Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.078
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 174(3): 636-648.e18, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30017246

RESUMEN

The ex vivo generation of platelets from human-induced pluripotent cells (hiPSCs) is expected to compensate donor-dependent transfusion systems. However, manufacturing the clinically required number of platelets remains unachieved due to the low platelet release from hiPSC-derived megakaryocytes (hiPSC-MKs). Here, we report turbulence as a physical regulator in thrombopoiesis in vivo and its application to turbulence-controllable bioreactors. The identification of turbulent energy as a determinant parameter allowed scale-up to 8 L for the generation of 100 billion-order platelets from hiPSC-MKs, which satisfies clinical requirements. Turbulent flow promoted the release from megakaryocytes of IGFBP2, MIF, and Nardilysin to facilitate platelet shedding. hiPSC-platelets showed properties of bona fide human platelets, including circulation and hemostasis capacities upon transfusion in two animal models. This study provides a concept in which a coordinated physico-chemical mechanism promotes platelet biogenesis and an innovative strategy for ex vivo platelet manufacturing.


Asunto(s)
Plaquetas/metabolismo , Técnicas de Cultivo de Célula/métodos , Trombopoyesis/fisiología , Reactores Biológicos , Técnicas de Cultivo de Célula/instrumentación , Humanos , Hidrodinámica , Células Madre Pluripotentes Inducidas/metabolismo , Megacariocitos/metabolismo , Megacariocitos/fisiología
2.
Nature ; 603(7903): 819-823, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35355005

RESUMEN

The natural habitats of microorganisms in the human microbiome, ocean and soil ecosystems are full of colloids and macromolecules. Such environments exhibit non-Newtonian flow properties, drastically affecting the locomotion of microorganisms1-5. Although the low-Reynolds-number hydrodynamics of swimming flagellated bacteria in simple Newtonian fluids has been well developed6-9, our understanding of bacterial motility in complex non-Newtonian fluids is less mature10,11. Even after six decades of research, fundamental questions about the nature and origin of bacterial motility enhancement in polymer solutions are still under debate12-23. Here we show that flagellated bacteria in dilute colloidal suspensions display quantitatively similar motile behaviours to those in dilute polymer solutions, in particular a universal particle-size-dependent motility enhancement up to 80% accompanied by a strong suppression of bacterial wobbling18,24. By virtue of the hard-sphere nature of colloids, whose size and volume fraction we vary across experiments, our results shed light on the long-standing controversy over bacterial motility enhancement in complex fluids and suggest that polymer dynamics may not be essential for capturing the phenomenon12-23. A physical model that incorporates the colloidal nature of complex fluids quantitatively explains bacterial wobbling dynamics and mobility enhancement in both colloidal and polymeric fluids. Our findings contribute to the understanding of motile behaviours of bacteria in complex fluids, which are relevant for a wide range of microbiological processes25 and for engineering bacterial swimming in complex environments26,27.


Asunto(s)
Coloides , Ecosistema , Bacterias , Humanos , Hidrodinámica , Polímeros
3.
PLoS Biol ; 22(6): e3002501, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843284

RESUMEN

The ecological and evolutionary benefits of energy-saving in collective behaviors are rooted in the physical principles and physiological mechanisms underpinning animal locomotion. We propose a turbulence sheltering hypothesis that collective movements of fish schools in turbulent flow can reduce the total energetic cost of locomotion by shielding individuals from the perturbation of chaotic turbulent eddies. We test this hypothesis by quantifying energetics and kinematics in schools of giant danio (Devario aequipinnatus) and compared that to solitary individuals swimming under laminar and turbulent conditions over a wide speed range. We discovered that, when swimming at high speeds and high turbulence levels, fish schools reduced their total energy expenditure (TEE, both aerobic and anaerobic energy) by 63% to 79% compared to solitary fish (e.g., 228 versus 48 kj kg-1). Solitary individuals spend approximately 22% more kinematic effort (tail beat amplitude•frequency: 1.7 versus 1.4 BL s-1) to swim in turbulence at higher speeds than in laminar conditions. Fish schools swimming in turbulence reduced their three-dimensional group volume by 41% to 68% (at higher speeds, approximately 103 versus 33 cm3) and did not alter their kinematic effort compared to laminar conditions. This substantial energy saving highlights that schooling behaviors can mitigate turbulent disturbances by sheltering fish (within schools) from the eddies of sufficient kinetic energy that can disrupt locomotor gaits. Therefore, providing a more desirable internal hydrodynamic environment could be one of the ecological drivers underlying collective behaviors in a dense fluid environment.


Asunto(s)
Metabolismo Energético , Natación , Animales , Natación/fisiología , Metabolismo Energético/fisiología , Fenómenos Biomecánicos , Conducta Animal/fisiología , Locomoción/fisiología , Cyprinidae/fisiología , Hidrodinámica , Conducta Social
4.
Nature ; 595(7868): 537-541, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34290424

RESUMEN

Since its discovery1,2, the deep-sea glass sponge Euplectella aspergillum has attracted interest in its mechanical properties and beauty. Its skeletal system is composed of amorphous hydrated silica and is arranged in a highly regular and hierarchical cylindrical lattice that begets exceptional flexibility and resilience to damage3-6. Structural analyses dominate the literature, but hydrodynamic fields that surround and penetrate the sponge have remained largely unexplored. Here we address an unanswered question: whether, besides improving its mechanical properties, the skeletal motifs of E. aspergillum underlie the optimization of the flow physics within and beyond its body cavity. We use extreme flow simulations based on the 'lattice Boltzmann' method7, featuring over fifty billion grid points and spanning four spatial decades. These in silico experiments reproduce the hydrodynamic conditions on the deep-sea floor where E. aspergillum lives8-10. Our results indicate that the skeletal motifs reduce the overall hydrodynamic stress and support coherent internal recirculation patterns at low flow velocity. These patterns are arguably beneficial to the organism for selective filter feeding and sexual reproduction11,12. The present study reveals mechanisms of extraordinary adaptation to live in the abyss, paving the way towards further studies of this type at the intersection between fluid mechanics, organism biology and functional ecology.


Asunto(s)
Poríferos/anatomía & histología , Poríferos/fisiología , Agua de Mar/análisis , Animales , Conducta Alimentaria , Hidrodinámica , Reproducción , Reología
5.
Proc Natl Acad Sci U S A ; 121(4): e2311661121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38190515

RESUMEN

Coral reefs are in decline worldwide, making it increasingly important to promote coral recruitment in new or degraded habitat. Coral reef morphology-the structural form of reef substrate-affects many aspects of reef function, yet the effect of reef morphology on coral recruitment is not well understood. We used structure-from-motion photogrammetry and airborne remote sensing to measure reef morphology (rugosity, curvature, slope, and fractal dimension) across a broad continuum of spatial scales and evaluated the effect of morphology on coral recruitment in three broadcast-spawning genera. We also measured the effect of other environmental and biotic factors such as fish density, adult coral cover, hydrodynamic larval import, and depth on coral recruitment. All variables combined explained 72% of coral recruitment in the study region. Coarse reef rugosity and curvature mapped at ≥2 m spatial resolution-such as large colonies, knolls, and boulders-were positively correlated with coral recruitment, explaining 22% of variation in recruitment. Morphology mapped at finer scales (≤32 cm resolution) was not significant. Hydrodynamic larval import was also positively related to coral recruitment in Porites and Montipora spp., and grazer fish density was linked to significantly lower recruitment in all genera. In addition, grazer density, reef morphology, and hydrodynamic import had differential effects on coral genera, reflecting genus-specific life history traits, and model performance was lower in gonochoric species. Overall, coral reef morphology is a key indicator of recruitment potential that can be detected by remote sensing, allowing potential larval sinks to be identified and factored into restoration actions.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Fractales , Hidrodinámica , Larva
6.
Proc Natl Acad Sci U S A ; 121(22): e2317264121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781211

RESUMEN

The phagotrophic flagellates described as "typical excavates" have been hypothesized to be morphologically similar to the Last Eukaryotic Common Ancestor and understanding the functional ecology of excavates may therefore help shed light on the ecology of these early eukaryotes. Typical excavates are characterized by a posterior flagellum equipped with a vane that beats in a ventral groove. Here, we combined flow visualization and observations of prey capture in representatives of the three clades of excavates with computational fluid dynamic modeling, to understand the functional significance of this cell architecture. We record substantial differences amongst species in the orientation of the vane and the beat plane of the posterior flagellum. Clearance rate magnitudes estimated from flow visualization and modeling are both like that of other similarly sized flagellates. The interaction between a vaned flagellum beating in a confinement is modeled to produce a very efficient feeding current at low energy costs, irrespective of the beat plane and vane orientation and of all other morphological variations. Given this predicted uniformity of function, we suggest that the foraging systems of typical excavates studied here may be good proxies to understand those potentially used by our distant ancestors more than 1 billion years ago.


Asunto(s)
Flagelos , Flagelos/fisiología , Animales , Eucariontes/fisiología , Modelos Biológicos , Evolución Biológica , Hidrodinámica
7.
Proc Natl Acad Sci U S A ; 121(40): e2406481121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39316056

RESUMEN

Unlike human intestines, which are long, hollow tubes, the intestines of sharks and rays contain interior helical structures surrounding a cylindrical hole. One function of these structures may be to create asymmetric flow, favoring passage of fluid down the digestive tract, from anterior to posterior. Here, we design and 3D print biomimetic models of shark intestines, in both rigid and deformable materials. We use the rigid models to test which physical parameters of the interior helices (the pitch, the hole radius, the tilt angle, and the number of turns) yield the largest flow asymmetries. These asymmetries exceed those of traditional Tesla valves, structures specifically designed to create flow asymmetry without any moving parts. When we print the biomimetic models in elastomeric materials so that flow can couple to the structure's shape, flow asymmetry is significantly amplified; it is sevenfold larger in deformable structures than in rigid structures. Last, we 3D-print deformable versions of the intestine of a dogfish shark, based on a tomogram of a biological sample. This biomimic produces flow asymmetry comparable to traditional Tesla valves. The ability to influence the direction of a flow through a structure has applications in biological tissues and artificial devices across many scales, from large industrial pipelines to small microfluidic devices.


Asunto(s)
Intestinos , Tiburones , Animales , Tiburones/fisiología , Intestinos/fisiología , Hidrodinámica , Biomimética/métodos , Modelos Biológicos , Impresión Tridimensional
8.
Proc Natl Acad Sci U S A ; 120(42): e2308301120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37792517

RESUMEN

Artificial cilia integrating both actuation and sensing functions allow simultaneously sensing environmental properties and manipulating fluids in situ, which are promising for environment monitoring and fluidic applications. However, existing artificial cilia have limited ability to sense environmental cues in fluid flows that have versatile information encoded. This limits their potential to work in complex and dynamic fluid-filled environments. Here, we propose a generic actuation-enhanced sensing mechanism to sense complex environmental cues through the active interaction between artificial cilia and the surrounding fluidic environments. The proposed mechanism is based on fluid-cilia interaction by integrating soft robotic artificial cilia with flexible sensors. With a machine learning-based approach, complex environmental cues such as liquid viscosity, environment boundaries, and distributed fluid flows of a wide range of velocities can be sensed, which is beyond the capability of existing artificial cilia. As a proof of concept, we implement this mechanism on magnetically actuated cilia with integrated laser-induced graphene-based sensors and demonstrate sensing fluid apparent viscosity, environment boundaries, and fluid flow speed with a reconfigurable sensitivity and range. The same principle could be potentially applied to other soft robotic systems integrating other actuation and sensing modalities for diverse environmental and fluidic applications.


Asunto(s)
Cilios , Magnetismo , Fenómenos Físicos , Hidrodinámica , Fenómenos Magnéticos
9.
Proc Natl Acad Sci U S A ; 120(9): e2216839120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802422

RESUMEN

Many studies of cytoplasm rheology have focused on small components in the submicrometer scale. However, the cytoplasm also baths large organelles like nuclei, microtubule asters, or spindles that often take significant portions of cells and move across the cytoplasm to regulate cell division or polarization. Here, we translated passive components of sizes ranging from few up to ~50 percents of the cell diameter, through the vast cytoplasm of live sea urchin eggs, with calibrated magnetic forces. Creep and relaxation responses indicate that for objects larger than the micron size, the cytoplasm behaves as a Jeffreys material, viscoelastic at short timescales, and fluidizing at longer times. However, as component size approached that of cells, cytoplasm viscoelastic resistance increased in a nonmonotonic manner. Flow analysis and simulations suggest that this size-dependent viscoelasticity emerges from hydrodynamic interactions between the moving object and the static cell surface. This effect also yields to position-dependent viscoelasticity with objects initially closer to the cell surface being harder to displace. These findings suggest that the cytoplasm hydrodynamically couples large organelles to the cell surface to restrain their motion, with important implications for cell shape sensing and cellular organization.


Asunto(s)
Citoesqueleto , Hidrodinámica , Citoplasma/fisiología , Membrana Celular , Microtúbulos , Viscosidad
10.
Proc Natl Acad Sci U S A ; 120(44): e2302879120, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37878715

RESUMEN

Cytoplasmic flows are widely emerging as key functional players in development. In early Drosophila embryos, flows drive the spreading of nuclei across the embryo. Here, we combine hydrodynamic modeling with quantitative imaging to develop a two-fluid model that features an active actomyosin gel and a passive viscous cytosol. Gel contractility is controlled by the cell cycle oscillator, the two fluids being coupled by friction. In addition to recapitulating experimental flow patterns, our model explains observations that remained elusive and makes a series of predictions. First, the model captures the vorticity of cytosolic flows, which highlights deviations from Stokes' flow that were observed experimentally but remained unexplained. Second, the model reveals strong differences in the gel and cytosol motion. In particular, a micron-sized boundary layer is predicted close to the cortex, where the gel slides tangentially while the cytosolic flow cannot slip. Third, the model unveils a mechanism that stabilizes the spreading of nuclei with respect to perturbations of their initial positions. This self-correcting mechanism is argued to be functionally important for proper nuclear spreading. Fourth, we use our model to analyze the effects of flows on the transport of the morphogen Bicoid and the establishment of its gradients. Finally, the model predicts that the flow strength should be reduced if the shape of the domain is more round, which is experimentally confirmed in Drosophila mutants. Thus, our two-fluid model explains flows and nuclear positioning in early Drosophila, while making predictions that suggest novel future experiments.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Citosol/metabolismo , Hidrodinámica , Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo
11.
FASEB J ; 38(2): e23398, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38214938

RESUMEN

In vitro systems are widely employed to assess the impact of dietary compounds on the gut microbiota and their conversion into beneficial bacterial metabolites. However, the complex fluid dynamics and multi-segmented nature of these systems can complicate the comprehensive analysis of dietary compound fate, potentially confounding physical dilution or washout with microbial catabolism. In this study, we developed fluid dynamics models based on sets of ordinary differential equations to simulate the behavior of an inert compound within two commonly used in vitro systems: the continuous two-stage PolyFermS system and the semi-continuous multi-segmented SHIME® system as well as into various declinations of those systems. The models were validated by investigating the fate of blue dextran, demonstrating excellent agreement between experimental and modeling data (with r2 values ranging from 0.996 to 0.86 for different approaches). As a proof of concept for the utility of fluid dynamics models in in vitro system, we applied generated models to interpret metabolomic data of procyanidin A2 (ProA2) generated from the addition of proanthocyanidin (PAC)-rich cranberry extract to both the PolyFermS and SHIME® systems. The results suggested ProA2 degradation by the gut microbiota when compared to the modeling of an inert compound. Models of fluid dynamics developed in this study provide a foundation for comprehensive analysis of gut metabolic data in commonly utilized in vitro PolyFermS and SHIME® bioreactor systems and can enable a more accurate understanding of the contribution of bacterial metabolism to the variability in the concentration of target metabolites.


Asunto(s)
Microbioma Gastrointestinal , Hidrodinámica , Fermentación , Modelos Teóricos , Bacterias
12.
PLoS Comput Biol ; 20(6): e1012231, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900817

RESUMEN

Computational fluid dynamics (CFD) can be used for non-invasive evaluation of hemodynamics. However, its routine use is limited by labor-intensive manual segmentation, CFD mesh creation, and time-consuming simulation. This study aims to train a deep learning model to both generate patient-specific volume-meshes of the pulmonary artery from 3D cardiac MRI data and directly estimate CFD flow fields. This proof-of-concept study used 135 3D cardiac MRIs from both a public and private dataset. The pulmonary arteries in the MRIs were manually segmented and converted into volume-meshes. CFD simulations were performed on ground truth meshes and interpolated onto point-point correspondent meshes to create the ground truth dataset. The dataset was split 110/10/15 for training, validation, and testing. Image2Flow, a hybrid image and graph convolutional neural network, was trained to transform a pulmonary artery template to patient-specific anatomy and CFD values, taking a specific inlet velocity as an additional input. Image2Flow was evaluated in terms of segmentation, and the accuracy of predicted CFD was assessed using node-wise comparisons. In addition, the ability of Image2Flow to respond to increasing inlet velocities was also evaluated. Image2Flow achieved excellent segmentation accuracy with a median Dice score of 0.91 (IQR: 0.86-0.92). The median node-wise normalized absolute error for pressure and velocity magnitude was 11.75% (IQR: 9.60-15.30%) and 9.90% (IQR: 8.47-11.90), respectively. Image2Flow also showed an expected response to increased inlet velocities with increasing pressure and velocity values. This proof-of-concept study has shown that it is possible to simultaneously perform patient-specific volume-mesh based segmentation and pressure and flow field estimation using Image2Flow. Image2Flow completes segmentation and CFD in ~330ms, which is ~5000 times faster than manual methods, making it more feasible in a clinical environment.


Asunto(s)
Hemodinámica , Imagenología Tridimensional , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Arteria Pulmonar , Humanos , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/fisiología , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Hemodinámica/fisiología , Modelos Cardiovasculares , Hidrodinámica , Prueba de Estudio Conceptual , Aprendizaje Profundo , Velocidad del Flujo Sanguíneo/fisiología , Biología Computacional/métodos
13.
Methods ; 231: 78-93, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39284430

RESUMEN

We present a comprehensive methodology for measuring heterogeneous interstitial fluid flow in murine brain tumors using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) coupled with the computational tool, Lymph4D. This four-part protocol encompasses glioma cell preparation, tumor inoculation, MRI imaging protocol, and histological verification using Evans Blue. While conventional DCE-MRI analysis primarily focuses on vascular perfusion, our methods reveal untapped potential to extract crucial information about interstitial fluid dynamics, including directions, velocities, and diffusion coefficients. This methodology extends beyond glioma research, with applicability to conditions routinely imaged with DCE-MRI, thereby offering a versatile tool for investigating interstitial fluid dynamics across a wide range of diseases and conditions. Our methodology holds promise for accelerating discoveries and advancements in biomedical research, ultimately enhancing diagnostic and therapeutic strategies for a wide range of diseases and conditions.


Asunto(s)
Neoplasias Encefálicas , Medios de Contraste , Líquido Extracelular , Glioma , Imagen por Resonancia Magnética , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Ratones , Imagen por Resonancia Magnética/métodos , Glioma/diagnóstico por imagen , Glioma/patología , Línea Celular Tumoral , Hidrodinámica
14.
Nature ; 571(7766): 560-564, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31292551

RESUMEN

The biophysical relationships between sensors and actuators1-5 have been fundamental to the development of complex life forms. Swimming organisms generate abundant flows that persist in aquatic environments6-13, and responding promptly to external stimuli is key to survival14-19. Here we present the discovery of 'hydrodynamic trigger waves' in cellular communities of the protist Spirostomum ambiguum that propagate-in a manner similar to a chain reaction20-22-hundreds of times faster than their swimming speed. By coiling its cytoskeleton, Spirostomum can contract its long body by 60% within milliseconds23, experiencing accelerations that can reach forces of 14g. We show that a single cellular contraction (the transmitter) generates long-ranged vortex flows at intermediate Reynolds numbers that can, in turn, trigger neighbouring cells (the receivers). To measure the sensitivity to hydrodynamic signals in these receiver cells, we present a high-throughput suction-flow device for probing mechanosensitive ion channels24 by back-calculating the microscopic forces on the cell membrane. We analyse and quantitatively model the ultra-fast hydrodynamic trigger waves in a universal framework of antenna and percolation theory25,26, and reveal a phase transition that requires a critical colony density to sustain collective communication. Our results suggest that this signalling could help to organize cohabiting communities over large distances and influence long-term behaviour through gene expression (comparable to quorum sensing16). In more immediate terms, because contractions release toxins27, synchronized discharges could facilitate the repulsion of large predators or immobilize large prey. We postulate that numerous aquatic organisms other than protists could coordinate their behaviour using variations of hydrodynamic trigger waves.


Asunto(s)
Comunicación Celular , Cilióforos/citología , Cilióforos/fisiología , Hidrodinámica , Natación/fisiología , Movimientos del Agua , Animales , Organismos Acuáticos/citología , Organismos Acuáticos/genética , Organismos Acuáticos/fisiología , Biofisica , Cilióforos/genética , Citoesqueleto/fisiología , Conducta Predatoria , Reología , Factores de Tiempo
15.
Nucleic Acids Res ; 51(8): 4027-4042, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36971110

RESUMEN

DNA in cells is organized in negatively supercoiled loops. The resulting torsional and bending strain allows DNA to adopt a surprisingly wide variety of 3-D shapes. This interplay between negative supercoiling, looping, and shape influences how DNA is stored, replicated, transcribed, repaired, and likely every other aspect of DNA activity. To understand the consequences of negative supercoiling and curvature on the hydrodynamic properties of DNA, we submitted 336 bp and 672 bp DNA minicircles to analytical ultracentrifugation (AUC). We found that the diffusion coefficient, sedimentation coefficient, and the DNA hydrodynamic radius strongly depended on circularity, loop length, and degree of negative supercoiling. Because AUC cannot ascertain shape beyond degree of non-globularity, we applied linear elasticity theory to predict DNA shapes, and combined these with hydrodynamic calculations to interpret the AUC data, with reasonable agreement between theory and experiment. These complementary approaches, together with earlier electron cryotomography data, provide a framework for understanding and predicting the effects of supercoiling on the shape and hydrodynamic properties of DNA.


Asunto(s)
ADN Superhelicoidal , Hidrodinámica , ADN , Conformación de Ácido Nucleico
16.
Proc Natl Acad Sci U S A ; 119(42): e2206738119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36219692

RESUMEN

The accumulation of swimming microorganisms at surfaces is an essential feature of various physical, chemical, and biological processes in confined spaces. To date, this accumulation is mainly assumed to depend on the change of swimming speed and angular velocity caused by cell-wall contact and hydrodynamic interaction. Here, we measured the swimming trajectories of Heterosigma akashiwo (a biflagellate marine alga) near vertical and horizontal rigid boundaries. We observed that the probability of sharp turns is greatly increased near a vertical wall, resulting in significant changes in the distributions of average swimming speed, angular velocity, and rotational diffusivity near the wall (a quantity that has not previously been investigated) as functions of both distance from the wall and swimming orientation. These cannot be satisfactorily explained by standard hydrodynamic models. Detailed examination of an individual cell trajectory shows that wall contact by the leading flagellum triggers complex changes in the behavior of both flagella that cannot be incorporated in a mechanistic model. Our individual-based model for predicting cell concentration using the measured distributions of swimming speed, angular velocity, and rotational diffusivity agrees well with the experiment. The experiments and model are repeated for a cell suspension in a vertical plane, bounded above by a horizontal wall. The cell accumulation beneath the wall, expected from gyrotaxis, is considerably amplified by cell-wall interaction. These findings may shed light on the prediction and control of cell distribution mediated by gyrotaxis and cell-wall contact.


Asunto(s)
Flagelos , Modelos Biológicos , Hidrodinámica , Estramenopilos , Natación
17.
Proc Natl Acad Sci U S A ; 119(45): e2212078119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322736

RESUMEN

Surface-associated bacterial communities flourish in nature and in the body of animal hosts with abundant macromolecular polymers. It is unclear how the endowed viscoelasticity of polymeric fluids influences bacterial motile behavior in such environments. Here, we combined experiment and theory to study near-surface swimming of flagellated bacteria in viscoelastic polymer fluids. In contrast to the swimming behavior in Newtonian fluids, we discovered that cells swim in less curved trajectories and display reduced near-surface accumulation. Using a theoretical analysis of the non-Newtonian hydrodynamic forces, we demonstrated the existence of a generic lift force acting on a rotating filament near a rigid surface, which arises from the elastic tension generated along curved flow streamlines. This viscoelastic lift force weakens the hydrodynamic interaction between flagellated swimmers and solid surfaces and contributes to a decrease in surface accumulation. Our findings reveal previously unrecognized facets of bacterial transport and surface exploration in polymer-rich environments that are pertinent to diverse microbial processes and may inform the design of artificial microswimmers capable of navigating through complex geometries.


Asunto(s)
Polímeros , Natación , Animales , Modelos Biológicos , Hidrodinámica , Bacterias
18.
Proc Natl Acad Sci U S A ; 119(49): e2207630119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442131

RESUMEN

Metamaterials are artificial materials that can achieve unusual properties through unique structures. In particular, their "invisibility" property has attracted enormous attention due to its little or negligible disturbance to the background field that avoids detection. This invisibility feature is not only useful for the optical field, but it is also important for any field manipulation that requires minimum disturbance to the background, such as the flow field manipulation inside the human body. There are several conventional invisible metamaterial designs: a cloak can isolate the influence between the internal and external fields, a concentrator can concentrate the external field to form an intensified internal field, and a rotator can rotate the internal field by a specific angle with respect to the external field. However, a multifunctional invisible device that can continuously tune across all these functions has never been realized due to its challenging requirements on material properties. Inside a porous medium flow, however, we overcome these challenges and realize such a multifunctional metamaterial. Our hydrodynamic device can manipulate both the magnitude and the direction of the internal flow and, at the same time, make negligible disturbance to the external flow. Thus, we integrate the functions of the cloak, concentrator, and rotator within one single hydrodynamic metamaterial, and such metamaterials may find potential applications in biomedical areas such as tissue engineering and drug release.


Asunto(s)
Hidrodinámica , Ingeniería de Tejidos , Humanos , Porosidad , Fenómenos Físicos , Liberación de Fármacos
19.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969835

RESUMEN

The gut microbiota features important genetic diversity, and the specific spatial features of the gut may shape evolution within this environment. We investigate the fixation probability of neutral bacterial mutants within a minimal model of the gut that includes hydrodynamic flow and resulting gradients of food and bacterial concentrations. We find that this fixation probability is substantially increased, compared with an equivalent well-mixed system, in the regime where the profiles of food and bacterial concentration are strongly spatially dependent. Fixation probability then becomes independent of total population size. We show that our results can be rationalized by introducing an active population, which consists of those bacteria that are actively consuming food and dividing. The active population size yields an effective population size for neutral mutant fixation probability in the gut.


Asunto(s)
Bacterias , Biodiversidad , Microbioma Gastrointestinal , Hidrodinámica , Bacterias/genética , Evolución Biológica , Alimentos , Microbiología de Alimentos , Humanos , Densidad de Población , ARN Ribosómico 16S/genética
20.
Proc Natl Acad Sci U S A ; 119(25): e2119502119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696561

RESUMEN

The darkness of the deep ocean limits the vision of diving predators, except when prey emit bioluminescence. It is hypothesized that deep-diving seals rely on highly developed whiskers to locate their prey. However, if and how seals use their whiskers while foraging in natural conditions remains unknown. We used animal-borne tags to show that free-ranging elephant seals use their whiskers for hydrodynamic prey sensing. Small, cheek-mounted video loggers documented seals actively protracting their whiskers in front of their mouths with rhythmic whisker movement, like terrestrial mammals exploring their environment. Seals focused their sensing effort at deep foraging depths, performing prolonged whisker protraction to detect, pursue, and capture prey. Feeding-event recorders with light sensors demonstrated that bioluminescence contributed to only about 20% of overall foraging success, confirming that whiskers play the primary role in sensing prey. Accordingly, visual prey detection complemented and enhanced prey capture. The whiskers' role highlights an evolutionary alternative to echolocation for adapting to the extreme dark of the deep ocean environment, revealing how sensory abilities shape foraging niche segregation in deep-diving mammals. Mammals typically have mobile facial whiskers, and our study reveals the significant function of whiskers in the natural foraging behavior of a marine predator. We demonstrate the importance of field-based sensory studies incorporating multimodality to better understand how multiple sensory systems are complementary in shaping the foraging success of predators.


Asunto(s)
Conducta Alimentaria , Conducta Predatoria , Phocidae , Vibrisas , Animales , Hidrodinámica , Phocidae/fisiología , Vibrisas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA