Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 200: 106644, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39173847

RESUMEN

Mitochondrial glutamyl-aminoacyl tRNA synthetase deficiency, stemming from biallelic mutations in the EARS2 gene, was first described in 2012. With <50 cases reported globally, this condition exhibits a distinct phenotype of neonatal or childhood-onset, often referred to as leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL). It has also been one of the few reversible mitochondrial disorders described. The natural history of these patients is poorly documented, ranging from clinical and radiological improvement to early death. Herein, we detail three cases from our centre, including follow-up on the Portuguese patient reported by Steenweg et al., These cases illustrate the phenotypic spectrum: i) rapidly progressive neonatal presentation with lactic acidemia and corpus callosum agenesis, leading to early death; ii) early onset with a severe, slowly progressive course; iii) early onset with a milder phenotype, showing some improvement and mild neurological symptoms. Additionally, we conducted a systematic literature review on cases of EARS2-deficient patients, focusing on clinical manifestations, laboratory findings, radiological aspects, and disease progression over time, along with respective data analysis. "Patients with EARS2 deficiency typically present within the first year of life with a well-defined neurometabolic disorder picture, often including hypotonia and/or spasticity, along with neurodevelopmental delay or regression. There are no pathognomonic features specific to EARS2 deficiency, and no genotype-phenotype correlation has been identified." Comparing to initial characterization by Steenweg et al., this analysis reveals an expanded disease spectrum. We propose a novel strategy for clustering phenotypes into severe, moderate, or mild disease based on initial presentation, seemingly correlating with disease progression. The paucity of data on the disease's natural history highlights the need for a multicentric approach to enhance understanding and management. TAKE-HOME MESSAGE: Analysis of all cases published with EARS2 deficiency allows for establish disease spectrum and a novel strategy for clustering phenotypes which correlate to disease progression.


Asunto(s)
Glutamato-ARNt Ligasa , Fenotipo , Preescolar , Femenino , Humanos , Lactante , Masculino , Glutamato-ARNt Ligasa/genética , Leucoencefalopatías/genética , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/patología , Enfermedades Mitocondriales/genética
2.
Biochemistry ; 62(5): 989-999, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802529

RESUMEN

Phosphorylation is a key post-translational modification that alters the functional state of many proteins. The Escherichia coli toxin HipA, which phosphorylates glutamyl-tRNA synthetase and triggers bacterial persistence under stress, becomes inactivated upon autophosphorylation of Ser150. Interestingly, Ser150 is phosphorylation-incompetent in the crystal structure of HipA since it is deeply buried ("in-state"), although in the phosphorylated state it is solvent exposed ("out-state"). To be phosphorylated, a minor population of HipA must exist in the phosphorylation-competent "out-state" (solvent-exposed Ser150), not detected in the crystal structure of unphosphorylated HipA. Here we report a molten-globule-like intermediate of HipA at low urea (∼4 kcal/mol unstable than natively folded HipA). The intermediate is aggregation-prone, consistent with a solvent exposed Ser150 and its two flanking hydrophobic neighbors (Val/Ile) in the "out-state". Molecular dynamics simulations showed the HipA "in-out" pathway to contain multiple free energy minima with an increasing degree of Ser150 solvent exposure with the free energy difference between the "in-state" and the metastable exposed state(s) to be ∼2-2.5 kcal/mol, with unique sets of hydrogen bonds and salt bridges associated with the metastable loop conformations. Together, the data clearly identify the existence of a phosphorylation-competent metastable state of HipA. Our results not only suggest a mechanism of HipA autophosphorylation but also add to a number of recent reports on unrelated protein systems where the common proposed mechanism for phosphorylation of buried residues is their transient exposure even without phosphorylation.


Asunto(s)
Proteínas de Escherichia coli , Fosforilación , Proteínas de Escherichia coli/química , Escherichia coli/genética , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo
3.
J Biol Chem ; 297(4): 101203, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34537243

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) catalyze the charging of specific amino acids onto cognate tRNAs, an essential process for protein synthesis. Mutations in ARSs are frequently associated with a variety of human diseases. The human EPRS1 gene encodes a bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) with two catalytic cores and appended domains that contribute to nontranslational functions. In this study, we report compound heterozygous mutations in EPRS1, which lead to amino acid substitutions P14R and E205G in two patients with diabetes and bone diseases. While neither mutation affects tRNA binding or association of EPRS with the multisynthetase complex, E205G in the glutamyl-tRNA synthetase (ERS) region of EPRS is defective in amino acid activation and tRNAGlu charging. The P14R mutation induces a conformational change and altered tRNA charging kinetics in vitro. We propose that the altered catalytic activity and conformational changes in the EPRS variants sensitize patient cells to stress, triggering an increased integrated stress response (ISR) that diminishes cell viability. Indeed, patient-derived cells expressing the compound heterozygous EPRS show heightened induction of the ISR, suggestive of disruptions in protein homeostasis. These results have important implications for understanding ARS-associated human disease mechanisms and development of new therapeutics.


Asunto(s)
Enfermedades Óseas , Diabetes Mellitus , Enfermedades Genéticas Congénitas , Glutamato-ARNt Ligasa , Mutación Missense , Estrés Fisiológico/genética , Sustitución de Aminoácidos , Enfermedades Óseas/enzimología , Enfermedades Óseas/genética , Diabetes Mellitus/enzimología , Diabetes Mellitus/genética , Enfermedades Genéticas Congénitas/enzimología , Enfermedades Genéticas Congénitas/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Células HEK293 , Humanos , Masculino
4.
J Inherit Metab Dis ; 44(4): 949-960, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33855712

RESUMEN

Glutamyl-tRNA synthetase 2 (encoded by EARS2) is a mitochondrial aminoacyl-tRNA synthetase required to translate the 13 subunits of the electron transport chain encoded by the mitochondrial DNA. Pathogenic EARS2 variants cause combined oxidative phosphorylation deficiency, subtype 12 (COXPD12), an autosomal recessive disorder involving lactic acidosis, intellectual disability, and other features of mitochondrial compromise. Patients with EARS2 deficiency present with variable phenotypes ranging from neonatal lethality to a mitigated disease with clinical improvement in early childhood. Here, we report a neonate homozygous for a rare pathogenic variant in EARS2 (c.949G>T; p.G317C). Metabolomics in primary fibroblasts from this patient revealed expected abnormalities in TCA cycle metabolites, as well as numerous changes in purine, pyrimidine, and fatty acid metabolism. To examine genotype-phenotype correlations in COXPD12, we compared the metabolic impact of reconstituting these fibroblasts with wild-type EARS2 versus four additional EARS2 variants from COXPD12 patients with varying clinical severity. Metabolomics identified a group of signature metabolites, mostly from the TCA cycle and amino acid metabolism, that discriminate between EARS2 variants causing relatively mild and severe COXPD12. Taken together, these findings indicate that metabolomics in patient-derived fibroblasts may help establish genotype-phenotype correlations in EARS2 deficiency and likely other mitochondrial disorders.


Asunto(s)
Variación Genética/genética , Glutamato-ARNt Ligasa/genética , Leucoencefalopatías/genética , Errores Innatos del Metabolismo/genética , Acidosis Láctica/etiología , Aminoacil-ARNt Sintetasas/genética , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Glutamato-ARNt Ligasa/metabolismo , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/etiología , Leucoencefalopatías/metabolismo , Masculino , Errores Innatos del Metabolismo/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación
5.
Mol Cell ; 52(2): 248-54, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24095282

RESUMEN

HipA of Escherichia coli is a eukaryote-like serine-threonine kinase that inhibits cell growth and induces persistence (multidrug tolerance). Previously, it was proposed that HipA inhibits cell growth by the phosphorylation of the essential translation factor EF-Tu. Here, we provide evidence that EF-Tu is not a target of HipA. Instead, a genetic screen reveals that the overexpression of glutamyl-tRNA synthetase (GltX) suppresses the toxicity of HipA. We show that HipA phosphorylates conserved Ser(239) near the active center of GltX and inhibits aminoacylation, a unique example of an aminoacyl-tRNA synthetase being inhibited by a toxin encoded by a toxin-antitoxin locus. HipA only phosphorylates tRNA(Glu)-bound GltX, which is consistent with the earlier finding that the regulatory motif containing Ser(239) changes configuration upon tRNA binding. These results indicate that HipA mediates persistence by the generation of "hungry" codons at the ribosomal A site that trigger the synthesis of (p)ppGpp, a hypothesis that we verify experimentally.


Asunto(s)
Tolerancia a Medicamentos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Aminoacilación , Antibacterianos/farmacología , Sitios de Unión/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Guanosina Pentafosfato/metabolismo , Modelos Genéticos , Modelos Moleculares , Mutación , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Fosforilación , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Serina/química , Serina/genética , Serina/metabolismo
6.
J Biol Chem ; 293(49): 19148-19156, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30309984

RESUMEN

About 1 billion years ago, in a single-celled holozoan ancestor of all animals, a gene fusion of two tRNA synthetases formed the bifunctional enzyme, glutamyl-prolyl-tRNA synthetase (EPRS). We propose here that a confluence of metabolic, biochemical, and environmental factors contributed to the specific fusion of glutamyl- (ERS) and prolyl- (PRS) tRNA synthetases. To test this idea, we developed a mathematical model that centers on the precursor-product relationship of glutamic acid and proline, as well as metabolic constraints on free glutamic acid availability near the time of the fusion event. Our findings indicate that proline content increased in the proteome during the emergence of animals, thereby increasing demand for free proline. Together, these constraints contributed to a marked cellular depletion of glutamic acid and its products, with potentially catastrophic consequences. In response, an ancient organism invented an elegant solution in which genes encoding ERS and PRS fused to form EPRS, forcing coexpression of the two enzymes and preventing lethal dysregulation. The substantial evolutionary advantage of this coregulatory mechanism is evidenced by the persistence of EPRS in nearly all extant animals.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Proteínas Bacterianas/química , Evolución Molecular , Modelos Químicos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ciclo del Ácido Cítrico , Fusión Génica , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Prolina/química , Prolina/metabolismo , Biosíntesis de Proteínas/genética
7.
Plant Physiol ; 177(2): 728-744, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29720556

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) have housekeeping roles in protein synthesis, but little is known about how these aaRSs are involved in organ development. Here, we report that a rice (Oryza sativa) glutamyl-tRNA synthetase (OsERS1) maintains proper somatic cell organization and limits the overproliferation of male germ cells during early anther development. The expression of OsERS1 is specifically detectable in meristematic layer 2-derived cells of the early anther, and osers1 anthers exhibit overproliferation and disorganization of layer 2-derived cells, producing fused lobes and extra germ cells in early anthers. The conserved biochemical function of OsERS1 in ligating glutamate to tRNAGlu is enhanced by its cofactor aaRS OsARC. Furthermore, metabolomics profiling revealed that OsERS1 is an important node for multiple metabolic pathways, indicated by the accumulation of amino acids and tricarboxylic acid cycle components in osers1 anthers. Notably, the anther defects of the osers1 mutant are causally associated with the abnormal accumulation of hydrogen peroxide, which can reconstitute the osers1 phenotype when applied to wild-type anthers. Collectively, these findings demonstrate how aaRSs affect male organ development in plants, likely through protein synthesis, metabolic homeostasis, and redox status.


Asunto(s)
Flores/citología , Glutamato-ARNt Ligasa/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , División Celular , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Glutamato-ARNt Ligasa/genética , Ácido Glutámico/metabolismo , Meristema/citología , Meristema/genética , Mutación , Oryza/citología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
8.
J Biol Chem ; 291(33): 17102-11, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27330079

RESUMEN

Arc1p is a yeast-specific tRNA-binding protein that forms a ternary complex with glutamyl-tRNA synthetase (GluRSc) and methionyl-tRNA synthetase (MetRS) in the cytoplasm to regulate their catalytic activities and subcellular distributions. Despite Arc1p not being involved in any known biotin-dependent reaction, it is a natural target of biotin modification. Results presented herein show that biotin modification had no obvious effect on the growth-supporting activity, subcellular distribution, tRNA binding, or interactions of Arc1p with GluRSc and MetRS. Nevertheless, biotinylation of Arc1p was temperature dependent; raising the growth temperature from 30 to 37 °C drastically reduced its biotinylation level. As a result, Arc1p purified from a yeast culture that had been grown overnight at 37 °C was essentially biotin free. Non-biotinylated Arc1p was more heat stable, more flexible in structure, and more effective than its biotinylated counterpart in promoting glutamylation activity of the otherwise inactive GluRSc at 37 °C in vitro Our study suggests that the structure and function of Arc1p can be modulated via biotinylation in response to temperature changes.


Asunto(s)
Biotinilación , Glutamato-ARNt Ligasa/química , Calor , Metionina-ARNt Ligasa/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Metionina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/metabolismo , Estabilidad Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Neuropediatrics ; 48(2): 108-110, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27875839

RESUMEN

Leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL) is a recently described autosomal recessive mitochondrial disease characterized by early onset of neurological symptoms, a biphasic clinical course, and distinctive neuroimaging. Pathogenic variants in the EARS2 gene that encode for mitochondrial glutamyl-tRNA synthetase are responsible for LTBL. Here, we describe the clinical course of an infant diagnosed with an acute crisis of LTBL and severe liver disease. This article illustrates the utility of blood lactate quantification in addition to basic metabolic testing and brain imaging in a child with low tone and poor growth. In addition, this case demonstrates the utility of current genetic diagnostic testing, in lieu of more invasive procedures, in obtaining rapid answers in this very complicated group of disorders.


Asunto(s)
Acidosis/diagnóstico , Tronco Encefálico/diagnóstico por imagen , Ácido Láctico/sangre , Leucoencefalopatías/diagnóstico , Enfermedades Mitocondriales/diagnóstico , Tálamo/diagnóstico por imagen , Acidosis/complicaciones , Acidosis/terapia , Diagnóstico Diferencial , Glutamato-ARNt Ligasa/genética , Humanos , Lactante , Leucoencefalopatías/complicaciones , Leucoencefalopatías/terapia , Hepatopatías/sangre , Hepatopatías/complicaciones , Hepatopatías/diagnóstico por imagen , Hepatopatías/terapia , Masculino , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/terapia
10.
Neuropediatrics ; 47(1): 64-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26619324

RESUMEN

Leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL) is caused by autosomal recessive EARS2 mutations. Onset is most often in infancy, but in severe cases in the neonatal period. Patients typically have magnetic resonance imaging (MRI) signal abnormalities involving the thalamus, brainstem, and deep cerebral white matter. Most signal abnormalities resolve, but in severe cases at the expense of tissue loss. Here, we report a patient with an encephalopathy of antenatal onset. His early MRI at 8 months of age showed signal abnormalities in the deep cerebral white matter that improved over time. The thalami were absent with the configuration of a developmental anomaly, without evidence of a lesion. We hypothesized that this was a case of LTBL in which the thalamic damage occurred antenatally and was incorporated in the normal brain development. The diagnosis was confirmed by a novel homozygous EARS2 mutation. Our case adds to the phenotypic and genetic spectrum of LTBL.


Asunto(s)
Glutamato-ARNt Ligasa/genética , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Mutación/genética , Tálamo/patología , Adolescente , Tronco Encefálico/metabolismo , Humanos , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética , Masculino
11.
Metab Brain Dis ; 31(3): 717-21, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26780086

RESUMEN

Mitochondrial aminoacyl tRNA synthetases are essential for organelle protein synthesis. Genetic defects affecting the function of these enzymes may cause pediatric mitochondrial disease. Here, we report on a child with fatal neonatal lactic acidosis and recurrent hypoglycemia caused by mutations in EARS2, encoding mitochondrial glutamyl-tRNA synthetase 2. Brain ultrasound revealed agenesis of corpus callosum. Studies on patient-derived skin fibroblasts showed severely decreased EARS2 protein levels, elevated reactive oxygen species (ROS) production, and altered mitochondrial morphology. Our report further illustrates the clinical spectrum of the severe neonatal-onset form of EARS2 mutations. Moreover, in this case the live-cell parameters appeared to be more sensitive to mitochondrial dysfunction compared to standard diagnostics, which indicates the potential relevance of fibroblast studies in children with mitochondrial diseases.


Asunto(s)
Acidosis Láctica/genética , Agenesia del Cuerpo Calloso/genética , Glutamato-ARNt Ligasa/genética , Hipoglucemia/genética , Enfermedades Mitocondriales/genética , Acidosis Láctica/diagnóstico por imagen , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Resultado Fatal , Humanos , Hipoglucemia/diagnóstico por imagen , Recién Nacido , Masculino , Enfermedades Mitocondriales/diagnóstico por imagen , Recurrencia , Ultrasonografía
12.
Microb Cell Fact ; 14: 183, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26577071

RESUMEN

BACKGROUND: Corynebacterium glutamicum is generally regarded as a safe microorganism and is used to produce many biochemicals, including L-glutamate. 5-Aminolevulinic acid (ALA) is an L-glutamate derived non-protein amino acid, and is widely applied in fields such as medicine and agriculture. RESULTS: The products of the gltX, hemA, and hemL genes participate in the synthesis of ALA from L-glutamate. Their annotated C. glutamicum homologs were shown to be functional using heterologous complementation and overexpression techniques. Coexpression of hemA and hemL in native host led to the accumulation of ALA, suggesting the potential of C. glutamicum to produce ALA for research and commercial purposes. To improve ALA production, we constructed recombinant C. glutamicum strains expressing hemA and hemL derived from different organisms. Transcriptome analysis indicated that the dissolved oxygen level and Fe(2+) concentration had major effects on ALA synthesis. The downstream pathway of heme biosynthesis was inhibited using small molecules or introducing genetic modifications. Small-scale flask cultures of engineered C. glutamicum produced 1.79 g/L of ALA. CONCLUSION: Functional characterization of the key enzymes indicated complex regulation of the heme biosynthetic pathway in C. glutamicum. Systematic analysis and molecular genetic engineering of C. glutamicum may facilitate its development as a system for large-scale synthesis of ALA.


Asunto(s)
Ácido Aminolevulínico/metabolismo , Corynebacterium glutamicum/metabolismo , Glucosa/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/crecimiento & desarrollo , Escherichia coli/metabolismo , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Ácidos Levulínicos/química , Maleatos/química , Ingeniería Metabólica , Ácidos Ftálicos/química
13.
J Biol Chem ; 288(45): 32539-32552, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24072705

RESUMEN

The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNA(Gln) biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNA(Glu) and tRNA(Gln), determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNA(Gln) biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids.


Asunto(s)
Apicoplastos/enzimología , Glutamato-ARNt Ligasa/metabolismo , Plasmodium berghei/enzimología , Plasmodium falciparum/enzimología , Biosíntesis de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Aminoacilación de ARN de Transferencia/fisiología , Apicoplastos/genética , Glutamato-ARNt Ligasa/genética , Humanos , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Glutamina/metabolismo , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo
14.
BMC Evol Biol ; 14: 26, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24521160

RESUMEN

BACKGROUND: Evolutionary histories of glutamyl-tRNA synthetase (GluRS) and glutaminyl-tRNA synthetase (GlnRS) in bacteria are convoluted. After the divergence of eubacteria and eukarya, bacterial GluRS glutamylated both tRNAGln and tRNAGlu until GlnRS appeared by horizontal gene transfer (HGT) from eukaryotes or a duplicate copy of GluRS (GluRS2) that only glutamylates tRNAGln appeared. The current understanding is based on limited sequence data and not always compatible with available experimental results. In particular, the origin of GluRS2 is poorly understood. RESULTS: A large database of bacterial GluRS, GlnRS, tRNAGln and the trimeric aminoacyl-tRNA-dependent amidotransferase (gatCAB), constructed from whole genomes by functionally annotating and classifying these enzymes according to their mutual presence and absence in the genome, was analyzed. Phylogenetic analyses showed that the catalytic and the anticodon-binding domains of functional GluRS2 (as in Helicobacter pylori) were independently acquired from evolutionarily distant hosts by HGT. Non-functional GluRS2 (as in Thermotoga maritima), on the other hand, was found to contain an anticodon-binding domain appended to a gene-duplicated catalytic domain. Several genomes were found to possess both GluRS2 and GlnRS, even though they share the common function of aminoacylating tRNAGln. GlnRS was widely distributed among bacterial phyla and although phylogenetic analyses confirmed the origin of most bacterial GlnRS to be through a single HGT from eukarya, many GlnRS sequences also appeared with evolutionarily distant phyla in phylogenetic tree. A GlnRS pseudogene could be identified in Sorangium cellulosum. CONCLUSIONS: Our analysis broadens the current understanding of bacterial GlxRS evolution and highlights the idiosyncratic evolution of GluRS2. Specifically we show that: i) GluRS2 is a chimera of mismatching catalytic and anticodon-binding domains, ii) the appearance of GlnRS and GluRS2 in a single bacterial genome indicating that the evolutionary histories of the two enzymes are distinct, iii) GlnRS is more widespread in bacteria than is believed, iv) bacterial GlnRS appeared both by HGT from eukarya and intra-bacterial HGT, v) presence of GlnRS pseudogene shows that many bacteria could not retain the newly acquired eukaryal GlnRS. The functional annotation of GluRS, without recourse to experiments, performed in this work, demonstrates the inherent and unique advantages of using whole genome over isolated sequence databases.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Bacterias/enzimología , Proteínas Bacterianas/genética , Quimera/genética , Eucariontes/enzimología , Evolución Molecular , Genoma Bacteriano , Glutamato-ARNt Ligasa/genética , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Duplicación de Gen , Transferencia de Gen Horizontal , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Filogenia , ARN de Transferencia de Glutamina/metabolismo
15.
Nucleic Acids Res ; 40(16): 7967-74, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22661575

RESUMEN

Protein biosynthesis requires aminoacyl-transfer RNA (tRNA) synthetases to provide aminoacyl-tRNA substrates for the ribosome. Most bacteria and all archaea lack a glutaminyl-tRNA synthetase (GlnRS); instead, Gln-tRNA(Gln) is produced via an indirect pathway: a glutamyl-tRNA synthetase (GluRS) first attaches glutamate (Glu) to tRNA(Gln), and an amidotransferase converts Glu-tRNA(Gln) to Gln-tRNA(Gln). The human pathogen Helicobacter pylori encodes two GluRS enzymes, with GluRS2 specifically aminoacylating Glu onto tRNA(Gln). It was proposed that GluRS2 is evolving into a bacterial-type GlnRS. Herein, we have combined rational design and directed evolution approaches to test this hypothesis. We show that, in contrast to wild-type (WT) GlnRS2, an engineered enzyme variant (M110) with seven amino acid changes is able to rescue growth of the temperature-sensitive Escherichia coli glnS strain UT172 at its non-permissive temperature. In vitro kinetic analyses reveal that WT GluRS2 selectively acylates Glu over Gln, whereas M110 acylates Gln 4-fold more efficiently than Glu. In addition, M110 hydrolyzes adenosine triphosphate 2.5-fold faster in the presence of Glu than Gln, suggesting that an editing activity has evolved in this variant to discriminate against Glu. These data imply that GluRS2 is a few steps away from evolving into a GlnRS and provides a paradigm for studying aminoacyl-tRNA synthetase evolution using directed engineering approaches.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Glutamato-ARNt Ligasa/química , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Dominio Catalítico , Evolución Molecular Dirigida , Escherichia coli/enzimología , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Ácido Glutámico/metabolismo , Helicobacter pylori/enzimología , Datos de Secuencia Molecular , Ingeniería de Proteínas , ARN de Transferencia de Glutamina/metabolismo , Alineación de Secuencia , Temperatura , Aminoacilación de ARN de Transferencia
16.
Int J Biol Macromol ; 254(Pt 2): 127756, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37907177

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs), essential components of the protein synthesizing machinery, have been often chosen for devising therapeutics against parasitic diseases. Due to their relevance in drug development, the current study was designed to explore functional and structural aspects of Leishmania donovani glutamyl-tRNA synthetase (LdGluRS). Hence, LdGluRS was cloned into an expression vector and purified to homogeneity using chromatographic techniques. Purified protein showed maximum enzymatic activity at physiological pH, with more binding capacity towards its cofactor (Adenosine triphosphate, 0.06 ± 0.01 mM) than the cognate substrate (L-glutamate, 9.5 ± 0.5 mM). Remarkably, salicylate inhibited LdGluRS competitively with respect to L-glutamate and exhibited druglikeness with negligible effect on human macrophages. The protein possessed more α-helices (43 %) than ß-sheets (12 %), whereas reductions in thermal stability and cofactor-binding affinity, along with variation in mode of inhibition after mutation signified the role of histidine (H60) as a catalytic residue. LdGluRS could also generate a pro-inflammatory milieu in human macrophages by upregulating cytokines. The docking study demonstrated the placement of salicylate into LdGluRS substrate-binding site, and the complex was found to be stable during molecular dynamics (MD) simulation. Altogether, our study highlights the understanding of molecular inhibition and structural features of glutamyl-tRNA synthetase from kinetoplastid parasites.


Asunto(s)
Aminoacil-ARNt Sintetasas , Leishmania donovani , Humanos , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Ácido Glutámico , Aminoacil-ARNt Sintetasas/química , Adenosina Trifosfato , Leishmania donovani/metabolismo , Salicilatos
17.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 2136-45, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24100331

RESUMEN

Aminoacyl-tRNA synthetases recognize cognate amino acids and tRNAs from their noncognate counterparts and catalyze the formation of aminoacyl-tRNAs. Halofuginone (HF), a coccidiostat used in veterinary medicine, exerts its effects by acting as a high-affinity inhibitor of the enzyme glutamyl-prolyl-tRNA synthetase (EPRS). In order to elucidate the precise molecular basis of this inhibition mechanism of human EPRS, the crystal structures of the prolyl-tRNA synthetase domain of human EPRS (hPRS) at 2.4 Šresolution (hPRS-apo), of hPRS complexed with ATP and the substrate proline at 2.3 Šresolution (hPRS-sub) and of hPRS complexed with HF at 2.62 Šresolution (hPRS-HF) are presented. These structures show plainly that motif 1 functions as a cap in hPRS, which is loosely opened in hPRS-apo, tightly closed in hPRS-sub and incorrectly closed in hPRS-HF. In addition, the structural analyses are consistent with more effective binding of hPRS to HF with ATP. Mutagenesis and biochemical analysis confirmed the key roles of two residues, Phe1097 and Arg1152, in the HF inhibition mechanism. These structures will lead to the development of more potent and selective hPRS inhibitors for promoting inflammatory resolution.


Asunto(s)
Adenosina Trifosfato/química , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/química , Piperidinas/farmacología , Prolina/química , Quinazolinonas/farmacología , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/genética , Dominio Catalítico/efectos de los fármacos , Dominio Catalítico/genética , Cristalografía por Rayos X , Glutamato-ARNt Ligasa/antagonistas & inhibidores , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Humanos , Mutagénesis , Piperidinas/química , Prolina/antagonistas & inhibidores , Prolina/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Conformación Proteica/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , Quinazolinonas/química , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/genética
18.
Brain ; 135(Pt 5): 1387-94, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22492562

RESUMEN

In the large group of genetically undetermined infantile-onset mitochondrial encephalopathies, multiple defects of mitochondrial DNA-related respiratory-chain complexes constitute a frequent biochemical signature. In order to identify responsible genes, we used exome-next-generation sequencing in a selected cohort of patients with this biochemical signature. In an isolated patient, we found two mutant alleles for EARS2, the gene encoding mitochondrial glutamyl-tRNA synthetase. The brain magnetic resonance imaging of this patient was hallmarked by extensive symmetrical cerebral white matter abnormalities sparing the periventricular rim and symmetrical signal abnormalities of the thalami, midbrain, pons, medulla oblongata and cerebellar white matter. Proton magnetic resonance spectroscopy showed increased lactate. We matched this magnetic resonance imaging pattern with that of a cohort of 11 previously selected unrelated cases. We found mutations in the EARS2 gene in all. Subsequent detailed clinical and magnetic resonance imaging based phenotyping revealed two distinct groups: mild and severe. All 12 patients shared an infantile onset and rapidly progressive disease with severe magnetic resonance imaging abnormalities and increased lactate in body fluids and proton magnetic resonance spectroscopy. Patients in the 'mild' group partially recovered and regained milestones in the following years with striking magnetic resonance imaging improvement and declining lactate levels, whereas those of the 'severe' group were characterized by clinical stagnation, brain atrophy on magnetic resonance imaging and persistent lactate increases. This new neurological disease, early-onset leukoencephalopathy with thalamus and brainstem involvement and high lactate, is hallmarked by unique magnetic resonance imaging features, defined by a peculiar biphasic clinical course and caused by mutations in a single gene, EARS2, expanding the list of medically relevant defects of mitochondrial DNA translation.


Asunto(s)
Tronco Encefálico/patología , Glutamato-ARNt Ligasa/genética , Ácido Láctico/metabolismo , Leucoencefalopatías , Mutación/genética , Tálamo/patología , Células Cultivadas , Niño , Análisis Mutacional de ADN , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Femenino , Fibroblastos/fisiología , Humanos , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Leucoencefalopatías/patología , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Proteínas Mitocondriales/genética , Consumo de Oxígeno/genética , Consumo de Oxígeno/fisiología , Protones , Piel/patología
19.
Mol Biochem Parasitol ; 253: 111530, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36370911

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein translation machinery that provide the charged tRNAs needed for protein synthesis. Over the past decades, aaRSs have been studied as anti-parasitic, anti-bacterial, and anti-fungal drug targets. This study focused on the cytoplasmic glutamyl-tRNA synthetase (GluRS) from Plasmodium falciparum, which belongs to class Ib in aaRSs. GluRS unlike most other aaRSs requires tRNA to activate its cognate amino acid substrate L-Glutamate (L-Glu), and fails to form an intermediate adenylate complex in the absence of tRNA. The crystal structures of the Apo, ATP, and ADP-bound forms of Plasmodium falciparum glutamyl-tRNA synthetase (PfGluRS) were solved at 2.1 Å, 2.2 Å, and 2.8 Å respectively. The structural comparison of the Apo- and ATP-bound holo-forms of PfGluRS showed considerable conformational changes in the loop regions around the ATP-binding pocket of the enzyme. Biophysical characterization of the PfGluRS showed binding of the enzyme substrates L-Gluand ATP.. The sequence and structural conservation were evident across GluRS compared to other species. The structural dissection of the PfGluRS gives insight into the critical residues involved in the binding of ATP substrate, which can be harvested to develop new antimalarial drugs.


Asunto(s)
Aminoacil-ARNt Sintetasas , Glutamato-ARNt Ligasa , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia/metabolismo , Adenosina Trifosfato/metabolismo
20.
Biochemistry ; 51(22): 4429-37, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22563625

RESUMEN

Molten globule and other disordered states of proteins are now known to play important roles in many cellular processes. From equilibrium unfolding studies of two paralogous proteins and their variants, glutaminyl-tRNA synthetase (GlnRS) and two of its variants [glutamyl-tRNA synthetase (GluRS) and its isolated domains, and a GluRS-GlnRS chimera], we demonstrate that only GlnRS forms a molten globule-like intermediate at low urea concentrations. We demonstrated that a loop in the GlnRS C-terminal anticodon binding domain that promotes communication with the N-terminal domain and indirectly modulates amino acid binding is also responsible for stabilization of the molten globule state. This loop was inserted into GluRS in the eukaryotic branch after the archaea-eukarya split, right around the time when GlnRS evolved. Because of the structural and functional importance of the loop, it is proposed that the insertion of the loop into a putative ancestral GluRS in eukaryotes produced a catalytically active molten globule state. Because of their enhanced dynamic nature, catalytically active molten globules are likely to possess broad substrate specificity. It is further proposed that the putative broader substrate specificity allowed the catalytically active molten globule to accept glutamine in addition to glutamic acid, leading to the evolution of GlnRS.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Escherichia coli/química , Escherichia coli/enzimología , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Escherichia coli/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Desplegamiento Proteico , Eliminación de Secuencia , Urea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA