur compound formation. RESULTS: Co-cultivation of Enterococcus faecium T7 with Streptococcus mutans at inoculation ratio of 3:1 (v/v) resulted in 25% reduction in the growth of Streptococcus mutans. Amounts of soluble and insoluble glucans produced by S. mutans were decreased to 70 and 55%, respectively. Insoluble glucan was decreased from 0.6 µg/ml in S. mutans culture to 0.03 µg/ml in S. mutans co-cultivated with E. faecium T7 in the presence of Lipomyces starkeyi glucanase. Volatile sulfur compound, a main component of halitosis produced by Fusobacteria nucleatum, was decreased by co-cultivating F. nucleatum with E. faecium. CONCLUSION: E. faecium and glucanase can be combined as potentially active ingredients of oral care products for pets by reducing plaque-forming bacteria growth and their by-products that cause cavity and periodontal disease.
Asunto(s)
Técnicas de Cocultivo , Enterococcus faecium/metabolismo , Glucanos/análisis , Glucanos/metabolismo , Glicósido Hidrolasas/metabolismo , Streptococcus mutans/metabolismo , Materiales Biomédicos y Dentales , Proteínas Fúngicas/metabolismo , Glucanos/química , Lipomyces/enzimología , SolubilidadRESUMEN
The objectives of this study were to employ response surface methodology (RSM) to investigate and optimize the effect of ultrasound-assisted extraction (UAE) variables, temperature, time and amplitude on the yields of polysaccharides (fucose and total glucans) and antioxidant activities (ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryl-hydrazyl radical scavenging activity (DPPH)) from Laminariadigitata, and to explore the suitability of applying the optimum UAE conditions for L.digitata to other brown macroalgae (L.hyperborea and Ascophyllumnodosum). The RSM with three-factor, four-level Box-Behnken Design (BBD) was used to study and optimize the extraction variables. A second order polynomial model fitted well to the experimental data with R² values of 0.79, 0.66, 0.64, 0.73 for fucose, total glucans, FRAP and DPPH, respectively. The UAE parameters studied had a significant influence on the levels of fucose, FRAP and DPPH. The optimised UAE conditions (temperature = 76 °C, time = 10 min and amplitude = 100%) achieved yields of fucose (1060.7 ± 70.6 mg/100 g dried seaweed (ds)), total glucans (968.6 ± 13.3 mg/100 g ds), FRAP (8.7 ± 0.5 µM trolox/mg freeze-dried extract (fde)) and DPPH (11.0 ± 0.2%) in L.digitata. Polysaccharide rich extracts were also attained from L.hyperborea and A. nodosum with variable results when utilizing the optimum UAE conditions for L.digitata.
Asunto(s)
Fraccionamiento Químico/métodos , Depuradores de Radicales Libres/farmacología , Laminaria/química , Algas Marinas/química , Fraccionamiento Químico/instrumentación , Depuradores de Radicales Libres/aislamiento & purificación , Fucosa/análisis , Fucosa/aislamiento & purificación , Fucosa/farmacología , Glucanos/análisis , Glucanos/aislamiento & purificación , Glucanos/farmacología , Fenoles/análisis , Fenoles/aislamiento & purificación , Fenoles/farmacología , Polisacáridos/análisis , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Ondas UltrasónicasRESUMEN
Marine algae produce a variety of glycans, which fulfill diverse biological functions and fuel the carbon and energy demands of heterotrophic microbes. A common approach to analysis of marine organic matter uses acid to hydrolyze the glycans into measurable monosaccharides. The monosaccharides may be derived from different glycans that are built with the same monosaccharides, however, and this approach does not distinguish between glycans in natural samples. Here we use enzymes to digest selectively and thereby quantify laminarin in particulate organic matter. Environmental metaproteome data revealed carbohydrate-active enzymes from marine flavobacteria as tools for selective hydrolysis of the algal ß-glucan laminarin. The enzymes digested laminarin into glucose and oligosaccharides, which we measured with standard methods to establish the amounts of laminarin in the samples. We cloned, expressed, purified, and characterized three new glycoside hydrolases (GHs) of Formosa bacteria: two are endo-ß-1,3-glucanases, of the GH16 and GH17 families, and the other is a GH30 exo-ß-1,6-glucanase. Formosa sp. nov strain Hel1_33_131 GH30 (FbGH30) removed the ß-1,6-glucose side chains, and Formosa agariphila GH17A (FaGH17A) and FaGH16A hydrolyzed the ß-1,3-glucose backbone of laminarin. Specificity profiling with a library of glucan oligosaccharides and polysaccharides revealed that FaGH17A and FbGH30 were highly specific enzymes, while FaGH16A also hydrolyzed mixed-linked glucans with ß-1,4-glucose. Therefore, we chose the more specific FaGH17A and FbGH30 to quantify laminarin in two cultured diatoms, namely, Thalassiosira weissflogii and Thalassiosira pseudonana, and in seawater samples from the North Sea and the Arctic Ocean. Combined, these results demonstrate the potential of enzymes for faster, stereospecific, and sequence-specific analysis of select glycans in marine organic matter.IMPORTANCE Marine algae synthesize substantial amounts of the glucose polymer laminarin for energy and carbon storage. Its concentrations, rates of production by autotrophic organisms, and rates of digestion by heterotrophic organisms remain unknown. Here we present a method based on enzymes that hydrolyze laminarin and enable its quantification even in crude substrate mixtures, without purification. Compared to the commonly used acid hydrolysis, the enzymatic method presented here is faster and stereospecific and selectively cleaves laminarin in mixtures of glycans, releasing only glucose and oligosaccharides, which can be easily quantified with reducing sugar assays.
Asunto(s)
Organismos Acuáticos/enzimología , Técnicas de Química Analítica , Diatomeas/química , Flavobacteriaceae/enzimología , Glucanos/análisis , Glicósido Hidrolasas/metabolismo , Organismos Acuáticos/genética , Clonación Molecular , Flavobacteriaceae/genética , Expresión Génica , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/aislamiento & purificación , Mar del Norte , Material Particulado/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Agua de Mar/química , Especificidad por SustratoRESUMEN
Huanglongbing (HLB) is a destructive disease of citrus caused by phloem-limited bacteria, namely 'Candidatus Liberibacter asiaticus' (Las), 'Candidatus Liberibacter africanus', and 'Candidatus Liberibacter americanus'. Although there are no known HLB-resistant citrus species, studies have reported Poncirus trifoliata as being more tolerant. Assuming that callose deposition in the phloem of infected plants can inhibit translocation of photosynthetic products and cause starch accumulation, we compared callose deposition in petioles and starch accumulation in infected leaves of three genotypes (Citrus sinensis, C. sunki, and P. trifoliata) and 15 hybrids (C. sunki × P. trifoliata). Compared with the mock-inoculated plants, higher bacterial counts and greater accumulation of callose and starch were found in C. sinensis, C. sunki, and 10 of the hybrid plants. Lower titer and fewer metabolic changes due to Las infection were observed in P. trifoliata and in two Las-positive hybrids while three hybrids were Las-negative. Callose accumulation was linked to and correlated with genes involved in phloem functionality and starch accumulation was linked to up-regulation of genes involved in starch biosynthesis and repression of those related to starch breakdown. Lower expression of genes involved in phloem functionality in resistant and tolerant plants can partially explain the absence of distinct disease symptoms associated with starch accumulation that are usually observed in HLB-susceptible genotypes.