Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.273
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(2): 379-396.e38, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35021063

RESUMEN

The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts. We then align this atlas across seven species, revealing the conserved program of bona fide Kupffer cells and LAMs. We also uncover the respective spatially resolved cellular niches of these macrophages and the microenvironmental circuits driving their unique transcriptomic identities. We demonstrate that LAMs are induced by local lipid exposure, leading to their induction in steatotic regions of the murine and human liver, while Kupffer cell development crucially depends on their cross-talk with hepatic stellate cells via the evolutionarily conserved ALK1-BMP9/10 axis.


Asunto(s)
Evolución Biológica , Hepatocitos/metabolismo , Macrófagos/metabolismo , Proteogenómica , Animales , Núcleo Celular/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Homeostasis , Humanos , Macrófagos del Hígado/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Lípidos/química , Hígado/metabolismo , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Células Mieloides/metabolismo , Obesidad/patología , Proteoma/metabolismo , Transducción de Señal , Transcriptoma/genética
2.
Genes Dev ; 35(7-8): 542-555, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33664057

RESUMEN

p53 is critical for tumor suppression but also elicits detrimental effects when aberrantly overexpressed. Thus, multiple regulators, including RNA-binding protein RBM38, are found to tightly control p53 expression. Interestingly, RBM38 is unique in that it can either suppress or enhance p53 mRNA translation via altered interaction with eIF4E potentially mediated by serine-195 (S195) in RBM38. Thus, multiple RBM38/eIF4E knock-in (KI) cell lines were generated to investigate the significance of eIF4E-RBM38 interaction in controlling p53 activity. We showed that KI of RBM38-S195D or -Y192C enhances, whereas KI of RBM38-S195K/R/L weakens, the binding of eIF4E to p53 mRNA and subsequently p53 expression. We also showed that KI of eIF4E-D202K weakens the interaction of eIF4E with RBM38 and thereby enhances p53 expression, suggesting that D202 in eIF4E interacts with S195 in RBM38. Moreover, we generated an Rbm38 S193D KI mouse model in which human-equivalent serine-193 is substituted with aspartic acid. We showed that S193D KI enhances p53-dependent cellular senescence and that S193D KI mice have a shortened life span and are prone to spontaneous tumors, chronic inflammation, and liver steatosis. Together, we provide in vivo evidence that the RBM38-eIF4E loop can be explored to fine-tune p53 expression for therapeutic development.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Unión al ARN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinogénesis/genética , Línea Celular , Senescencia Celular/genética , Factor 4E Eucariótico de Iniciación/genética , Hígado Graso/genética , Técnicas de Sustitución del Gen , Inflamación/genética , Longevidad/genética , Ratones , Unión Proteica/genética , Proteínas de Unión al ARN/genética , Proteína p53 Supresora de Tumor/genética
3.
EMBO J ; 42(24): e113898, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37962490

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing cause of morbidity with limited treatment options. Thus, accurate in vitro systems to test new therapies are indispensable. While recently, human liver organoid models have emerged to assess steatotic liver disease, a systematic evaluation of their translational potential is still missing. Here, we evaluated human liver organoid models of MASLD, comparatively testing disease induction in three conditions: oleic acid, palmitic acid, and TGF-ß1. Through single-cell analyses, we find that all three models induce inflammatory signatures, but only TGF-ß1 promotes collagen production, fibrosis, and hepatic stellate cell expansion. In striking contrast, oleic acid ameliorates fibrotic signatures and reduces the hepatic stellate cell population. Linking data from each model to gene expression signatures associated with MASLD disease progression further demonstrates that palmitic acid and TGF-ß1 more robustly model inflammation and fibrosis. Our findings highlight the importance of stratifying MASLD organoid models by signatures of clinical disease progression, provide a single-cell reference to benchmark future organoid injury models, and allow us to study evolving steatohepatitis, fibrosis, and HSC susceptibility to injury in a dynamic, multi-lineage human in vitro system.


Asunto(s)
Hígado Graso , Cirrosis Hepática , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Hígado Graso/genética , Perfilación de la Expresión Génica , Progresión de la Enfermedad
4.
EMBO J ; 42(8): e112304, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36825429

RESUMEN

The tumor suppressor p53 is critical for tumor suppression, but the regulatory role of p53 in alcohol-induced fatty liver remains unclear. Here, we show a role for p53 in regulating ethanol metabolism via acetaldehyde dehydrogenase 2 (ALDH2), a key enzyme responsible for the oxidization of alcohol. By repressing ethanol oxidization, p53 suppresses intracellular levels of acetyl-CoA and histone acetylation, leading to the inhibition of the stearoyl-CoA desaturase-1 (SCD1) gene expression. Mechanistically, p53 directly binds to ALDH2 and prevents the formation of its active tetramer and indirectly limits the production of pyruvate that promotes the activity of ALDH2. Notably, p53-deficient mice exhibit increased lipid accumulation, which can be reversed by ALDH2 depletion. Moreover, liver-specific knockdown of SCD1 alleviates ethanol-induced hepatic steatosis caused by p53 loss. By contrast, overexpression of SCD1 in liver promotes ethanol-induced fatty liver development in wild-type mice, while it has a mild effect on p53-/- or ALDH2-/- mice. Overall, our findings reveal a previously unrecognized function of p53 in alcohol-induced fatty liver and uncover pyruvate as a natural regulator of ALDH2.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial , Hígado Graso Alcohólico , Hígado Graso , Proteína p53 Supresora de Tumor , Animales , Ratones , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Etanol/toxicidad , Etanol/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso Alcohólico/genética , Hígado Graso Alcohólico/metabolismo , Hígado/metabolismo , Piruvatos/metabolismo , Piruvatos/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(35): e2405746121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39172787

RESUMEN

While macrophage heterogeneity during metabolic dysfunction-associated steatohepatitis (MASH) has been described, the fate of these macrophages during MASH regression is poorly understood. Comparing macrophage heterogeneity during MASH progression vs regression, we identified specific macrophage subpopulations that are critical for MASH/fibrosis resolution. We elucidated the restorative pathways and gene signatures that define regression-associated macrophages and establish the importance of TREM2+ macrophages during MASH regression. Liver-resident Kupffer cells are lost during MASH and are replaced by four distinct monocyte-derived macrophage subpopulations. Trem2 is expressed in two macrophage subpopulations: i) monocyte-derived macrophages occupying the Kupffer cell niche (MoKC) and ii) lipid-associated macrophages (LAM). In regression livers, no new transcriptionally distinct macrophage subpopulation emerged. However, the relative macrophage composition changed during regression compared to MASH. While MoKC was the major macrophage subpopulation during MASH, they decreased during regression. LAM was the dominant macrophage subtype during MASH regression and maintained Trem2 expression. Both MoKC and LAM were enriched in disease-resolving pathways. Absence of TREM2 restricted the emergence of LAMs and formation of hepatic crown-like structures. TREM2+ macrophages are functionally important not only for restricting MASH-fibrosis progression but also for effective regression of inflammation and fibrosis. TREM2+ macrophages are superior collagen degraders. Lack of TREM2+ macrophages also prevented elimination of hepatic steatosis and inactivation of HSC during regression, indicating their significance in metabolic coordination with other cell types in the liver. TREM2 imparts this protective effect through multifactorial mechanisms, including improved phagocytosis, lipid handling, and collagen degradation.


Asunto(s)
Macrófagos del Hígado , Cirrosis Hepática , Macrófagos , Glicoproteínas de Membrana , Receptores Inmunológicos , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Animales , Ratones , Macrófagos/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Hígado/patología , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Masculino , Lípidos , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/genética , Ratones Noqueados
6.
J Biol Chem ; 300(7): 107460, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876306

RESUMEN

Obesity is a major risk factor for liver and cardiovascular diseases. However, obesity-driven mechanisms that contribute to the pathogenesis of multiple organ diseases are still obscure and treatment is inadequate. We hypothesized that increased , glucose-6-phosphate dehydrogenase (G6PD), the key rate-limiting enzyme in the pentose shunt, is critical in evoking metabolic reprogramming in multiple organs and is a significant contributor to the pathogenesis of liver and cardiovascular diseases. G6PD is induced by a carbohydrate-rich diet and insulin. Long-term (8 months) high-fat diet (HFD) feeding increased body weight and elicited metabolic reprogramming in visceral fat, liver, and aorta, of the wild-type rats. In addition, HFD increased inflammatory chemokines in visceral fat. Interestingly, CRISPR-edited loss-of-function Mediterranean G6PD variant (G6PDS188F) rats, which mimic human polymorphism, moderated HFD-induced weight gain and metabolic reprogramming in visceral fat, liver, and aorta. The G6PDS188F variant prevented HFD-induced CCL7 and adipocyte hypertrophy. Furthermore, the G6PDS188F variant increased Magel2 - a gene encoding circadian clock-related protein that suppresses obesity associated with Prader-Willi syndrome - and reduced HFD-induced non-alcoholic fatty liver. Additionally, the G6PDS188F variant reduced aging-induced aortic stiffening. Our findings suggest G6PD is a regulator of HFD-induced obesity, adipocyte hypertrophy, and fatty liver.


Asunto(s)
Adipocitos , Dieta Alta en Grasa , Hígado Graso , Glucosafosfato Deshidrogenasa , Hipertrofia , Obesidad , Animales , Glucosafosfato Deshidrogenasa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Masculino , Ratas , Obesidad/metabolismo , Obesidad/genética , Obesidad/patología , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos , Adipocitos/metabolismo , Adipocitos/patología , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Hígado/metabolismo , Hígado/patología , Ratas Sprague-Dawley , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología
7.
J Biol Chem ; 300(6): 107322, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677511

RESUMEN

Obesity-induced metabolic dysfunction-associated steatohepatitis (MASH) leads to hepatocellular carcinoma (HCC). Astrocyte-elevated gene-1/Metadherin (AEG-1/MTDH) plays a key role in promoting MASH and HCC. AEG-1 is palmitoylated at residue cysteine 75 (Cys75) and a knock-in mouse representing mutated Cys75 to serine (AEG-1-C75S) showed activation of MASH- and HCC-promoting gene signature when compared to wild-type littermates (AEG-1-WT). The liver consists of three zones, periportal, mid-lobular, and pericentral, and zone-specific dysregulated gene expression impairs metabolic homeostasis in the liver, contributing to MASH and HCC. Here, to elucidate how palmitoylation influences AEG-1-mediated gene regulation in regard to hepatic zonation, we performed spatial transcriptomics (ST) in the livers of AEG-1-WT and AEG-1-C75S littermates. ST identified six different clusters in livers and using zone- and cell-type-specific markers we attributed specific zones and cell types to specific clusters. Ingenuity Pathway Analysis (IPA) of differentially expressed genes in each cluster unraveled activation of pro-inflammatory and MASH- and HCC-promoting pathways, mainly in periportal and pericentral hepatocytes, in AEG-1-C75S liver compared to AEG-1-WT. Interestingly, in AEG-1-C75S liver, the mid-lobular zone exhibited widespread inhibition of xenobiotic metabolism pathways and inhibition of PXR/RXR and LXR/RXR activation, versus AEG-1-WT. In conclusion, AEG-1-C75S mutant exhibited zone-specific differential gene expression, which might contribute to metabolic dysfunction and dysregulated drug metabolism leading to MASH and HCC.


Asunto(s)
Lipoilación , Hígado , Proteínas de la Membrana , Proteínas de Unión al ARN , Animales , Masculino , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Regulación de la Expresión Génica , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Transcriptoma
8.
Am J Pathol ; 194(6): 958-974, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38417694

RESUMEN

Genetic polymorphisms that impair very low-density lipoprotein (VLDL) secretion are linked to hepatic steatosis, fibrosis, and hepatocellular cancer. Liver-specific deletion of microsomal triglyceride transfer protein (Mttp-LKO) impairs VLDL assembly, promoting hepatic steatosis and fibrosis, which are attenuated in Mttp-LKO X Fabp1-null [Fabp1/Mttp double knockout (DKO)] mice. The current study examined the impact of impaired VLDL secretion in Mttp-LKO mice on hepatocellular cancer incidence and progression in comparison to Fabp1/Mttp DKO mice. Diethylnitrosamine-treated Mttp-LKO mice exhibited steatosis with increased tumor burden compared with flox controls, whereas diethylnitrosamine-treated Fabp1/Mttp DKO mice exhibited a paradoxical increase in tumor burden and >50% mortality by 50 weeks. Serum high-density lipoprotein cholesterol was elevated in both Mttp-LKO and Fabp1/Mttp DKO mice, with increased intratumoral expression of apolipoprotein A1 and apolipoprotein E. Lipidomic surveys revealed progressive enrichment in distinct triglyceride species in livers from Mttp-LKO mice with further enrichment in Fabp1/Mttp DKO mice. RNA sequencing revealed mRNA changes suggesting altered monocarboxylic acid use and increased aerobic glycolysis, whereas hepatocytes from Fabp1/Mttp DKO mice exhibited increased capacity to use glucose and glutamine. These metabolic shifts were accompanied by reduced expression of HNF1 homeobox A (HNF1a), which correlated with tumor burden. Taken together, these findings demonstrate that hepatic tumorigenesis is increased in mice with impaired VLDL secretion and further accelerated via pathways including altered fatty acid compartmentalization and shifts in hepatic energy use.


Asunto(s)
Carcinogénesis , Proteínas de Unión a Ácidos Grasos , Lipoproteínas VLDL , Neoplasias Hepáticas , Animales , Ratones , Carcinogénesis/genética , Carcinogénesis/patología , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/genética , Eliminación de Gen , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones Noqueados
9.
Mol Syst Biol ; 20(4): 374-402, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38459198

RESUMEN

Sex-based differences in obesity-related hepatic malignancies suggest the protective roles of estrogen. Using a preclinical model, we dissected estrogen receptor (ER) isoform-driven molecular responses in high-fat diet (HFD)-induced liver diseases of male and female mice treated with or without an estrogen agonist by integrating liver multi-omics data. We found that selective ER activation recovers HFD-induced molecular and physiological liver phenotypes. HFD and systemic ER activation altered core liver pathways, beyond lipid metabolism, that are consistent between mice and primates. By including patient cohort data, we uncovered that ER-regulated enhancers govern central regulatory and metabolic genes with clinical significance in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, including the transcription factor TEAD1. TEAD1 expression increased in MASLD patients, and its downregulation by short interfering RNA reduced intracellular lipid content. Subsequent TEAD small molecule inhibition improved steatosis in primary human hepatocyte spheroids by suppressing lipogenic pathways. Thus, TEAD1 emerged as a new therapeutic candidate whose inhibition ameliorates hepatic steatosis.


Asunto(s)
Hígado Graso , Enfermedad del Hígado Graso no Alcohólico , Animales , Femenino , Humanos , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Estrógenos , Hígado Graso/genética , Hígado Graso/metabolismo , Expresión Génica , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/uso terapéutico , Factores de Transcripción de Dominio TEA
10.
Hepatology ; 80(3): 633-648, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466796

RESUMEN

BACKGROUND AND AIMS: No medication has been found to reduce liver-related events. We evaluated the effect of sodium-glucose cotransporter-2 inhibitor (SGLT2i) on liver-related outcomes. APPROACH AND RESULTS: Single nucleotide polymorphisms associated with SGLT2 inhibition were identified, and a genetic risk score (GRS) was computed using the UK Biobank data (n=337,138). Two-sample Mendelian randomization (MR) was conducted using the FinnGen (n=218,792) database and the UK Biobank data. In parallel, a nationwide population-based study using the Korean National Health Insurance Service (NHIS) database was conducted. The development of liver-related complications (ie, hepatic decompensation, HCC, liver transplantation, and death) was compared between individuals with type 2 diabetes mellitus and steatotic liver diseases treated with SGLT2i (n=13,208) and propensity score-matched individuals treated with dipeptidyl peptidase-4 inhibitor (n=70,342). After computing GRS with 6 single nucleotide polymorphisms (rs4488457, rs80577326, rs11865835, rs9930811, rs34497199, and rs35445454), GRS-based MR showed that SGLT2 inhibition (per 1 SD increase of GRS, 0.1% lowering of HbA1c) was negatively associated with cirrhosis development (adjusted odds ratio=0.83, 95% CI=0.70-0.98, p =0.03) and this was consistent in the 2-sample MR (OR=0.73, 95% CI=0.60-0.90, p =0.003). In the Korean NHIS database, the risk of liver-related complications was significantly lower in the SGLT2i group than in the dipeptidyl peptidase-4 inhibitor group (adjusted hazard ratio=0.88, 95% CI=0.79-0.97, p =0.01), and this difference remained significant (adjusted hazard ratio=0.72-0.89, all p <0.05) across various sensitivity analyses. CONCLUSIONS: Both MRs using 2 European cohorts and a Korean nationwide population-based cohort study suggest that SGLT2 inhibition is associated with a lower risk of liver-related events.


Asunto(s)
Diabetes Mellitus Tipo 2 , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Masculino , Persona de Mediana Edad , Estudios de Cohortes , Anciano , República de Corea/epidemiología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Hepatopatías/genética , Hepatopatías/epidemiología , Hígado Graso/genética , Adulto
11.
FASEB J ; 38(11): e23717, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38837270

RESUMEN

Selenoprotein I (Selenoi) is highly expressed in liver and plays a key role in lipid metabolism as a phosphatidylethanolamine (PE) synthase. However, the precise function of Selenoi in the liver remains elusive. In the study, we generated hepatocyte-specific Selenoi conditional knockout (cKO) mice on a high-fat diet to identify the physiological function of Selenoi. The cKO group exhibited a significant increase in body weight, with a 15.6% and 13.7% increase in fat accumulation in white adipose tissue (WAT) and the liver, respectively. Downregulation of the lipolysis-related protein (p-Hsl) and upregulation of the adipogenesis-related protein (Fasn) were observed in the liver of cKO mice. The cKO group also showed decreased oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure (p < .05). Moreover, various metabolites of the steroid hormone synthesis pathway were affected in the liver of cKO mice. A potential cascade of Selenoi-phosphatidylethanolamine-steroid hormone synthesis might serve as a core mechanism that links hepatocyte-specific Selenoi cKO to biochemical and molecular reactions. In conclusion, we revealed that Selenoi inhibits body fat accumulation and hepatic steatosis and elevates energy consumption; this protein could also be considered a therapeutic target for such related diseases.


Asunto(s)
Hígado Graso , Hepatocitos , Ratones Noqueados , Obesidad , Animales , Ratones , Obesidad/metabolismo , Obesidad/genética , Obesidad/etiología , Hepatocitos/metabolismo , Hígado Graso/metabolismo , Hígado Graso/etiología , Hígado Graso/genética , Hígado Graso/patología , Selenoproteínas/metabolismo , Selenoproteínas/genética , Dieta Alta en Grasa/efectos adversos , Masculino , Hígado/metabolismo , Metabolismo Energético , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo
12.
Nano Lett ; 24(22): 6743-6752, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38783628

RESUMEN

Lipid nanoparticles (LNPs) represent the forefront of mRNA delivery platforms, yet achieving precise delivery to specific cells remains a challenge. The current targeting strategies complicate the formulation and impede the regulatory approval process. Here, through a straightforward regulation of helper lipids within LNPs, we introduce an engineered LNP designed for targeted delivery of mRNA into hepatocytes for metabolic dysfunction-associated fatty liver disease (MAFLD) treatment. The optimized LNP, supplied with POPC as the helper lipid, exhibits a 2.49-fold increase in mRNA transfection efficiency in hepatocytes compared to that of FDA-approved LNPs. CTP:phosphocholine cytidylyltransferase α mRNA is selected for delivery to hepatocytes through the optimized LNP system for self-calibration of phosphatidylcholine levels to prevent lipid droplet expansion in MAFLD. This strategy effectively regulates lipid homeostasis, while demonstrating proven biosafety. Our results present a mRNA therapy for MAFLD and open a new avenue for discovering potent lipids enabling mRNA delivery to specific cells.


Asunto(s)
Hepatocitos , Nanopartículas , Fosfatidilcolinas , ARN Mensajero , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humanos , Hepatocitos/metabolismo , Fosfatidilcolinas/química , Nanopartículas/química , Animales , Transfección/métodos , Citidililtransferasa de Colina-Fosfato/genética , Citidililtransferasa de Colina-Fosfato/metabolismo , Hígado Graso/terapia , Hígado Graso/genética , Hígado Graso/metabolismo , Lípidos/química , Técnicas de Transferencia de Gen , Ratones , Liposomas
13.
Gut ; 73(6): 1008-1014, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38458749

RESUMEN

OBJECTIVE: Fat deposition is modulated by environmental factors and genetic predisposition. Genome-wide association studies identified PNPLA3 p.I148M (rs738409) as a common variant that increases risk of developing liver steatosis. When and how this variant evolved in humans has not been studied to date. DESIGN: Here we analyse ancient DNA to track the history of this allele throughout human history. In total, 6444 published ancient (modern humans, Neanderthal, Denisovan) and 3943 published present day genomes were used for analysis after extracting genotype calls for PNPLA3 p.I148M. To quantify changes through time, logistic and, by grouping individuals according to geography and age, linear regression analyses were performed. RESULTS: We find that archaic human individuals (Neanderthal, Denisovan) exclusively carried a fixed PNPLA3 risk allele, whereas allele frequencies in modern human populations range from very low in Africa to >50% in Mesoamerica. Over the last 15 000 years, distributions of ancestral and derived alleles roughly match the present day distribution. Logistic regression analyses did not yield signals of natural selection during the last 10 000 years. CONCLUSION: Archaic human individuals exclusively carried a fixed PNPLA3 allele associated with fatty liver, whereas allele frequencies in modern human populations are variable even in the oldest samples. Our observation might underscore the advantage of fat storage in cold climate and particularly for Neanderthal under ice age conditions. The absent signals of natural selection during modern human history does not support the thrifty gene hypothesis in case of PNPLA3 p.I148M.


Asunto(s)
Aciltransferasas , Alelos , Hígado Graso , Hombre de Neandertal , Fosfolipasas A2 Calcio-Independiente , Animales , Humanos , Aciltransferasas/genética , ADN Antiguo/análisis , Hígado Graso/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Hombre de Neandertal/genética , Fosfolipasas A2 Calcio-Independiente/genética
14.
Curr Opin Lipidol ; 35(4): 200-207, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38484227

RESUMEN

PURPOSE OF REVIEW: An increasing amount of research has underscored the significant role of lipoproteins in the pathogenesis of metabolic-associated fatty liver disease (MAFLD). This comprehensive review examines the intricate relationship between lipoprotein abnormalities and the development of MAFLD. RECENT FINDINGS: Atherogenic dyslipidemia seen in insulin resistance states play a significant role in initiating and exacerbating hepatic lipid accumulation. There are also specific genetic factors ( PNPLA3 , TM6SF2 , MBOAT7 , HSD17B13 , GCKR- P446L) and transcription factors (SREBP-2, FXR, and LXR9) that increase susceptibility to both lipoprotein disorders and MAFLD. Most monogenic primary lipid disorders do not cause hepatic steatosis unless accompanied by metabolic stress. Hepatic steatosis occurs in the presence of secondary systemic metabolic stress in conjunction with predisposing environmental factors that lead to insulin resistance. Identifying specific aberrant lipoprotein metabolic factors promoting hepatic fat accumulation and subsequently exacerbating steatohepatitis will shed light on potential targets for therapeutic interventions. SUMMARY: The clinical implications of interconnection between genetic factors and an insulin resistant environment that predisposes MAFLD is many fold. Potential therapeutic strategies in preventing or mitigating MAFLD progression include lifestyle modifications, pharmacological interventions, and emerging therapies targeting aberrant lipoprotein metabolism.


Asunto(s)
Hígado Graso , Metabolismo de los Lípidos , Humanos , Metabolismo de los Lípidos/genética , Animales , Hígado Graso/metabolismo , Hígado Graso/genética , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Lipoproteínas/metabolismo
15.
J Lipid Res ; 65(4): 100527, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447926

RESUMEN

Forkhead transcription factor 3 (FOXA3) has been shown to regulate metabolism and development. Hepatic FOXA3 is reduced in obesity and fatty liver disease. However, the role of hepatic FOXA3 in regulating obesity or steatohepatitis remains to be investigated. In this work, C57BL/6 mice were i.v. injected with AAV8-ALB-FOXA3 or the control virus. The mice were then fed a chow or Western diet for 16 weeks. The role of hepatic FOXA3 in energy metabolism and steatohepatitis was investigated. Plasma bile acid composition and the role of Takeda G protein-coupled receptor 5 (TGR5) in mediating the metabolic effects of FOXA3 were determined. Overexpression of hepatic FOXA3 reduced hepatic steatosis in chow-fed mice and attenuated Western diet-induced obesity and steatohepatitis. FOXA3 induced lipolysis and inhibited hepatic genes involved in bile acid uptake, resulting in elevated plasma bile acids. The beneficial effects of hepatic FOXA3 overexpression on Western diet-induced obesity and steatohepatitis were abolished in Tgr5-/- mice. Our data demonstrate that overexpression of hepatic FOXA3 prevents Western diet-induced obesity and steatohepatitis via activation of TGR5.


Asunto(s)
Dieta Occidental , Factor Nuclear 3-gamma del Hepatocito , Hígado , Ratones Endogámicos C57BL , Obesidad , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Obesidad/metabolismo , Obesidad/genética , Obesidad/etiología , Ratones , Factor Nuclear 3-gamma del Hepatocito/metabolismo , Factor Nuclear 3-gamma del Hepatocito/genética , Hígado/metabolismo , Dieta Occidental/efectos adversos , Masculino , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/etiología , Ácidos y Sales Biliares/metabolismo
16.
BMC Genomics ; 25(1): 374, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627644

RESUMEN

BACKGROUND: Fatty liver hemorrhagic syndrome (FLHS) in the modern poultry industry is primarily caused by nutrition. Despite encouraging progress on FLHS, the mechanism through which nutrition influences susceptibility to FLHS is still lacking in terms of epigenetics. RESULTS: In this study, we analyzed the genome-wide patterns of trimethylated lysine residue 27 of histone H3 (H3K27me3) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq), and examined its association with transcriptomes in healthy and FLHS hens. The study results indicated that H3K27me3 levels were increased in the FLHS hens on a genome-wide scale. Additionally, H3K27me3 was found to occupy the entire gene and the distant intergenic region, which may function as silencer-like regulatory elements. The analysis of transcription factor (TF) motifs in hypermethylated peaks has demonstrated that 23 TFs are involved in the regulation of liver metabolism and development. Transcriptomic analysis indicated that differentially expressed genes (DEGs) were enriched in fatty acid metabolism, amino acid, and carbohydrate metabolism. The hub gene identified from PPI network is fatty acid synthase (FASN). Combined ChIP-seq and transcriptome analysis revealed that the increased H3K27me3 and down-regulated genes have significant enrichment in the ECM-receptor interaction, tight junction, cell adhesion molecules, adherens junction, and TGF-beta signaling pathways. CONCLUSIONS: Overall, the trimethylation modification of H3K27 has been shown to have significant regulatory function in FLHS, mediating the expression of crucial genes associated with the ECM-receptor interaction pathway. This highlights the epigenetic mechanisms of H3K27me3 and provides insights into exploring core regulatory targets and nutritional regulation strategies in FLHS.


Asunto(s)
Anomalías Múltiples , Anomalías Craneofaciales , Dieta con Restricción de Proteínas , Hígado Graso , Trastornos del Crecimiento , Defectos del Tabique Interventricular , Animales , Femenino , Histonas/metabolismo , Pollos/genética , Pollos/metabolismo , Epigénesis Genética , Hígado Graso/genética , Hígado Graso/veterinaria , Hemorragia/genética , Transcriptoma
17.
J Hepatol ; 81(2): 345-359, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38552880

RESUMEN

The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.


Asunto(s)
Biomarcadores , Humanos , Biomarcadores/análisis , Biomarcadores/metabolismo , Hígado Graso/diagnóstico , Hígado Graso/genética , Proteómica/métodos , Metabolómica/métodos , Genómica/métodos
18.
J Hepatol ; 80(6): 834-845, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331323

RESUMEN

BACKGROUND & AIMS: Accumulating evidence has indicated the presence of mature microRNAs (miR) in the nucleus, but their effects on steatohepatitis remain elusive. We have previously demonstrated that the intranuclear miR-204-3p in macrophages protects against atherosclerosis, which shares multiple risk factors with metabolic dysfunction-associated steatotic liver disease (MASLD). Herein, we aimed to explore the functional significance of miR-204-3p in steatohepatitis. METHODS: miR-204-3p levels and subcellular localization were assessed in the livers and peripheral blood mononuclear cells of patients with MASLD. Wild-type mice fed high-fat or methionine- and choline-deficient diets were injected with an adeno-associated virus system containing miR-204-3p to determine the effect of miR-204-3p on steatohepatitis. Co-culture systems were applied to investigate the crosstalk between macrophages and hepatocytes or hepatic stellate cells (HSCs). Multiple high-throughput epigenomic sequencings were performed to explore miR-204-3p targets. RESULTS: miR-204-3p expression decreased in livers and macrophages in mice and patients with fatty liver. In patients with MASLD, miR-204-3p levels in peripheral blood mononuclear cells were inversely related to the severity of hepatic inflammation and damage. Macrophage-specific miR-204-3p overexpression reduced steatohepatitis in high-fat or methionine- and choline-deficient diet-fed mice. miR-204-3p-overexpressing macrophages inhibited TLR4/JNK signaling and pro-inflammatory cytokine release, thereby limiting fat deposition and inflammation in hepatocytes and fibrogenic activation in HSCs. Epigenomic profiling identified miR-204-3p as a specific regulator of ULK1 expression. ULK1 transcription and VPS34 complex activation by intranuclear miR-204-3p improved autophagic flux, promoting the anti-inflammatory effects of miR-204-3p in macrophages. CONCLUSIONS: miR-204-3p inhibits macrophage inflammation, coordinating macrophage actions on hepatocytes and HSCs to ameliorate steatohepatitis. Macrophage miR-204-3p may be a therapeutic target for MASLD. IMPACT AND IMPLICATIONS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic inflammatory disease ranging from simple steatosis to steatohepatitis. However, the molecular mechanisms underlying the progression of MASLD remain incompletely understood. Here, we demonstrate that miR-204-3p levels in circulating peripheral blood mononuclear cells are negatively correlated with disease severity in patients with MASLD. Nuclear miR-204-3p activates ULK1 transcription and improves autophagic flux, limiting macrophage activation and hepatic steatosis. Our study provides a novel understanding of the mechanism of macrophage autophagy and inflammation in steatohepatitis and suggests that miR-204-3p may act as a potential therapeutic target for MASLD.


Asunto(s)
Hígado Graso , MicroARNs , Animales , Ratones , Homólogo de la Proteína 1 Relacionada con la Autofagia , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/etiología , Hepatocitos/metabolismo , Hígado/metabolismo , Hígado/patología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética
19.
J Hepatol ; 81(3): 379-388, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38582304

RESUMEN

BACKGROUND & AIMS: Steatotic liver disease (SLD), characterized by elevated liver fat content (LFC), is influenced by genetics and diet. However, whether diet has a differential effect based on genetic risk is not well-characterized. We aimed to determine how genetic factors interact with diet to affect SLD in a large national biobank. METHODS: We included UK Biobank participants with dietary intake measured by 24-hour recall and genotyping. The primary predictors were dietary pattern, PNPLA3-rs738409-G, TM6SF2-rs58542926-T, a 16-variant hepatic steatosis polygenic risk score (PRS), and gene-environment interactions. The primary outcome was LFC, and secondary outcomes were iron-controlled T1 time (cT1, a measure of liver inflammation and fibrosis) and liver-related events/mortality. RESULTS: A total of 21,619 participants met inclusion criteria. In non-interaction models, Mediterranean diet and intake of fruit/vegetables/legumes and fish associated with lower LFC, while higher red/processed meat intake and all genetic predictors associated with higher LFC. In interaction models, all genetic predictors interacted with Mediterranean diet and fruit/vegetable/legume intake, while the steatosis PRS interacted with fish intake and the TM6SF2 genotype interacted with red/processed meat intake, to affect LFC. Dietary effects on LFC were up to 3.8-fold higher in PNPLA3-rs738409-GG vs. -CC individuals, and 1.4-3.0-fold higher in the top vs. bottom quartile of the steatosis PRS. Gene-diet interactions were stronger in participants with vs. without overweight. The steatosis PRS interacted with Mediterranean diet and fruit/vegetable/legume intake to affect cT1 and most dietary and genetic predictors associated with risk of liver-related events or mortality by age 70. CONCLUSIONS: Effects of diet on LFC and cT1 were markedly accentuated in patients at increased genetic risk for SLD, implying dietary interventions may be more impactful in these populations. IMPACT AND IMPLICATIONS: Genetic variants and diet both influence risk of hepatic steatosis, inflammation/fibrosis, and hepatic decompensation; however, how gene-diet interactions influence these outcomes has previously not been comprehensively characterized. We investigated this topic in the community-based UK Biobank and found that genetic risk and dietary quality interacted to influence hepatic steatosis and inflammation/fibrosis on liver MRI, so that the effects of diet were greater in people at elevated genetic risk. These results are relevant for patients and medical providers because they show that genetic risk is not fixed (i.e. modifiable factors can mitigate or exacerbate this risk) and realistic dietary changes may result in meaningful improvement in liver steatosis and inflammation/fibrosis. As genotyping becomes more routinely used in clinical practice, patients identified to be at high baseline genetic risk may benefit even more from intensive dietary counseling than those at lower risk, though future prospective studies are required.


Asunto(s)
Hígado Graso , Humanos , Masculino , Femenino , Persona de Mediana Edad , Hígado Graso/etiología , Hígado Graso/genética , Cirrosis Hepática/etiología , Cirrosis Hepática/genética , Cirrosis Hepática/epidemiología , Anciano , Predisposición Genética a la Enfermedad , Lipasa/genética , Interacción Gen-Ambiente , Proteínas de la Membrana/genética , Reino Unido/epidemiología , Estudios de Cohortes , Dieta Mediterránea , Dieta/efectos adversos , Dieta/métodos , Inflamación/genética , Inflamación/etiología , Adulto , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Aciltransferasas , Fosfolipasas A2 Calcio-Independiente
20.
J Hepatol ; 81(2): 289-302, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38583492

RESUMEN

BACKGROUND & AIMS: Polyploidy in hepatocytes has been proposed as a genetic mechanism to buffer against transcriptional dysregulation. Here, we aim to demonstrate the role of polyploidy in modulating gene regulatory networks in hepatocytes during ageing. METHODS: We performed single-nucleus RNA sequencing in hepatocyte nuclei of different ploidy levels isolated from young and old wild-type mice. Changes in the gene expression and regulatory network were compared to three independent strains that were haploinsufficient for HNF4A, CEBPA or CTCF, representing non-deleterious perturbations. Phenotypic characteristics of the liver section were additionally evaluated histologically, whereas the genomic allele composition of hepatocytes was analysed by BaseScope. RESULTS: We observed that ageing in wild-type mice results in nuclei polyploidy and a marked increase in steatosis. Haploinsufficiency of liver-specific master regulators (HFN4A or CEBPA) results in the enrichment of hepatocytes with tetraploid nuclei at a young age, affecting the genomic regulatory network, and dramatically suppressing ageing-related steatosis tissue wide. Notably, these phenotypes are not the result of subtle disruption to liver-specific transcriptional networks, since haploinsufficiency in the CTCF insulator protein resulted in the same phenotype. Further quantification of genotypes of tetraploid hepatocytes in young and old HFN4A-haploinsufficient mice revealed that during ageing, tetraploid hepatocytes lead to the selection of wild-type alleles, restoring non-deleterious genetic perturbations. CONCLUSIONS: Our results suggest a model whereby polyploidisation leads to fundamentally different cell states. Polyploid conversion enables pleiotropic buffering against age-related decline via non-random allelic segregation to restore a wild-type genome. IMPACT AND IMPLICATIONS: The functional role of hepatocyte polyploidisation during ageing is poorly understood. Using single-nucleus RNA sequencing and BaseScope approaches, we have studied ploidy dynamics during ageing in murine livers with non-deleterious genetic perturbations. We have identified that hepatocytes present different cellular states and the ability to buffer ageing-associated dysfunctions. Tetraploid nuclei exhibit robust transcriptional networks and are better adapted to genomically overcome perturbations. Novel therapeutic interventions aimed at attenuating age-related changes in tissue function could be exploited by manipulation of ploidy dynamics during chronic liver conditions.


Asunto(s)
Envejecimiento , Hepatocitos , Poliploidía , Animales , Hepatocitos/metabolismo , Hepatocitos/fisiología , Ratones , Envejecimiento/fisiología , Envejecimiento/genética , Redes Reguladoras de Genes , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Haploinsuficiencia , Senescencia Celular/genética , Senescencia Celular/fisiología , Masculino , Ratones Endogámicos C57BL , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hígado/metabolismo , Hígado Graso/genética , Hígado Graso/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA