Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.573
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(3): 598-615.e8, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34998453

RESUMEN

An increasing number of genetic diseases are linked to deregulation of E3 ubiquitin ligases. Loss-of-function mutations in the RING-between-RING (RBR) family E3 ligase RNF216 (TRIAD3) cause Gordon-Holmes syndrome (GHS) and related neurodegenerative diseases. Functionally, RNF216 assembles K63-linked ubiquitin chains and has been implicated in regulation of innate immunity signaling pathways and synaptic plasticity. Here, we report crystal structures of key RNF216 reaction states including RNF216 in complex with ubiquitin and its reaction product, K63 di-ubiquitin. Our data provide a molecular explanation for chain-type specificity and reveal the molecular basis for disruption of RNF216 function by pathogenic GHS mutations. Furthermore, we demonstrate how RNF216 activity and chain-type specificity are regulated by phosphorylation and that RNF216 is allosterically activated by K63-linked di-ubiquitin. These molecular insights expand our understanding of RNF216 function and its role in disease and further define the mechanistic diversity of the RBR E3 ligase family.


Asunto(s)
Ataxia Cerebelosa/enzimología , Hormona Liberadora de Gonadotropina/deficiencia , Hipogonadismo/enzimología , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/metabolismo , Regulación Alostérica , Sitios de Unión , Catálisis , Ataxia Cerebelosa/genética , Cristalografía por Rayos X , Predisposición Genética a la Enfermedad , Hormona Liberadora de Gonadotropina/genética , Células HEK293 , Humanos , Hipogonadismo/genética , Mutación con Pérdida de Función , Lisina , Modelos Moleculares , Fenotipo , Fosforilación , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
2.
Hum Mol Genet ; 32(10): 1722-1729, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36694982

RESUMEN

Isolated hypogonadotropic hypogonadism (IHH) is a rare disease with hypogonadism and infertility caused by the defects in embryonic migration of hypothalamic gonadotropin-releasing hormone (GnRH) neurons, hypothalamic GnRH secretion or GnRH signal transduction. PROKR2 gene, encoding a G-protein coupled receptor PROKR2, is one of the most frequently mutated genes identified in IHH patients. However, the functional consequences of several PROKR2 mutants remain elusive. In this study, we systematically analyzed the Gαq, Gαs and ERK1/2 signaling of 23 IHH-associated PROKR2 mutations which are yet to be functionally characterized. We demonstrate that blockage of Gαq, instead of MAPK/ERK pathway, inhibited PROK2-induced migration of PROKR2-expressing cells, implying that PROKR2-related IHH results primarily due to Gαq signaling pathway disruption. Combined with previous reports, we categorized a total of 63 IHH-associated PROKR2 mutations into four distinct groups according Gαq pathway functionality: (i) neutral (N, >80% activity); (ii) low pathogenicity (L, 50-80% activity); (iii) medium pathogenicity (M, 20-50% activity) and (iv) high pathogenicity (H, <20% activity). We further compared the cell-based functional results with in silico mutational prediction programs. Our results indicated that while Sorting Intolerant from Tolerant predictions were accurate for transmembrane region mutations, mutations localized in the intracellular and extracellular domains were accurately predicted by the Combined Annotation Dependent Depletion prediction tool. Our results thus provide a functional database that can be used to guide diagnosis and appropriate genetic counseling in IHH patients with PROKR2 mutations.


Asunto(s)
Hipogonadismo , Humanos , Hipogonadismo/genética , Mutación , Hormona Liberadora de Gonadotropina/genética , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Gonadotropinas , Receptores de Péptidos/genética
3.
BMC Biol ; 22(1): 104, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702712

RESUMEN

BACKGROUND: Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS: Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS: Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Hormona Liberadora de Gonadotropina , Animales , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/genética , Gonadotropinas/metabolismo , Metilación de ARN , ARN Mensajero/metabolismo , ARN Mensajero/genética , Ratas
4.
EMBO J ; 39(19): e104633, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32761635

RESUMEN

Hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH), the "master molecule" regulating reproduction and fertility, migrate from their birthplace in the nose to their destination using a system of guidance cues, which include the semaphorins and their receptors, the neuropilins and plexins, among others. Here, we show that selectively deleting neuropilin-1 in new GnRH neurons enhances their survival and migration, resulting in excess neurons in the hypothalamus and in their unusual accumulation in the accessory olfactory bulb, as well as an acceleration of mature patterns of activity. In female mice, these alterations result in early prepubertal weight gain, premature attraction to male odors, and precocious puberty. Our findings suggest that rather than being influenced by peripheral energy state, GnRH neurons themselves, through neuropilin-semaphorin signaling, might engineer the timing of puberty by regulating peripheral adiposity and behavioral switches, thus acting as a bridge between the reproductive and metabolic axes.


Asunto(s)
Regulación de la Expresión Génica , Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/metabolismo , Neuropilina-1/biosíntesis , Conducta Sexual Animal , Maduración Sexual , Aumento de Peso , Animales , Femenino , Hormona Liberadora de Gonadotropina/genética , Masculino , Ratones , Ratones Transgénicos , Neuropilina-1/genética
5.
Am J Med Genet A ; 194(4): e63460, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38054352

RESUMEN

Central precocious puberty (CPP) refers to a syndrome of early puberty initiation with a characteristic increase in the release of gonadotropin-releasing hormone (GnRH); therefore, it is also called GnRH-related precocious puberty. About a quarter of idiopathic central precocious puberty (ICPP) may be familial. Studies suggest that mutations of makorin ring finger protein 3 (MKRN3) can cause familial central precocious puberty (FCPP). In this report, we describe a Chinese female patient carrying a novel MKRN3 variant (c.980G>A/p.Arg327His) and presenting the CPP phenotype. This novel variant attenuated its own ubiquitination, degradation, and inhibition on the transcriptional and translational activity of GNRH1, which was verified through functional tests. We can consider this variant as a loss-of-function mutation, which subsides the inhibition of GnRH1-related signaling and gives rise to GnRH-related precocious puberty.


Asunto(s)
Pubertad Precoz , Humanos , Femenino , Pubertad Precoz/genética , Mutación Missense/genética , Ubiquitina-Proteína Ligasas/genética , Hormona Liberadora de Gonadotropina/genética , Mutación , Pubertad
6.
Gen Comp Endocrinol ; 351: 114482, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432348

RESUMEN

In black porgy (Acanthopagrus schlegelii), the brain-pituitary-testis (Gnrh-Gths-Dmrt1) axis plays a vital role in male fate determination and maintenance, and then inhibiting female development in further (puberty). However, the feedback of gonadal hormones on regulating brain signaling remains unclear. In this study, we conducted short-term sex steroid treatment and surgery of gonadectomy to evaluate the feedback regulation between the gonads and the brain. The qPCR results show that male phase had the highest gths transcripts; treatment with estradiol-17ß (E2) or 17α-methyltestosterone (MT) resulted in the increased pituitary lhb transcripts. After surgery, apart from gnrh1, there is no difference in brain signaling genes between gonadectomy and sham fish. In the diencephalon/mesencephalon transcriptome, de novo assembly generated 283,528 unigenes; however, only 443 (0.16%) genes showed differentially expressed between sham and gonadectomy fish. In the present study, we found that exogenous sex steroids affect the gths transcription; this feedback control is related to the gonadal stage. Furthermore, gonadectomy may not affect gene expression of brain signaling (Gnrh-Gths axis). Our results support the communication between ovotestis and brain signaling (Gnrh-Gths-testicular Dmrt1) for the male fate.


Asunto(s)
Perciformes , Procesos de Determinación del Sexo , Animales , Femenino , Masculino , Maduración Sexual , Gónadas/metabolismo , Perciformes/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Peces/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Encéfalo/metabolismo , Expresión Génica
7.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33414275

RESUMEN

Stromal cell-derived factor-1 (SDF-1) and chemokine receptor type 4 (CXCR4) are regulators of neuronal migration (e.g., GnRH neurons, cortical neurons, and hippocampal granule cells). However, how SDF-1/CXCR4 alters cytoskeletal components remains unclear. Developmentally regulated brain protein (drebrin) stabilizes actin polymerization, interacts with microtubule plus ends, and has been proposed to directly interact with CXCR4 in T cells. The current study examined, in mice, whether CXCR4 under SDF-1 stimulation interacts with drebrin to facilitate neuronal migration. Bioinformatic prediction of protein-protein interaction highlighted binding sites between drebrin and crystallized CXCR4. In migrating GnRH neurons, drebrin, CXCR4, and the microtubule plus-end binding protein EB1 were localized close to the cell membrane. Coimmunoprecipitation (co-IP) confirmed a direct interaction between drebrin and CXCR4 using wild-type E14.5 whole head and a GnRH cell line. Analysis of drebrin knockout (DBN1 KO) mice showed delayed migration of GnRH cells into the brain. A decrease in hippocampal granule cells was also detected, and co-IP confirmed a direct interaction between drebrin and CXCR4 in PN4 hippocampi. Migration assays on primary neurons established that inhibiting drebrin (either pharmacologically or using cells from DBN1 KO mice) prevented the effects of SDF-1 on neuronal movement. Bioinformatic prediction then identified binding sites between drebrin and the microtubule plus end protein, EB1, and super-resolution microscopy revealed decreased EB1 and drebrin coexpression after drebrin inhibition. Together, these data show a mechanism by which a chemokine, via a membrane receptor, communicates with the intracellular cytoskeleton in migrating neurons during central nervous system development.


Asunto(s)
Quimiocina CXCL12/genética , Neuronas/metabolismo , Neuropéptidos/genética , Receptores CXCR4/genética , Citoesqueleto de Actina/genética , Animales , Encéfalo/metabolismo , Membrana Celular/genética , Movimiento Celular/genética , Hormona Liberadora de Gonadotropina/genética , Hipocampo/metabolismo , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Linfocitos T/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3288-3294, 2024 Jun.
Artículo en Zh | MEDLINE | ID: mdl-39041091

RESUMEN

This study aimed to explore the regulating effect of Gegen Decoction(GGD) on the hypothalamic-pituitary-ovarian axis(HPOA) dysfunction in the mouse model of primary dysmenorrhea(PD). The mouse model of PD with periodic characteristics was established by administration of estradiol benzoate and oxytocin. Mice were randomized into control, model, GGD, and ibuprofen groups. The writhing response, hypothalamus index, pituitary index, ovary index, and uterus index were observed and determined. The serum levels of prostaglandin F_(2α)(PGF_(2α)), gonadotropin-releasing hormone(GnRH), follicle-stimulating hormone(FSH), luteinizing hormone(LH), and estrogen(E_2) levels were measured by ELISA kits. Western blot and qPCR were employed to determine the protein and mRNA levels, respectively, of gonadotropin-releasing hormone receptor(GnRH-R) in the pituitary tissue, follicle-stimulating hormone receptor(FSHR) and luteinizing hormone receptor(LHR) in the ovarian tissue, and estrogen receptor(ER) in the uterine tissue. The results showed that the writhing response, serum levels of PGF_(2α), GnRH, FSH, LH, and E_2, ovarian and uterine indexes, the protein and mRNA levels of GnRH-R in the pituitary tissue, FSHR and LHR in the ovarian tissue, and ER in the uterine tissue were significantly increased in the model group compared with those in the control group. GGD inhibited the writhing response, reduced the serum levels of PGF_(2α), GnRH, FSH, LH, and E_2, decreased the ovarian and uterine indexes, and down-regulated the protein and mRNA levels of GnRH-R in the pituitary tissue, FSHR and LHR in the ovarian tissue, and ER in the uterine tissue. The data suggested that GGD can regulate the HPOA and inhibit E_2 generation in the mice experiencing recurrent PD by down-regulating the expression of proteins and genes related to HPOA axis, thus exerting the therapeutic effect on PD.


Asunto(s)
Medicamentos Herbarios Chinos , Dismenorrea , Ovario , Animales , Femenino , Ratones , Ovario/efectos de los fármacos , Ovario/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Dismenorrea/tratamiento farmacológico , Dismenorrea/metabolismo , Dismenorrea/genética , Dismenorrea/fisiopatología , Hormona Luteinizante/sangre , Hormona Folículo Estimulante/sangre , Hipófisis/metabolismo , Hipófisis/efectos de los fármacos , Humanos , Receptores de HFE/genética , Receptores de HFE/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/genética , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Receptores LHRH/genética , Receptores LHRH/metabolismo , Receptores de HL/genética , Receptores de HL/metabolismo
9.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 302-307, 2024 Mar 15.
Artículo en Zh | MEDLINE | ID: mdl-38557384

RESUMEN

Central precocious puberty (CPP) is a developmental disorder caused by early activation of the hypothalamic-pituitary-gonadal axis. The incidence of CPP is rapidly increasing, but the underlying mechanisms are not fully understood. Previous studies have shown that gain-of-function mutations in the KISS1R and KISS1 genes and loss-of-function mutations in the MKRN3, LIN28, and DLK1 genes may lead to early initiation of pubertal development. Recent research has also revealed the significant role of epigenetic factors such as DNA methylation and microRNAs in the regulation of gonadotropin-releasing hormone neurons, as well as the modulating effect of gene networks involving multiple variant genes on pubertal initiation. This review summarizes the genetic etiology and pathogenic mechanisms underlying CPP.


Asunto(s)
MicroARNs , Pubertad Precoz , Humanos , Pubertad Precoz/genética , Hormona Liberadora de Gonadotropina/genética , Mutación , Pubertad/genética , Ubiquitina-Proteína Ligasas/genética
10.
BMC Genomics ; 24(1): 792, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124055

RESUMEN

BACKGROUND: Changshun green-shell laying hens are unique to the Guizhou Province, China, and have high egg quality but relatively low yield. Egg production traits are regulated by the hypothalamus-pituitary-ovary axis. However, the underlying mechanism remains unclear. Thus, we conducted RNA sequencing of hypothalamic and pituitary tissues from low- and high-yielding Changshun green-shell laying hens to identify critical pathways and candidate genes involved in controlling the egg production rate. RESULTS: More than 39 million clean reads per sample were obtained, and more than 82% were mapped to the Gallus gallus genome. Further analysis identified 1,817 and 1,171 differentially expressed genes (DEGs) in the hypothalamus and pituitary, respectively. Nineteen DEGs were upregulated in both the hypothalamus and pituitary of high-yielding chickens. The functions of these DEGs were mainly associated with ion transport or signal transduction. Gene set enrichment analysis revealed that the pathways enriched in the hypothalamus were mainly associated with gonadotropin-releasing hormone (GnRH) secretion, neurotransmitter release, and circadian rhythms. The pathways enriched in the pituitary were mainly associated with GnRH secretion, energy metabolism, and signal transduction. Five and four DEGs in the hypothalamus and pituitary, respectively, were selected randomly for qRT-PCR analysis. The expression trends determined via qRT-PCR were consistent with the RNA-seq results. CONCLUSIONS: The current study identified 19 DEGs upregulated in both the hypothalamus and pituitary gland, which could provide an important reference for further studies on the molecular mechanisms underlying egg production in Changshun green-shell laying hens. In addition, enrichment analysis showed that GnRH secretion and signal transduction, especially neurotransmitter release, play crucial roles in the regulation of egg production.


Asunto(s)
Pollos , Hipófisis , Animales , Femenino , Pollos/genética , Pollos/metabolismo , Hipófisis/metabolismo , Hipotálamo/metabolismo , Perfilación de la Expresión Génica , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Neurotransmisores , Transcriptoma
11.
J Mol Evol ; 91(6): 882-896, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38102415

RESUMEN

In the year 2002, DNA loss model (DNA-LM) postulated that neuropeptide genes to emerged through codons loss via the repair of damaged DNA from ancestral gene namely Neuropeptide Precursor Predictive (NPP), which organization correspond two or more neuropeptides precursors evolutive related. The DNA-LM was elaborated according to amino acids homology among LWamide, APGWamide, red pigment-concentrating hormone (RPCH), adipokinetic hormones (AKHs) and in silico APGW/RPCH NPPAPGW/AKH NPP were proposed. With the above principle, it was proposed the evolution of corazonin (CRZ), gonadotropin-releasing hormone (GnRH), AKH, and AKH/CRZ (ACP), but any NPP never was considered. However, the evolutive relation via DNA-LM among these neuropeptides precursors not has been established yet. Therefore, the transcriptomes from crabs Callinectes toxotes and Callinectes arcuatus were used to characterized ACP and partial CRZ precursors, respectively. BLAST alignment with APGW/RPCH NPP and APGW/AKH NPP allow identified similar NPP in the rotifer Brachionus plicatilis and other invertebrates. Moreover, three bioinformatics algorithms and manual verification were used to purify 13,778 sequences, generating a database with 719 neuropeptide precursors. Phylogenetic trees with the DNA-LM parameters showed that some ACP, CRZ, AKH2 and two NPP share nodes with GnRH from vertebrates and some of this neuropeptide had nodes in invertebrates. Whereas the phylogenetic tree with standard parameters do not showed previous node pattern. Robinson-Foulds metric corroborates the differences among phylogenetic trees. Homology relationship showed four putative orthogroups; AKH4, CRZ, and protostomes GnRH had individual group. This is the first demonstration of NPP in species and would explain the evolution neuropeptide families by the DNA-LM.


Asunto(s)
Hormona Liberadora de Gonadotropina , Neuropéptidos , Humanos , Animales , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Filogenia , Evolución Molecular , Neuropéptidos/genética , Neuropéptidos/química , Neuropéptidos/metabolismo , Invertebrados/genética , ADN/metabolismo
12.
Histochem Cell Biol ; 160(6): 517-539, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37566258

RESUMEN

Although it is known that the whitefish, an ancient salmonid, expresses three distinct gonadotropin-releasing hormone (GnRH) forms in the brain, it has been thought that the later-evolving salmonids (salmon and trout) had only two types of GnRH: GnRH2 and GnRH3. We now provide evidence for the expression of GnRH1 in the gonads of Atlantic salmon by rapid amplification of cDNA ends, real-time quantitative PCR and immunohistochemistry. We examined six different salmonid genomes and found that each assembly has one gene that likely encodes a viable GnRH1 prepropeptide. In contrast to both functional GnRH2 and GnRH3 paralogs, the GnRH1 homeolog can no longer express the hormone. Furthermore, the viable salmonid GnRH1 mRNA is composed of only three exons, rather than the four exons that build the GnRH2 and GnRH3 mRNAs. Transcribed gnrh1 is broadly expressed (in 17/18 tissues examined), with relative abundance highest in the ovaries. Expression of the gnrh2 and gnrh3 mRNAs is more restricted, primarily to the brain, and not in the gonads. The GnRH1 proximal promoter presents composite binding elements that predict interactions with complexes that contain diverse cell fate and differentiation transcription factors. We provide immunological evidence for GnRH1 peptide in the nucleus of 1-year-old type A spermatogonia and cortical alveoli oocytes. GnRH1 peptide was not detected during other germ cell or reproductive stages. GnRH1 activity in the salmonid gonad may occur only during early stages of development and play a key role in a regulatory network that controls mitotic and/or meiotic processes within the germ cell.


Asunto(s)
Salmo salar , Animales , Masculino , Salmo salar/metabolismo , Trucha/genética , Trucha/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Encéfalo/metabolismo , Regiones Promotoras Genéticas/genética
13.
Dev Growth Differ ; 65(7): 408-417, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37439148

RESUMEN

Idiopathic hypogonadotropic hypogonadism (IHH) is a rare disease characterized by gonadal failure due to deficiency in gonadotropin-releasing hormone (GnRH) synthesis, secretion, or action. RNF216 variants have been recently identified in patients with IHH. Ring finger protein 216 (RNF216), as a ubiquitin E3 ligase, catalyzes the ubiquitination of target proteins with high specificity, which consequently modulates the stability, localization, and interaction of the target protein. In this study, we found that RNF216 interacted with Staufen2 (STAU2) and affected the stability of STAU2 through the ubiquitin-proteasome pathway. STAU2, as a double-stranded RNA-binding protein enriched in the nervous system, plays a role in RNA transport, RNA stability, translation, anchoring, and synaptic plasticity. Further, we revealed that STAU2 levels in the hypothalamus of RNF216-/- mice were increased compared with wild-type (WT) mice. The change in STAU2 protein homeostasis may affect a series of RNA cargoes. Therefore, we analyzed the changes in RNA levels in the hypothalamus of RNF216-/- mice and WT mice by RNA sequencing. We found that deletion of RNF216 led to decreased activities of the prolactin signaling pathway, neuroactive ligand-receptor interaction, GnRH signaling pathway, and ovarian steroidogenesis. The weakening of these signal pathways is likely to affect the secretion of GnRH, thereby affecting the development of gonads. Therefore, our study suggests that STAU2 may be a potential therapeutic target for IHH. Further experiments are needed to demonstrate the association between the weakening of these signaling pathways and the RNA-binding protein STAU2.


Asunto(s)
Proteínas de Unión al ARN , Ubiquitina , Animales , Ratones , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo , ARN , Proteínas de Unión al ARN/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Humanos
14.
Stem Cells ; 40(12): 1107-1121, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36153707

RESUMEN

Hypothalamic gonadotropin-releasing hormone (GnRH) neurons lay the foundation for human development and reproduction; however, the critical cell populations and the entangled mechanisms underlying the development of human GnRH neurons remain poorly understood. Here, by using our established human pluripotent stem cell-derived GnRH neuron model, we decoded the cellular heterogeneity and differentiation trajectories at the single-cell level. We found that a glutamatergic neuron population, which generated together with GnRH neurons, showed similar transcriptomic properties with olfactory sensory neuron and provided the migratory path for GnRH neurons. Through trajectory analysis, we identified a specific gene module activated along the GnRH neuron differentiation lineage, and we examined one of the transcription factors, DLX5, expression in human fetal GnRH neurons. Furthermore, we found that Wnt inhibition could increase DLX5 expression and improve the GnRH neuron differentiation efficiency through promoting neurogenesis and switching the differentiation fates of neural progenitors into glutamatergic neurons/GnRH neurons. Our research comprehensively reveals the dynamic cell population transition and gene regulatory network during GnRH neuron differentiation.


Asunto(s)
Hormona Liberadora de Gonadotropina , Células Madre Pluripotentes , Humanos , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Vía de Señalización Wnt/genética , Neuronas/metabolismo , Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo
15.
BMC Endocr Disord ; 23(1): 213, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798680

RESUMEN

BACKGROUND: Idiopathic hypogonadotropic hypogonadism (IHH) is a rare congenital or acquired genetic disorder caused by gonadotropin-releasing hormone (GnRH) deficiency. IHH patients are divided into two major groups, hyposmic or anosmic IHH (Kallmann syndrome) and normosmic IHH (nIHH), according to whether their sense of smell is intact. Here we report a case of novel compound heterozygous mutations in the GNRH1 gene in a 15-year-old male with nIHH. CASE PRESENTATION: The patient presented typical clinical symptoms of delayed testicular development, with testosterone < 3.5 mmol/L and reduced gonadotropin (follicle-stimulating hormone, luteinizing hormone) levels. Two heterozygous variants of the GNRH1 gene were detected, nonsense variant 1: c.85G > T:p.G29* and variant 2: c.1A > G:p.M1V, which disrupted the start codon. CONCLUSIONS: Two GNRH1 mutations responsible for nIHH are identified in this study. Our findings extend the mutational spectrum of GNRH1 by revealing novel causative mutations of nIHH.


Asunto(s)
Hormona Liberadora de Gonadotropina , Hipogonadismo , Adolescente , Humanos , Masculino , Hormona Liberadora de Gonadotropina/genética , Hipogonadismo/genética , Hipogonadismo/diagnóstico , Síndrome de Kallmann/genética , Mutación , Testosterona/análisis
16.
Gen Comp Endocrinol ; 334: 114216, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36681254

RESUMEN

Microplastics not only accumulate in the bodies of fishes and cause damage to the organs, but also cause many other problems, such as reduced reproductive capacity, by acting directly or indirectly on the hypothalamus-pituitary-gonad axis (HPG axis). In this study, we investigated the changes in HPG axis-related genes in male medaka (Oryzias latipes) exposed to fiber-type microplastics. We confirmed the progression of vitellogenesis, a sign of endocrine disruption, in male fish. In the microfiber-exposed group, microfiber accumulation was confirmed in the gills and intestines. One week after exposure to two different concentrations of microfibers (500 and 1,000 fibers/L), the fish showed increased expression of gonadotropin-releasing hormone (GnRH) and luteinizing hormone receptor (LH-R) mRNA. From day 10 of exposure to the microfibers, there was an increase in the expression of the gonadotropin-inhibitory hormone (GnIH) mRNA and a decrease in the expression of GnRH and LH-R mRNA. There was an increase in the cytochrome P450 aromatase (CYP19a) mRNA expression and plasma estradiol (E2) concentration in the 1,000 fibers/L exposure group. High vitellogenin (VTG) mRNA expression was confirmed seven days after exposure in the 1,000 fibers/L group, which was consistent with the VTG mRNA expression signals detected in the liver using in situ hybridization. These results suggest that microfiber ingestion may cause short-term endocrinal disruption of the HPG axis in male medaka, which in turn may interfere with their normal maturation process.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Masculino , Oryzias/genética , Oryzias/metabolismo , Plásticos/metabolismo , Microplásticos/metabolismo , Reproducción , Estradiol/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , ARN Mensajero/metabolismo , Contaminantes Químicos del Agua/metabolismo , Vitelogeninas/metabolismo
17.
Gen Comp Endocrinol ; 337: 114260, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36933747

RESUMEN

mHypoA-55 cells are kisspeptin-expressing neuronal cells originating from the arcuate nucleus of the mouse hypothalamus. These cells are called KNDy neurons because they co-express kisspeptin, neurokinin B, and dynorphin A. In addition, they express gonadotropin-releasing hormone (GnRH). Here, we found that kisspeptin 10 (KP10) increased Kiss-1 (encoding kisspeptin) and GnRH gene expression in kisspeptin receptor (Kiss-1R)-overexpressing mHypoA-55 cells. KP10 greatly increased serum response element (SRE) promoter activity, which is a target of extracellular signal-regulated kinase (ERK) (20.0 ± 2.54-fold). KP10 also increased cAMP-response element (CRE) promoter activity in these cells (2.32 ± 0.36-fold). KP10-increased SRE promoter activity was significantly prevented in the presence of PD098095, a MEK kinase (MEKK) inhibitor, and KP10-induced CRE promoter activity was also inhibited by PD098059. Similarly, H89, a protein kinase A (PKA) inhibitor, significantly inhibited the KP10 induction of SRE and CRE promoters. KP10-induced Kiss-1 and GnRH gene expressions were inhibited in the presence of PD098059. Likewise, H89 significantly inhibited the KP10-induced increase in Kiss-1 and GnRH. Transfection of mHypoA-55 cells with constitutively active MEKK (pFC-MEKK) increased SRE and CRE promoter activities by 9.75 ± 1.77- and 1.36 ± 0.12-fold, respectively. Induction of constitutively active PKA (pFC-PKA) also increased SRE and CRE promoter activities by 2.41 ± 0.42- and 40.71 ± 7.77-fold, respectively. Furthermore, pFC-MEKK and -PKA transfection of mHypoA-55 cells increased both Kiss-1 and GnRH gene expression. Our current observations suggest that KP10 increases both the ERK and PKA pathways and that both pathways mutually interact in mHypoA-55 hypothalamic cells. Activation of both ERK and PKA signaling might be necessary to induce Kiss-1 and GnRH gene expressions.


Asunto(s)
Hormona Liberadora de Gonadotropina , Kisspeptinas , Animales , Ratones , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/farmacología , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Transducción de Señal
18.
Gynecol Endocrinol ; 39(1): 2181653, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36828304

RESUMEN

OBJECTIVES: To explore the association of KISS1, LIN28B, vitamin D receptor (VDR), and estrogen receptor α (ERα) gene polymorphisms and the risk of early with fast puberty (EFP) risk, and with hormone levels in EFP cases, in Chinese girls. METHODS: The analysis was based on the data of 141 girls with EFP and 152 girls without EFP. Clinical features were documented, and all SNP genotyping was conducted using SNaPshot method. Statistical analysis was performed to assess the association of the SNPs with EFP risk, and with hormone levels in EFP cases. RESULTS: There was a significant association between rs7759938-C polymorphism in the LIN28B gene and the risk for EFP in the recessive (TT + CT vs. CC) model (p = 0.040). Remarkably, rs5780218-delA polymorphism in the KISS1 gene and rs2234693-C polymorphism in the ERα gene were significantly associated with peak LH (luteinizing hormone) levels (p = 0.008, 0.045) and peak LH/FSH (follicle-stimulating hormone) ratio (p = 0.007, 0.006). Additionally, on 7 of the 8 variant loci the alleles associated with increased levels of both peak LH levels and peak LH/FSH ratio in EFP cases were also associated with increased CPP risk. CONCLUSIONS: Our findings indicate that rs7759938-C polymorphism in the LIN28B gene might have a protective effect on EFP susceptibility. The most striking findings of this study is that, rs5780218-delA polymorphism in the KISS1 gene and rs2234693-C polymorphism in the ERα gene influenced levels of GnRH-stimulated peak LH and LH/FSH ratio, and in general CPP risk genes might also contributes to the abnormality of hormonal levels in EFP.


Asunto(s)
Receptor alfa de Estrógeno , Kisspeptinas , Pubertad Precoz , Pubertad , Proteínas de Unión al ARN , Receptores de Calcitriol , Femenino , Humanos , Pueblos del Este de Asia , Receptor alfa de Estrógeno/genética , Hormona Folículo Estimulante Humana , Hormona Liberadora de Gonadotropina/genética , Kisspeptinas/genética , Hormona Luteinizante/metabolismo , Polimorfismo de Nucleótido Simple , Pubertad/genética , Pubertad Precoz/genética , Receptores de Calcitriol/genética , Proteínas de Unión al ARN/genética
19.
Nucleic Acids Res ; 49(7): 3796-3813, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33744966

RESUMEN

The family of Poly(A)-binding proteins (PABPs) regulates the stability and translation of messenger RNAs (mRNAs). Here we reported that the three members of PABPs, including PABPC1, PABPC3 and PABPC4, were identified as novel substrates for MKRN3, whose deletion or loss-of-function mutations were genetically associated with human central precocious puberty (CPP). MKRN3-mediated ubiquitination was found to attenuate the binding of PABPs to the poly(A) tails of mRNA, which led to shortened poly(A) tail-length of GNRH1 mRNA and compromised the formation of translation initiation complex (TIC). Recently, we have shown that MKRN3 epigenetically regulates the transcription of GNRH1 through conjugating poly-Ub chains onto methyl-DNA bind protein 3 (MBD3). Therefore, MKRN3-mediated ubiquitin signalling could control both transcriptional and post-transcriptional switches of mammalian puberty initiation. While identifying MKRN3 as a novel tissue-specific translational regulator, our work also provided new mechanistic insights into the etiology of MKRN3 dysfunction-associated human CPP.


Asunto(s)
Hormona Liberadora de Gonadotropina/genética , Proteínas de Unión a Poli(A)/metabolismo , Precursores de Proteínas/genética , Pubertad Precoz , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados , Pubertad Precoz/genética , Pubertad Precoz/metabolismo , Ubiquitinación
20.
Proc Natl Acad Sci U S A ; 117(2): 1097-1106, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31843923

RESUMEN

The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly regulated by both metabolic state and lunar cycle. Our specific focus was on ligands and receptors of the gonadotropin-releasing hormone (GnRH) superfamily. Members of this superfamily are key in triggering sexual maturation in vertebrates but also regulate reproductive processes and energy homeostasis in invertebrates. Here we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes are expressed in specific and distinct neuronal clusters in the Platynereis brain. Moreover, ligand-receptor interaction analyses reveal a single Platynereis corazonin receptor (CrzR) to be activated by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/AKHR1 and GnRHR2/AKHR2) respond only to a single ligand (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up-regulation in sexually mature animals, after feeding, and in specific lunar phases. Homozygous crz1/gnrhl1 knockout animals exhibit a significant delay in maturation, reduced growth, and attenuated regeneration. Through a combination of proteomics and gene expression analysis, we identify enzymes involved in carbohydrate metabolism as transcriptional targets of CRZ1/GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 coordinates glycoprotein turnover and energy homeostasis with growth and sexual maturation, integrating both metabolic and developmental demands with the worm's monthly cycle.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Homeostasis , Proteínas de Insectos/metabolismo , Luna , Neuropéptidos/metabolismo , Poliquetos/fisiología , Maduración Sexual/fisiología , Transducción de Señal/fisiología , Animales , Encéfalo , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Hormona Liberadora de Gonadotropina/genética , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Proteínas de Insectos/genética , Invertebrados/genética , Neuropéptidos/genética , Filogenia , Poliquetos/genética , Poliquetos/crecimiento & desarrollo , Receptores de Neuropéptido , Receptores de Péptidos/genética , Transducción de Señal/genética , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA