Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.265
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 603(7901): 515-521, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35264792

RESUMEN

Nitrogen availability is a growth-limiting factor in many habitats1, and the global nitrogen cycle involves prokaryotes and eukaryotes competing for this precious resource. Only some bacteria and archaea can fix elementary nitrogen; all other organisms depend on the assimilation of mineral or organic nitrogen. The nitrogen-rich compound guanidine occurs widely in nature2-4, but its utilization is impeded by pronounced resonance stabilization5, and enzymes catalysing hydrolysis of free guanidine have not been identified. Here we describe the arginase family protein GdmH (Sll1077) from Synechocystis sp. PCC 6803 as a Ni2+-dependent guanidine hydrolase. GdmH is highly specific for free guanidine. Its activity depends on two accessory proteins that load Ni2+ instead of the typical Mn2+ ions into the active site. Crystal structures of GdmH show coordination of the dinuclear metal cluster in a geometry typical for arginase family enzymes and allow modelling of the bound substrate. A unique amino-terminal extension and a tryptophan residue narrow the substrate-binding pocket and identify homologous proteins in further cyanobacteria, several other bacterial taxa and heterokont algae as probable guanidine hydrolases. This broad distribution suggests notable ecological relevance of guanidine hydrolysis in aquatic habitats.


Asunto(s)
Hidrolasas , Synechocystis , Arginasa/metabolismo , Proteínas Bacterianas/metabolismo , Guanidina/metabolismo , Hidrolasas/metabolismo , Nitrógeno/metabolismo
2.
Mol Cell ; 74(5): 922-935.e6, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-30979585

RESUMEN

Enteropathogenic E. coli NleB and related type III effectors catalyze arginine GlcNAcylation of death domain (DD) proteins to block host defense, but the underlying mechanism is unknown. Here we solve crystal structures of NleB alone and in complex with FADD-DD, UDP, and Mn2+ as well as NleB-GlcNAcylated DDs of TRADD and RIPK1. NleB adopts a GT-A fold with a unique helix-pair insertion to hold FADD-DD; the interface contacts explain the selectivity of NleB for certain DDs. The acceptor arginine is fixed into a cleft, in which Glu253 serves as a base to activate the guanidinium. Analyses of the enzyme-substrate complex and the product structures reveal an inverting sugar-transfer reaction and a detailed catalytic mechanism. These structural insights are validated by mutagenesis analyses of NleB-mediated GlcNAcylation in vitro and its function in mouse infection. Our study builds a structural framework for understanding of NleB-catalyzed arginine GlcNAcylation of host death domain.


Asunto(s)
Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/química , Interacciones Huésped-Patógeno/genética , Conformación Proteica , Factores de Virulencia/química , Animales , Apoptosis/genética , Arginina/química , Arginina/genética , Coenzima A Ligasas/química , Coenzima A Ligasas/genética , Cristalografía por Rayos X , Dominio de Muerte/genética , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/genética , Guanidina/química , Humanos , Manganeso/química , Ratones , Mutagénesis , Proteína de Dominio de Muerte Asociada a Receptor de TNF/química , Proteína de Dominio de Muerte Asociada a Receptor de TNF/genética , Factores de Virulencia/genética
3.
Proc Natl Acad Sci U S A ; 121(10): e2312652121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408229

RESUMEN

Metformin is the first-line treatment for type II diabetes patients and a pervasive pollutant with more than 180 million kg ingested globally and entering wastewater. The drug's direct mode of action is currently unknown but is linked to effects on gut microbiomes and may involve specific gut microbial reactions to the drug. In wastewater treatment plants, metformin is known to be transformed by microbes to guanylurea, although genes encoding this metabolism had not been elucidated. In the present study, we revealed the function of two genes responsible for metformin decomposition (mfmA and mfmB) found in isolated bacteria from activated sludge. MfmA and MfmB form an active heterocomplex (MfmAB) and are members of the ureohydrolase protein superfamily with binuclear metal-dependent activity. MfmAB is nickel-dependent and catalyzes the hydrolysis of metformin to dimethylamine and guanylurea with a catalytic efficiency (kcat/KM) of 9.6 × 103 M-1s-1 and KM for metformin of 0.82 mM. MfmAB shows preferential activity for metformin, being able to discriminate other close substrates by several orders of magnitude. Crystal structures of MfmAB show coordination of binuclear nickel bound in the active site of the MfmA subunit but not MfmB subunits, indicating that MfmA is the active site for the MfmAB complex. Mutagenesis of residues conserved in the MfmA active site revealed those critical to metformin hydrolase activity and its small substrate binding pocket allowed for modeling of bound metformin. This study characterizes the products of the mfmAB genes identified in wastewater treatment plants on three continents, suggesting that metformin hydrolase is widespread globally in wastewater.


Asunto(s)
Diabetes Mellitus Tipo 2 , Guanidina/análogos & derivados , Metformina , Microbiota , Urea/análogos & derivados , Humanos , Metformina/metabolismo , Aguas Residuales , Níquel , Hidrolasas/genética , Preparaciones Farmacéuticas
4.
RNA ; 29(8): 1126-1139, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37130702

RESUMEN

Riboswitches function as important translational regulators in bacteria. Comprehensive mutational analysis of transcriptional riboswitches has been used to probe the energetic intricacies of interplay between the aptamer and expression platform, but translational riboswitches have been inaccessible to massively parallel techniques. The guanidine-II (gdm-II) riboswitch is an exclusively translational class. We have integrated RelE cleavage with next-generation sequencing to quantify ligand-dependent changes in translation initiation for all single and double mutations of the Pseudomonas aeruginosa gdm-II riboswitch, a total of more than 23,000 variants. This extensive mutational analysis is consistent with the prominent features of the bioinformatic consensus. These data indicate, unexpectedly, that direct sequestration of the Shine-Dalgarno sequence is dispensable for riboswitch function. Additionally, this comprehensive data set reveals important positions not identified in previous computational and crystallographic studies. Mutations in the variable linker region stabilize alternate conformations. The double mutant data reveal the functional importance of the previously modeled P0b helix formed by the 5' and 3' tails that serves as the basis for translational control. Additional mutations to GU wobble base pairs in both P1 and P2 reveal how the apparent cooperativity of the system involves an intricate network of communication between the two binding sites. This comprehensive examination of a translational riboswitch's expression platform illuminates how the riboswitch is precisely tuned and tunable with regard to ligand sensitivity, the amplitude of expression between ON and OFF states, and the cooperativity of ligand binding.


Asunto(s)
Aptámeros de Nucleótidos , Riboswitch , Riboswitch/genética , Guanidina/farmacología , Ligandos , Guanidinas , Aptámeros de Nucleótidos/química , Conformación de Ácido Nucleico
5.
Nature ; 566(7742): 94-99, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728519

RESUMEN

Small molecules containing the N-nitroso group, such as the bacterial natural product streptozotocin, are prominent carcinogens1,2 and important cancer chemotherapeutics3,4. Despite the considerable importance of this functional group to human health, enzymes dedicated to the assembly of the N-nitroso unit have not been identified. Here we show that SznF, a metalloenzyme from the biosynthesis of streptozotocin, catalyses an oxidative rearrangement of the guanidine group of Nω-methyl-L-arginine to generate an N-nitrosourea product. Structural characterization and mutagenesis of SznF reveal two separate active sites that promote distinct steps in this transformation using different iron-containing metallocofactors. This biosynthetic reaction, which has little precedent in enzymology or organic synthesis, expands the catalytic capabilities of non-haem-iron-dependent enzymes to include N-N bond formation. We find that biosynthetic gene clusters that encode SznF homologues are widely distributed among bacteria-including environmental organisms, plant symbionts and human pathogens-which suggests an unexpectedly diverse and uncharacterized microbial reservoir of bioactive N-nitroso metabolites.


Asunto(s)
Metaloproteínas/metabolismo , Estreptozocina/biosíntesis , Estreptozocina/química , Arginina/análogos & derivados , Dominio Catalítico/genética , Coenzimas/metabolismo , Cristalografía por Rayos X , Guanidina/metabolismo , Hierro/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Modelos Moleculares , Familia de Multigenes , Compuestos de Nitrosourea/metabolismo , Streptomyces/enzimología , Streptomyces/genética
6.
Nature ; 565(7737): 106-111, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30568301

RESUMEN

Specificity of interactions between two DNA strands, or between protein and DNA, is often achieved by varying bases or side chains coming off the DNA or protein backbone-for example, the bases participating in Watson-Crick pairing in the double helix, or the side chains contacting DNA in TALEN-DNA complexes. By contrast, specificity of protein-protein interactions usually involves backbone shape complementarity1, which is less modular and hence harder to generalize. Coiled-coil heterodimers are an exception, but the restricted geometry of interactions across the heterodimer interface (primarily at the heptad a and d positions2) limits the number of orthogonal pairs that can be created simply by varying side-chain interactions3,4. Here we show that protein-protein interaction specificity can be achieved using extensive and modular side-chain hydrogen-bond networks. We used the Crick generating equations5 to produce millions of four-helix backbones with varying degrees of supercoiling around a central axis, identified those accommodating extensive hydrogen-bond networks, and used Rosetta to connect pairs of helices with short loops and to optimize the remainder of the sequence. Of 97 such designs expressed in Escherichia coli, 65 formed constitutive heterodimers, and the crystal structures of four designs were in close agreement with the computational models and confirmed the designed hydrogen-bond networks. In cells, six heterodimers were fully orthogonal, and in vitro-following mixing of 32 chains from 16 heterodimer designs, denaturation in 5 M guanidine hydrochloride and reannealing-almost all of the interactions observed by native mass spectrometry were between the designed cognate pairs. The ability to design orthogonal protein heterodimers should enable sophisticated protein-based control logic for synthetic biology, and illustrates that nature has not fully explored the possibilities for programmable biomolecular interaction modalities.


Asunto(s)
Simulación por Computador , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas/química , Proteínas/metabolismo , ADN/química , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Guanidina/farmacología , Enlace de Hidrógeno , Modelos Moleculares , Unión Proteica , Desnaturalización Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Proteínas/genética
7.
Mol Cell ; 65(2): 205-206, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28107646

RESUMEN

In this issue, Nelson and colleagues (2017) determined that guanidine, the prevalent protein denaturant, is the long-lost ligand sensed by the ykkC class of riboswitches, and identified that members of its regulon are involved in guanidine detoxification and export.


Asunto(s)
Guanidina , Riboswitch , Bacterias/genética , Guanidinas , ARN Bacteriano
8.
Mol Cell ; 65(2): 220-230, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-27989440

RESUMEN

The guanidyl moiety is a component of fundamental metabolites, including the amino acid arginine, the energy carrier creatine, and the nucleobase guanine. Curiously, reports regarding the importance of free guanidine in biology are sparse, and no biological receptors that specifically recognize this compound have been previously identified. We report that many members of the ykkC motif RNA, the longest unresolved riboswitch candidate, naturally sense and respond to guanidine. This RNA is found throughout much of the bacterial domain of life, where it commonly controls the expression of proteins annotated as urea carboxylases and multidrug efflux pumps. Our analyses reveal that these proteins likely function as guanidine carboxylases and guanidine transporters, respectively. Furthermore, we demonstrate that bacteria are capable of endogenously producing guanidine. These and related findings demonstrate that free guanidine is a biologically relevant compound, and several gene families that can alleviate guanidine toxicity exist.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Guanidina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Riboswitch , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Conformación de Ácido Nucleico , Motivos de Nucleótidos , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Mensajero/química , ARN Mensajero/genética , Especificidad por Sustrato
9.
Proc Natl Acad Sci U S A ; 119(44): e2210114119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279441

RESUMEN

American bullfrog (Rana castesbeiana) saxiphilin (RcSxph) is a high-affinity "toxin sponge" protein thought to prevent intoxication by saxitoxin (STX), a lethal bis-guanidinium neurotoxin that causes paralytic shellfish poisoning (PSP) by blocking voltage-gated sodium channels (NaVs). How specific RcSxph interactions contribute to STX binding has not been defined and whether other organisms have similar proteins is unclear. Here, we use mutagenesis, ligand binding, and structural studies to define the energetic basis of Sxph:STX recognition. The resultant STX "recognition code" enabled engineering of RcSxph to improve its ability to rescue NaVs from STX and facilitated discovery of 10 new frog and toad Sxphs. Definition of the STX binding code and Sxph family expansion among diverse anurans separated by ∼140 My of evolution provides a molecular basis for understanding the roles of toxin sponge proteins in toxin resistance and for developing novel proteins to sense or neutralize STX and related PSP toxins.


Asunto(s)
Neurotoxinas , Saxitoxina , Animales , Saxitoxina/genética , Ligandos , Guanidina , Proteínas Portadoras/metabolismo , Rana catesbeiana
10.
Biochemistry ; 63(12): 1543-1552, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38787909

RESUMEN

Hepatitis B virus (HBV) displays remarkable self-assembly capabilities that interest the scientific community and biotechnological industries as HBV is leading to an annual mortality of up to 1 million people worldwide (especially in Africa and Southeast Asia). When the ionic strength is increased, hepatitis B virus-like particles (VLPs) can assemble from dimers of the first 149 residues of the HBV capsid protein core assembly domain (Cp149). Using solution small-angle X-ray scattering, we investigated the disassembly of the VLPs by titrating guanidine hydrochloride (GuHCl). Measurements were performed with and without 1 M NaCl, added either before or after titrating GuHCl. Fitting the scattering curves to a linear combination of atomic models of Cp149 dimer (the subunit) and T = 3 and T = 4 icosahedral capsids revealed the mass fraction of the dimer in each structure in all the titration points. Based on the mass fractions, the variation in the dimer-dimer association standard free energy was calculated as a function of added GuHCl, showing a linear relation between the interaction strength and GuHCl concentration. Using the data, we estimated the energy barriers for assembly and disassembly and the critical nucleus size for all of the assembly reactions. Extrapolating the standard free energy to [GuHCl] = 0 showed an evident hysteresis in the assembly process, manifested by differences in the dimer-dimer association standard free energy obtained for the disassembly reactions compared with the equivalent assembly reactions. Similar hysteresis was observed in the energy barriers for assembly and disassembly and the critical nucleus size. The results suggest that above 1.5 M, GuHCl disassembled the capsids by attaching to the protein and adding steric repulsion, thereby weakening the hydrophobic attraction.


Asunto(s)
Cápside , Guanidina , Virus de la Hepatitis B , Guanidina/química , Guanidina/farmacología , Virus de la Hepatitis B/química , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis B/efectos de los fármacos , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Dispersión del Ángulo Pequeño , Multimerización de Proteína , Modelos Moleculares , Ensamble de Virus/efectos de los fármacos , Difracción de Rayos X
11.
J Am Chem Soc ; 146(12): 8394-8406, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477601

RESUMEN

Aggregation refers to the assembly of proteins into nonphysiological higher order structures. While amyloid has been studied extensively, much less is known about amorphous aggregation, a process that interferes with protein expression and storage. Free arginine (Arg+) is a widely used aggregation inhibitor, but its mechanism remains elusive. Focusing on myoglobin (Mb), we recently applied atomistic molecular dynamics (MD) simulations for gaining detailed insights into amorphous aggregation (Ng J. Phys. Chem. B 2021, 125, 13099). Building on that approach, the current work for the first time demonstrates that MD simulations can directly elucidate aggregation inhibition mechanisms. Comparative simulations with and without Arg+ reproduced the experimental finding that Arg+ significantly decreased the Mb aggregation propensity. Our data reveal that, without Arg+, protein-protein encounter complexes readily form salt bridges and hydrophobic contacts, culminating in firmly linked dimeric aggregation nuclei. Arg+ promotes the dissociation of encounter complexes. These "unproductive" encounter complexes are favored because Arg+ binding to D- and E- lowers the tendency of these anionic residues to form interprotein salt bridges. Side chain blockage is mediated largely by the guanidinium group of Arg+, which binds carboxylates through H-bond-reinforced ionic contacts. Our MD data revealed Arg+ self-association into a dynamic quasi-infinite network, but we found no evidence that this self-association is important for protein aggregation inhibition. Instead, aggregation inhibition by Arg+ is similar to that mediated by free guanidinium ions. The computational strategy used here should be suitable for the rational design of aggregation inhibitors with enhanced potency.


Asunto(s)
Arginina , Agregado de Proteínas , Arginina/química , Guanidina , Simulación de Dinámica Molecular , Amiloide
12.
J Am Chem Soc ; 146(21): 14785-14798, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38743019

RESUMEN

Selective RNA delivery is required for the broad implementation of RNA clinical applications, including prophylactic and therapeutic vaccinations, immunotherapies for cancer, and genome editing. Current polyanion delivery relies heavily on cationic amines, while cationic guanidinium systems have received limited attention due in part to their strong polyanion association, which impedes intracellular polyanion release. Here, we disclose a general solution to this problem in which cationic guanidinium groups are used to form stable RNA complexes upon formulation but at physiological pH undergo a novel charge-neutralization process, resulting in RNA release. This new delivery system consists of guanidinylated serinol moieties incorporated into a charge-altering releasable transporter (GSer-CARTs). Significantly, systematic variations in structure and formulation resulted in GSer-CARTs that exhibit highly selective mRNA delivery to the lung (∼97%) and spleen (∼98%) without targeting ligands. Illustrative of their breadth and translational potential, GSer-CARTs deliver circRNA, providing the basis for a cancer vaccination strategy, which in a murine model resulted in antigen-specific immune responses and effective suppression of established tumors.


Asunto(s)
Guanidina , ARN Mensajero , Animales , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química , Guanidina/química , Humanos , Serina/química
13.
Biochem Biophys Res Commun ; 715: 149994, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692139

RESUMEN

Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.


Asunto(s)
Guanidina , Virus de la Influenza A , ARN Viral , SARS-CoV-2 , Manejo de Especímenes , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Guanidina/farmacología , Guanidina/química , ARN Viral/genética , Humanos , Manejo de Especímenes/métodos , Genoma Viral , COVID-19/virología , COVID-19/diagnóstico , Chlorocebus aethiops , Células Vero , Inactivación de Virus/efectos de los fármacos , Animales , Estabilidad del ARN/efectos de los fármacos , Contención de Riesgos Biológicos , Guanidinas/farmacología , Guanidinas/química , Sales (Química)/farmacología , Sales (Química)/química
14.
Magn Reson Med ; 91(4): 1512-1527, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38098305

RESUMEN

PURPOSE: Guanidinium CEST is sensitive to metabolic changes and pH variation in ischemia, and it can offer advantages over conventional pH-sensitive amide proton transfer (APT) imaging by providing hyperintense contrast in stroke lesions. However, quantifying guanidinium CEST is challenging due to multiple overlapping components and a close frequency offset from water. This study aims to evaluate the applicability of a new rapid and model-free CEST quantification method using double saturation power, termed DSP-CEST, for isolating the guanidinium CEST effect from confounding factors in ischemia. To further reduce acquisition time, the DSP-CEST was combined with a quasi-steady state (QUASS) CEST technique to process non-steady-state CEST signals. METHODS: The specificity and accuracy of the DSP-CEST method in quantifying the guanidinium CEST effect were assessed by comparing simulated CEST signals with/without the contribution from confounding factors. The feasibility of this method for quantifying guanidinium CEST was evaluated in a rat model of global ischemia induced by cardiac arrest and compared to a conventional multiple-pool Lorentzian fit method. RESULTS: The DSP-CEST method was successful in removing all confounding components and quantifying the guanidinium CEST signal increase in ischemia. This suggests that the DSP-CEST has the potential to provide hyperintense contrast in stroke lesions. Additionally, the DSP-CEST was shown to be a rapid method that does not require the acquisition of the entire or a portion of the CEST Z-spectrum that is required in conventional model-based fitting approaches. CONCLUSION: This study highlights the potential of DSP-CEST as a valuable tool for rapid and specific detection of viable tissues.


Asunto(s)
Encéfalo , Accidente Cerebrovascular , Ratas , Animales , Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Guanidina/metabolismo , Roedores , Isquemia/diagnóstico por imagen , Isquemia/metabolismo , Amidas/metabolismo
15.
Magn Reson Med ; 92(4): 1456-1470, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38748853

RESUMEN

PURPOSE: To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS: Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS: The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION: The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.


Asunto(s)
Amidas , Encéfalo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Amidas/química , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Reproducibilidad de los Resultados , Imagen Eco-Planar/métodos , Glioma/diagnóstico por imagen , Algoritmos , Relación Señal-Ruido , Neoplasias Encefálicas/diagnóstico por imagen , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Femenino , Guanidina/química
16.
Chemistry ; 30(26): e202304079, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38441909

RESUMEN

The emerging role of Ribonucleic acids (RNAs) as therapeutics is alluring. However, RNAs are extremely labile under ambient conditions and typically need to be stored in cryogenic conditions (-20 °C to -80 °C). Hence, storage, stabilization, and transportation of RNA under ambient conditions have been an arduous task and remain an unsolved problem. In this work, a guanidinium-based ionic covalent organic framework (COF), TTGCl with nanotubular morphology, was synthesized and used as nano-reservoirs for room-temperature storage of RNA. To understand the role of the nanotubular morphology and chemical nature of TTGCl in stabilizing the RNA structure and for comparison purposes, a neutral COF, TMT-TT, is synthesized and studied. Further, density functional theory (DFT) studies confirmed non-covalent interaction between the COFs and the RNA nucleobases, facilitating reversible storage of RNA. RNA loaded in COFs was found to be resistant to enzymatic degradation when treated with RNase. Gel electrophoresis and sequencing confirmed the structural integrity of the recovered RNAs and their further processibility.


Asunto(s)
ARN , Temperatura , ARN/química , Estructuras Metalorgánicas/química , Guanidina/química , Conformación de Ácido Nucleico , Estabilidad del ARN , Teoría Funcional de la Densidad
17.
Chemistry ; 30(30): e202401109, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38507249

RESUMEN

A new class of superbasic, bifunctional peptidyl guanidine catalysts is presented, which enables the organocatalytic, atroposelective synthesis of axially chiral quinazolinediones. Computational modeling unveiled the conformational modulation of the catalyst by a novel phenyl urea N-cap, that preorganizes the structure into the active, folded state. A previously unanticipated noncovalent interaction involving a difluoroacetamide acting as a hybrid mono- or bidentate hydrogen bond donor emerged as a decisive control element inducing atroposelectivity. These discoveries spurred from a scaffold-oriented project inspired from a fascinating investigational BTK inhibitor featuring two stable chiral axes and relies on a mechanistic framework that was foreign to the extant lexicon of asymmetric catalysis.


Asunto(s)
Enlace de Hidrógeno , Conformación Molecular , Catálisis , Estereoisomerismo , Quinazolinonas/química , Guanidina/química , Péptidos/química , Modelos Moleculares , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/química , Agammaglobulinemia Tirosina Quinasa/metabolismo
18.
Mol Pharm ; 21(3): 1256-1271, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38324380

RESUMEN

Delivery of macromolecular drugs inside cells has been a huge challenge in the field of oligonucleotide therapeutics for the past few decades. Earliest natural inspirations included the arginine rich stretch of cell permeable HIV-TAT peptide, which led to the design of several molecular transporters with varying numbers of rigid or flexible guanidinium units with different tethering groups. These transporters have been shown to efficiently deliver phosphorodiamidate morpholino oligonucleotides, which have a neutral backbone and cannot form lipoplexes. In this report, PMO based delivery agents having 3 or 4 guanidinium groups at the C5 position of the nucleobases of cytosine and uracil have been explored, which can be assimilated within the desired stretch of the antisense oligonucleotide. Guanidinium units have been connected by varying the flexibility with either a saturated (propyl) or an unsaturated (propargyl) spacer, which showed different serum dependency along with varied cytoplasmic distribution. The effect of cholesterol conjugation in the delivery agent as well as at the 5'-end of full length PMO in cellular delivery has also been studied. Finally, the efficacy of the delivery has been studied by the PMO mediated downregulation of the stemness marker Sox2 in the triple-negative breast cancer cell line MDA-MB 231. These results have validated the use of this class of delivery agents, which permit at a stretch PMO synthesis where the modified bases can also participate in Watson-Crick-Franklin base pairing for enhanced mRNA binding and protein downregulation and could solve the delivery problem of PMO.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Regulación hacia Abajo , Pirimidinas , Guanidina , Morfolinos/química , Oligonucleótidos
19.
Biomacromolecules ; 25(8): 5198-5211, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39073603

RESUMEN

Monitoring membrane-mediated dialysis in real time with static and dynamic light scattering revealed distinctive differences, including reversibility/irreversibility, in the effects of ionic strength (NaCl) and the denaturant guanidine-HCl (Gd) on a synthetic polyelectrolyte and several types of biomacromolecules: protein, polysaccharide, and polyampholyte. Dialysis cycles against aqueous NaCl and Gd, and reverse back to the original aqueous solution, were monitored. The behavior of Na-polystyrenesulfonate was reversible and yielded a detailed polymer physics description. The biomacromolecules additionally showed hydrogen-bonding/hydrophobic (HP) interactions. An interpretive model was developed that considers the interplay among polyelectrolyte, polyampholyte, and HP potential energies in determining the different associative, aggregative, and dissociative behaviors. NaCl isolated purely electrostatic effects, whereas Gd combined electrostatic and HP effects. Some macromolecules showed partially reversible behavior, and others were completely irreversible. The dialysis monitoring method should prove useful for investigating fundamental macromolecular and colloid properties and for drug formulation and stability optimization.


Asunto(s)
Sustancias Macromoleculares , Concentración Osmolar , Sustancias Macromoleculares/química , Guanidina/química , Diálisis/métodos , Enlace de Hidrógeno , Cloruro de Sodio/química , Interacciones Hidrofóbicas e Hidrofílicas , Polisacáridos/química , Electricidad Estática
20.
Biomacromolecules ; 25(8): 5149-5159, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39045816

RESUMEN

As one of the gaseous signals in living cells, carbon monoxide (CO) not only participates in many biological activities but also serves as a therapeutic agent for the treatment of diseases. However, the limited applicability of CO in gas therapy emerges from the inconvenience of direct administration of CO. Here we reported the construction of guanidinylated CO-releasing micelles, which are composed of poly(trimethylene carbonate) (PTMC)-based CO donors. The in vitro studies demonstrated that micelles in the presence of light irradiation can induce cancer death, whereas no obvious toxicity to normal cells was observed. Moreover, the functionalization of guanidine groups imparts improved cellular uptake efficiency to micelles owing to the specific interactions with the surface of cells, which synergistically increase the anticancer capacity of the system. The guanidine-functionalized CO-releasing micelles provide a new strategy for the construction of CO-releasing nanocarriers, which are expected to find applications in gas therapeutics.


Asunto(s)
Monóxido de Carbono , Micelas , Cemento de Policarboxilato , Monóxido de Carbono/química , Humanos , Cemento de Policarboxilato/química , Guanidina/química , Portadores de Fármacos/química , Portadores de Fármacos/síntesis química , Polímeros/química , Dioxanos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA