RESUMEN
Cell proliferation and cell death are integral elements in maintaining homeostatic balance in metazoans. Disease pathologies ensue when these processes are disturbed. A plethora of evidence indicates that malfunction of cell death can lead to inflammation, autoimmunity, or immunodeficiency. Programmed necrosis or necroptosis is a form of nonapoptotic cell death driven by the receptor interacting protein kinase 3 (RIPK3) and its substrate, mixed lineage kinase domain-like (MLKL). RIPK3 partners with its upstream adaptors RIPK1, TRIF, or DAI to signal for necroptosis in response to death receptor or Toll-like receptor stimulation, pathogen infection, or sterile cell injury. Necroptosis promotes inflammation through leakage of cellular contents from damaged plasma membranes. Intriguingly, many of the signal adaptors of necroptosis have dual functions in innate immune signaling. This unique signature illustrates the cooperative nature of necroptosis and innate inflammatory signaling pathways in managing cell and organismal stresses from pathogen infection and sterile tissue injury.
Asunto(s)
Inflamación/metabolismo , Inflamación/patología , Necrosis/metabolismo , Transducción de Señal , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/patología , Evolución Biológica , Muerte Celular , Humanos , Inflamasomas/metabolismo , Inflamación/genética , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Enfermedades Parasitarias/genética , Enfermedades Parasitarias/metabolismo , Enfermedades Parasitarias/patología , Fosforilación , Unión Proteica , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Ubiquitinación , Virosis/genética , Virosis/metabolismo , Virosis/patologíaRESUMEN
Early life environmental exposure, particularly during perinatal period, can have a life-long impact on organismal development and physiology. The biological rationale for this phenomenon is to promote physiological adaptations to the anticipated environment based on early life experience. However, perinatal exposure to adverse environments can also be associated with adult-onset disorders. Multiple environmental stressors induce glucocorticoids, which prompted us to investigate their role in developmental programming. Here, we report that perinatal glucocorticoid exposure had long-term consequences and resulted in diminished CD8 T cell response in adulthood and impaired control of tumor growth and bacterial infection. We found that perinatal glucocorticoid exposure resulted in persistent alteration of the hypothalamic-pituitary-adrenal (HPA) axis. Consequently, the level of the hormone in adults was significantly reduced, resulting in decreased CD8 T cell function. Our study thus demonstrates that perinatal stress can have long-term consequences on CD8 T cell immunity by altering HPA axis activity.
Asunto(s)
Infecciones Bacterianas/inmunología , Desarrollo Embrionario/inmunología , Glucocorticoides/efectos adversos , Efectos Tardíos de la Exposición Prenatal/genética , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/patología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Proliferación Celular/efectos de los fármacos , Dexametasona/farmacología , Desarrollo Embrionario/genética , Femenino , Glucocorticoides/inmunología , Glucocorticoides/metabolismo , Humanos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Interleucina-4/farmacología , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Masculino , Neoplasias/inducido químicamente , Neoplasias/genética , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/patología , Receptores de Glucocorticoides/genética , Transducción de Señal/genéticaRESUMEN
CD4+ effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To determine the states that Teff cells actually adopt in frontline tissues in vivo, we applied single-cell transcriptome and chromatin analyses to colonic Teff cells in germ-free or conventional mice or in mice after challenge with a range of phenotypically biasing microbes. Unexpected subsets were marked by the expression of the interferon (IFN) signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic helper T cell (TH) subsets. At baseline or at different times of infection, transcripts encoding cytokines or proteins commonly used as TH markers were distributed in a polarized continuum, which was functionally validated. Clones derived from single progenitors gave rise to both IFN-γ- and interleukin (IL)-17-producing cells. Most of the transcriptional variance was tied to the infecting agent, independent of the cytokines produced, and chromatin variance primarily reflected activities of activator protein (AP)-1 and IFN-regulatory factor (IRF) transcription factor (TF) families, not the canonical subset master regulators T-bet, GATA3 or RORγ.
Asunto(s)
Bacterias/patogenicidad , Infecciones Bacterianas/microbiología , Linfocitos T CD4-Positivos/microbiología , Linfocitos T CD4-Positivos/parasitología , Colon/microbiología , Colon/parasitología , Microbioma Gastrointestinal , Heligmosomatoidea/patogenicidad , Parasitosis Intestinales/parasitología , Animales , Bacterias/inmunología , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Citrobacter rodentium/inmunología , Citrobacter rodentium/patogenicidad , Colon/inmunología , Colon/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Heligmosomatoidea/inmunología , Interacciones Huésped-Patógeno , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Parasitosis Intestinales/genética , Parasitosis Intestinales/inmunología , Parasitosis Intestinales/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Nematospiroides dubius/inmunología , Nematospiroides dubius/patogenicidad , Nippostrongylus/inmunología , Nippostrongylus/patogenicidad , Fenotipo , Salmonella enterica/inmunología , Salmonella enterica/patogenicidad , Análisis de la Célula Individual , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , TranscriptomaRESUMEN
Humans differ in the outcome that follows exposure to life-threatening pathogens, yet the extent of population differences in immune responses and their genetic and evolutionary determinants remain undefined. Here, we characterized, using RNA sequencing, the transcriptional response of primary monocytes from Africans and Europeans to bacterial and viral stimuli-ligands activating Toll-like receptor pathways (TLR1/2, TLR4, and TLR7/8) and influenza virus-and mapped expression quantitative trait loci (eQTLs). We identify numerous cis-eQTLs that contribute to the marked differences in immune responses detected within and between populations and a strong trans-eQTL hotspot at TLR1 that decreases expression of pro-inflammatory genes in Europeans only. We find that immune-responsive regulatory variants are enriched in population-specific signals of natural selection and show that admixture with Neandertals introduced regulatory variants into European genomes, affecting preferentially responses to viral challenges. Together, our study uncovers evolutionarily important determinants of differences in host immune responsiveness between human populations.
Asunto(s)
Adaptación Fisiológica/genética , Adaptación Fisiológica/inmunología , Inmunidad Adaptativa , Hombre de Neandertal/genética , Hombre de Neandertal/inmunología , Inmunidad Adaptativa/genética , Alelos , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Secuencia de Bases , Evolución Biológica , Población Negra/genética , Regulación de la Expresión Génica , Variación Genética , Humanos , Sistema Inmunológico , Sitios de Carácter Cuantitativo , ARN/genética , Selección Genética , Análisis de Secuencia de ARN , Receptores Toll-Like/genética , Transcripción Genética , Virosis/genética , Virosis/inmunología , Población Blanca/genéticaRESUMEN
Innate lymphoid cells (ILCs) communicate with other hematopoietic and nonhematopoietic cells to regulate immunity, inflammation and tissue homeostasis. How ILC lineages develop and are maintained remains largely unknown. In this study we observed that a divergent long noncoding RNA (lncRNA), lncKdm2b, was expressed at high levels in intestinal group 3 ILCs (ILC3s). LncKdm2b deficiency in the hematopoietic system led to reductions in the number and effector functions of ILC3s. LncKdm2b expression sustained the maintenance of ILC3s by promoting their proliferation through activation of the transcription factor Zfp292. Mechanistically, lncKdm2b recruited the chromatin organizer Satb1 and the nuclear remodeling factor (NURF) complex onto the Zfp292 promoter to initiate its transcription. Deletion of Zfp292 or Bptf also abrogated the maintenance of ILC3s, leading to susceptibility to bacterial infection. Therefore, our findings reveal that lncRNAs may represent an additional layer of regulation of ILC development and function.
Asunto(s)
Infecciones Bacterianas/genética , Proteínas F-Box/genética , Inmunidad Innata , Histona Demetilasas con Dominio de Jumonji/genética , Linfocitos/fisiología , ARN Largo no Codificante/genética , Animales , Antígenos Nucleares/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular/genética , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/genética , Susceptibilidad a Enfermedades , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Activación TranscripcionalRESUMEN
Mammalian cells possess sophisticated genome surveillance and repair mechanisms, executed by the so-called DNA damage response (DDR), failure of which leads to accumulation of DNA damage and genomic instability. Mounting evidence suggests that bacterial infections can elicit DNA damage in host cells, and certain pathogens induce such damage as part of their multi-faceted infection programme. Bacteria-mediated DNA damage can occur either directly through the formation of toxins with genotoxic activities or indirectly as a result of the activation of cell-autonomous or immune defence mechanisms against the pathogen. Moreover, host-cell signalling routes involved in the DDR can be altered in response to an infection, and this, in the context of DNA damage elicited by the pathogen, has the potential to trigger mutations and cancer.
Asunto(s)
Infecciones Bacterianas/microbiología , Daño del ADN , Genoma Humano , Interacciones Huésped-Patógeno , Animales , Infecciones Bacterianas/genética , Chlamydia trachomatis/fisiología , Reparación del ADN , Inestabilidad Genómica , Helicobacter pylori/fisiología , Humanos , Péptidos/fisiología , Policétidos , Shigella flexneri/fisiologíaRESUMEN
For decades, mankind has dominated the battle against bacteria, yet the tide is slowly turning. Our antibacterial strategies are becoming less effective, allowing bacteria to get the upper hand. The alarming rise in antibiotic resistance is an important cause of anti-infective therapy failure. However, other factors are at play as well. It is widely recognized that bacterial populations display high levels of heterogeneity. Population heterogeneity generates phenotypes specialized in surviving antibiotic attacks. Nonetheless, the presence of antibiotic-insensitive subpopulations is not considered when initiating treatment. It is therefore time to reevaluate how we combat bacterial infections. We here focus on antibiotic persistence and heteroresistance, phenomena in which small fractions of the population are tolerant (persisters) and resistant to antibiotics, respectively. We discuss molecular mechanisms involved, their clinical importance, and possible therapeutic strategies. Moving forward, we argue that these heterogeneous phenotypes should no longer be ignored in clinical practice and that better diagnostic and therapeutic approaches are urgently needed.
Asunto(s)
Antibacterianos , Bacterias/metabolismo , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Bacterias/genética , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Farmacorresistencia Bacteriana/genética , HumanosRESUMEN
Bacterial infections often involve virulence factors that play a crucial role in the pathogenicity of bacteria. Accurate detection of virulence factor genes (VFGs) is essential for precise treatment and prognostic management of hypervirulent bacterial infections. However, there is a lack of rapid and accurate methods for VFG identification from the metagenomic data of clinical samples. Here, we developed a Reads-based Virulence Factors Scanner (RVFScan), an innovative user-friendly online tool that integrates a comprehensive VFG database with similarity matrix-based criteria for VFG prediction and annotation using metagenomic data without the need for assembly. RVFScan demonstrated superior performance compared to previous assembly-based and read-based VFG predictors, achieving a sensitivity of 97%, specificity of 98% and accuracy of 98%. We also conducted a large-scale analysis of 2425 clinical metagenomic datasets to investigate the utility of RVFScan, the species-specific VFG profiles and associations between VFGs and virulence phenotypes for 24 important pathogens were analyzed. By combining genomic comparisons and network analysis, we identified 53 VFGs with significantly higher abundances in hypervirulent Klebsiella pneumoniae (hvKp) than in classical K. pneumoniae. Furthermore, a cohort of 1256 samples suspected of K. pneumoniae infection demonstrated that RVFScan could identify hvKp with a sensitivity of 90%, specificity of 100% and accuracy of 98.73%, with 90% of hvKp samples consistent with clinical diagnosis (Cohen's kappa, 0.94). RVFScan has the potential to detect VFGs in low-biomass and high-complexity clinical samples using metagenomic reads without assembly. This capability facilitates the rapid identification and targeted treatment of hvKp infections and holds promise for application to other hypervirulent pathogens.
Asunto(s)
Infecciones Bacterianas , Factores de Virulencia , Humanos , Factores de Virulencia/genética , Metagenoma , Virulencia/genética , Klebsiella pneumoniae/genética , Infecciones Bacterianas/genéticaRESUMEN
In this article, we describe the development of the plant immunity field, starting with efforts to understand the genetic basis for disease resistance, which â¼30 y ago led to the discovery of diverse classes of immune receptors that recognize and respond to infectious microbes. We focus on knowledge gained from studies of the rice XA21 immune receptor that recognizes RaxX (required for activation of XA21 mediated immunity X), a sulfated microbial peptide secreted by the gram-negative bacterium Xanthomonas oryzae pv. oryzae. XA21 is representative of a large class of plant and animal immune receptors that recognize and respond to conserved microbial molecules. We highlight the complexity of this large class of receptors in plants, discuss a possible role for RaxX in Xanthomonas biology, and draw attention to the important role of sulfotyrosine in mediating receptor-ligand interactions.
Asunto(s)
Resistencia a la Enfermedad/inmunología , Oryza/inmunología , Proteínas de Plantas/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Agricultura/historia , Alergia e Inmunología/historia , Alergia e Inmunología/tendencias , Infecciones Bacterianas/genética , Proteínas Bacterianas/genética , Resistencia a la Enfermedad/genética , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Péptidos/química , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismoRESUMEN
Microbes have been coevolving with their host for millions of years, exploiting host resources to their own benefit. We show that viral and bacterial pathogens convergently evolved to hijack cellular mitogen-activated protein kinase (MAPK) p90-ribosomal S6-kinases (RSKs). Theiler's virus leader (L) protein binds RSKs and prevents their dephosphorylation, thus maintaining the kinases active. Recruitment of RSKs enables L-protein-mediated inhibition of eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2 or PKR) and stress granule formation. Strikingly, ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia use the same peptide motif as L to recruit and activate RSKs. All three proteins interact with a conserved surface-located loop of RSKs, likely acting as an allosteric regulation site. Some unrelated viruses and bacteria thus evolved to harness RSKs in a common fashion, yet to target distinct aspects of innate immunity. As documented for Varicella zoster virus ORF11, additional pathogens likely evolved to hijack RSKs, using a similar short linear motif.
Asunto(s)
Interacciones Microbiota-Huesped/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Bacterias/patogenicidad , Infecciones Bacterianas/genética , Infecciones Bacterianas/metabolismo , Evolución Biológica , Línea Celular , Regulación Viral de la Expresión Génica/genética , Interacciones Microbiota-Huesped/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Virosis/genética , Virosis/metabolismo , Replicación Viral/fisiología , Virus/patogenicidadRESUMEN
PURPOSES: STAT1 is a transduction and transcriptional regulator that functions within the classical JAK/STAT pathway. In addition to chronic mucocutaneous candidiasis, bacterial infections are a common occurrence in patients with STAT1 gain-of-function (GOF) mutations. These patients often exhibit skewing of B cell subsets; however, the impact of STAT1-GOF mutations on B cell-mediated humoral immunity remains largely unexplored. It is also unclear whether these patients with IgG within normal range require regular intravenous immunoglobulin (IVIG) therapy. METHODS: Eleven patients (harboring nine different STAT1-GOF mutations) were enrolled. Reporter assays and immunoblot analyses were performed to confirm STAT1 mutations. Flow cytometry, deep sequencing, ELISA, and ELISpot were conducted to assess the impact of STAT1-GOF on humoral immunity. RESULTS: All patients exhibited increased levels of phospho-STAT1 and total STAT1 protein, with two patients carrying novel mutations. In vitro assays showed that these two novel mutations were GOF mutations. Three patients with normal total IgG levels received regular IVIG infusions, resulting in effective control of bacterial infections. Four cases showed impaired affinity and specificity of pertussis toxin-specific antibodies, accompanied by reduced generation of class-switched memory B cells. Patients also had a disrupted immunoglobulin heavy chain (IGH) repertoire, coupled with a marked reduction in the somatic hypermutation frequency of switched Ig transcripts. CONCLUSION: STAT1-GOF mutations disrupt B cell compartments and skew IGH characteristics, resulting in impaired affinity and antigen-specificity of antibodies and recurrent bacterial infections. Regular IVIG therapy can control these infections in patients, even those with normal total IgG levels.
Asunto(s)
Linfocitos B , Infecciones Bacterianas , Mutación con Ganancia de Función , Inmunoglobulinas Intravenosas , Factor de Transcripción STAT1 , Humanos , Factor de Transcripción STAT1/genética , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/genética , Femenino , Masculino , Niño , Inmunoglobulinas Intravenosas/uso terapéutico , Linfocitos B/inmunología , Adulto , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Preescolar , Adolescente , Adulto Joven , Inmunidad HumoralRESUMEN
Transcription is controlled by interactions of cis-acting DNA elements with diffusible trans-acting factors. Changes in cis or trans factors can drive expression divergence within and between species, and their relative prevalence can reveal the evolutionary history and pressures that drive expression variation. Previous work delineating the mode of expression divergence in animals has largely used whole-body expression measurements in one condition. Because cis-acting elements often drive expression in a subset of cell types or conditions, these measurements may not capture the complete contribution of cis-acting changes. Here, we quantify the mode of expression divergence in the Drosophila fat body, the primary immune organ, in several conditions, using two geographically distinct lines of D. melanogaster and their F1 hybrids. We measured expression in the absence of infection and in infections with Gram-negative S. marcescens or Gram-positive E. faecalis bacteria, which trigger the two primary signaling pathways in the Drosophila innate immune response. The mode of expression divergence strongly depends on the condition, with trans-acting effects dominating in response to Gram-negative infection and cis-acting effects dominating in Gram-positive and preinfection conditions. Expression divergence in several receptor proteins may underlie the infection-specific trans effects. Before infection, when the fat body has a metabolic role, there are many compensatory effects, changes in cis and trans that counteract each other to maintain expression levels. This work shows that within a single tissue, the mode of expression divergence varies between conditions and suggests that these differences reflect the diverse evolutionary histories of host-pathogen interactions.
Asunto(s)
Proteínas de Drosophila , Drosophila , Cuerpo Adiposo , Expresión Génica , Animales , Infecciones Bacterianas/genética , Evolución Biológica , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cuerpo Adiposo/inmunología , Cuerpo Adiposo/metabolismo , Secuencias Reguladoras de Ácidos NucleicosRESUMEN
We report the clinical description and molecular dissection of a new fatal human inherited disorder characterized by chronic autoinflammation, invasive bacterial infections and muscular amylopectinosis. Patients from two kindreds carried biallelic loss-of-expression and loss-of-function mutations in HOIL1 (RBCK1), a component of the linear ubiquitination chain assembly complex (LUBAC). These mutations resulted in impairment of LUBAC stability. NF-κB activation in response to interleukin 1ß (IL-1ß) was compromised in the patients' fibroblasts. By contrast, the patients' mononuclear leukocytes, particularly monocytes, were hyper-responsive to IL-1ß. The consequences of human HOIL-1 and LUBAC deficiencies for IL-1ß responses thus differed between cell types, consistent with the unique association of autoinflammation and immunodeficiency in these patients. These data suggest that LUBAC regulates NF-κB-dependent IL-1ß responses differently in different cell types.
Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo IV/genética , Enfermedades Autoinflamatorias Hereditarias/genética , Síndromes de Inmunodeficiencia/genética , FN-kappa B/metabolismo , Ubiquitina-Proteína Ligasas/genética , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Proteínas de Ciclo Celular/genética , Línea Celular , Fibroblastos/inmunología , Fibroblastos/metabolismo , Humanos , Síndromes de Inmunodeficiencia/metabolismo , Interleucina-1beta/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Represoras/genética , Factores de Transcripción , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/metabolismo , UbiquitinaciónRESUMEN
BACKGROUND: The first 24 h of infection represent a critical time window in interactions between pathogens and host tissue. However, it is not possible to study such early events in human lung during natural infection due to lack of clinical access to tissue this early in infection. We, therefore, applied RNA sequencing to ex vivo cultured human lung tissue explants (HLTE) from patients with emphysema to study global changes in small noncoding RNA, mRNA, and long noncoding RNA (lncRNA, lincRNA) populations during the first 24 h of infection with influenza A virus (IAV), Mycobacterium bovis Bacille Calmette-Guerin (BCG), and Pseudomonas aeruginosa. RESULTS: Pseudomonas aeruginosa caused the strongest expression changes and was the only pathogen that notably affected expression of microRNA and PIWI-associated RNA. The major classes of long RNAs (> 100 nt) were represented similarly among the RNAs that were differentially expressed upon infection with the three pathogens (mRNA 77-82%; lncRNA 15-17%; pseudogenes 4-5%), but lnc-DDX60-1, RP11-202G18.1, and lnc-THOC3-2 were part of an RNA signature (additionally containing SNX10 and SLC8A1) specifically associated with IAV infection. IAV infection induced brisk interferon responses, CCL8 being the most strongly upregulated mRNA. Single-cell RNA sequencing identified airway epithelial cells and macrophages as the predominant IAV host cells, but inflammatory responses were also detected in cell types expressing few or no IAV transcripts. Combined analysis of bulk and single-cell RNAseq data identified a set of 6 mRNAs (IFI6, IFI44L, IRF7, ISG15, MX1, MX2) as the core transcriptomic response to IAV infection. The two bacterial pathogens induced qualitatively very similar changes in mRNA expression and predicted signaling pathways, but the magnitude of change was greater in P. aeruginosa infection. Upregulation of GJB2, VNN1, DUSP4, SerpinB7, and IL10, and downregulation of PKMYT1, S100A4, GGTA1P, and SLC22A31 were most strongly associated with bacterial infection. CONCLUSIONS: Human lung tissue mounted substantially different transcriptomic responses to infection by IAV than by BCG and P. aeruginosa, whereas responses to these two divergent bacterial pathogens were surprisingly similar. This HLTE model should prove useful for RNA-directed pathogenesis research and tissue biomarker discovery during the early phase of infections, both at the tissue and single-cell level.
Asunto(s)
Pulmón , Transcriptoma , Humanos , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/inmunología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Masculino , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/genética , Infecciones Bacterianas/metabolismo , Factores de TiempoRESUMEN
The annotation of the mammalian protein-coding genome is incomplete. Arbitrary size restriction of open reading frames (ORFs) and the absolute requirement for a methionine codon as the sole initiator of translation have constrained the identification of potentially important transcripts with non-canonical protein-coding potential1,2. Here, using unbiased transcriptomic approaches in macrophages that respond to bacterial infection, we show that ribosomes associate with a large number of RNAs that were previously annotated as 'non-protein coding'. Although the idea that such non-canonical ORFs can encode functional proteins is controversial3,4, we identify a range of short and non-ATG-initiated ORFs that can generate stable and spatially distinct proteins. Notably, we show that the translation of a new ORF 'hidden' within the long non-coding RNA Aw112010 is essential for the orchestration of mucosal immunity during both bacterial infection and colitis. This work expands our interpretation of the protein-coding genome and demonstrates that proteinaceous products generated from non-canonical ORFs are crucial for the immune response in vivo. We therefore propose that the misannotation of non-canonical ORF-containing genes as non-coding RNAs may obscure the essential role of a multitude of previously undiscovered protein-coding genes in immunity and disease.
Asunto(s)
Inmunidad Mucosa/genética , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , ARN Largo no Codificante/genética , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Colitis/genética , Colitis/inmunología , Colitis/metabolismo , Inmunidad Mucosa/efectos de los fármacos , Interleucina-12/biosíntesis , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , ARN Largo no Codificante/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Salmonella typhimurium/inmunología , Transcriptoma/efectos de los fármacos , Transcriptoma/genéticaRESUMEN
The multigene TRIM family is an important component of the innate immune system. For a long time, the main function of the genes belonging to this family was believed to be an antiviral defense of the host organism. The issue of their participation in the immune system response to bacterial invasion has been less studied. This review is the first comprehensive analysis of the mechanisms of functioning of the TRIM family genes in response to bacterial infections, which expands our knowledge about the role of TRIM in the innate immune system. When infected with different types of bacteria, individual TRIM proteins regulate inflammatory, interferon, and other responses of the immune system in the cells, and also affect autophagy and apoptosis. Functioning of TRIM proteins in response to bacterial infection, as well as viral infection, often includes ubiquitination and various protein-protein interactions with both bacterial proteins and host cell proteins. At the same time, some TRIM proteins, on the contrary, contribute to the infection development. Different members of the TRIM family possess similar mechanisms of response to viral and bacterial infection, and the final impact of these proteins could vary significantly. New data on the effect of TRIM proteins on bacterial infections make an important contribution to a more detailed understanding of the innate immune system functioning in animals and humans when interacting with pathogens. This data could also be used for the search of new targets for antibacterial defense.
Asunto(s)
Infecciones Bacterianas , Inmunidad Innata , Proteínas de Motivos Tripartitos , Humanos , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/genética , Animales , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Familia de MultigenesRESUMEN
The phenomenon of antibiotic resistance (AR) and its increasing global trends and destructive waves concerns patients and the healthcare system. In order to combat AR, it is necessary to explore new strategies when the current antibiotics fail to be effective. Thus, knowing the resistance mechanisms and appropriate diagnosis of bacterial infections may help enhance the sensitivity and specificity of novel strategies. On the other hand, resistance to antimicrobial compounds can spread from resistant populations to susceptible ones. Antimicrobial resistance genes (ARGs) significantly disseminate AR via horizontal and vertical gene transfer. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is a member of the bacterial immune system with the ability to remove the ARGs; therefore, it can be introduced as an effective and innovative strategy in the battle against AR. Here, we reviewed CRISPR-based bacterial diagnosis technologies. Moreover, the strategies to battle AR based on targeting bacterial chromosomes and resistance plasmids using the CRISPR-Cas system have been explained. Besides, we have presented the limitations of CRISPR delivery and potential solutions to help improve the future development of CRISPR-based platforms.
Asunto(s)
Infecciones Bacterianas , Sistemas CRISPR-Cas , Humanos , Sistemas CRISPR-Cas/genética , Plásmidos , Bacterias/genética , Farmacorresistencia Microbiana , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/genéticaRESUMEN
An important prelude to bacterial infection is the ability of a pathogen to survive independently of the host and to withstand environmental stress. The compatible solute trehalose has previously been connected with diverse abiotic stress tolerances, particularly osmotic shock. In this study, we combine molecular biology and biochemistry to dissect the trehalose metabolic network in the opportunistic human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is integrated with the biosynthesis of branched α-glucan (glycogen), with mutants in either biosynthetic pathway significantly compromised for survival on abiotic surfaces. While both trehalose and α-glucan are important for abiotic stress tolerance, we show they counter distinct stresses. Trehalose is important for the PAO1 osmotic stress response, with trehalose synthesis mutants displaying severely compromised growth in elevated salt conditions. However, trehalose does not contribute directly to the PAO1 desiccation response. Rather, desiccation tolerance is mediated directly by GlgE-derived α-glucan, with deletion of the glgE synthase gene compromising PAO1 survival in low humidity but having little effect on osmotic sensitivity. Desiccation tolerance is independent of trehalose concentration, marking a clear distinction between the roles of these two molecules in mediating responses to abiotic stress.
Asunto(s)
Glucanos/genética , Pseudomonas aeruginosa/genética , Estrés Fisiológico/genética , Trehalosa/genética , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Vías Biosintéticas/genética , Glucanos/biosíntesis , Interacciones Huésped-Patógeno/genética , Humanos , Espectroscopía de Resonancia Magnética , Presión Osmótica/fisiología , Pseudomonas aeruginosa/patogenicidadRESUMEN
Prostate adenocarcinoma is the second most commonly diagnosed cancer in men worldwide, and the initiating factors are unknown. Oncogenic TMPRSS2:ERG (ERG+) gene fusions are facilitated by DNA breaks and occur in up to 50% of prostate cancers. Infection-driven inflammation is implicated in the formation of ERG+ fusions, and we hypothesized that these fusions initiate in early inflammation-associated prostate cancer precursor lesions, such as proliferative inflammatory atrophy (PIA), prior to cancer development. We investigated whether bacterial prostatitis is associated with ERG+ precancerous lesions in unique cases with active bacterial infections at the time of radical prostatectomy. We identified a high frequency of ERG+ non-neoplastic-appearing glands in these cases, including ERG+ PIA transitioning to early invasive cancer. These lesions were positive for ERG protein by immunohistochemistry and ERG messenger RNA by in situ hybridization. We additionally verified TMPRSS2:ERG genomic rearrangements in precursor lesions using tricolor fluorescence in situ hybridization. Identification of rearrangement patterns combined with whole-prostate mapping in three dimensions confirmed multiple (up to eight) distinct ERG+ precancerous lesions in infected cases. We further identified the pathogen-derived genotoxin colibactin as a potential source of DNA breaks in clinical cases as well as cultured prostate cells. Overall, we provide evidence that bacterial infections can initiate driver gene alterations in prostate cancer. In addition, our observations indicate that infection-induced ERG+ fusions are an early alteration in the carcinogenic process and that PIA may serve as a direct precursor to prostate cancer.
Asunto(s)
Infecciones Bacterianas/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/microbiología , Serina Endopeptidasas/genética , Atrofia , Infecciones Bacterianas/complicaciones , Infecciones Bacterianas/patología , Roturas del ADN , Humanos , Masculino , Fusión de Oncogenes , Péptidos/genética , Policétidos , Próstata/microbiología , Próstata/patología , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Prostatitis/genética , Prostatitis/microbiología , Prostatitis/patología , Regulador Transcripcional ERG/genéticaRESUMEN
The activity of many antibiotics depends on the initial density of cells used in bacterial growth inhibition assays. This phenomenon, termed the inoculum effect, can have important consequences for the therapeutic efficacy of the drugs, because bacterial loads vary by several orders of magnitude in clinically relevant infections. Antimicrobial peptides are a promising class of molecules in the fight against drug-resistant bacteria because they act mainly by perturbing the cell membranes rather than by inhibiting intracellular targets. Here, we report a systematic characterization of the inoculum effect for this class of antibacterial compounds. Minimum inhibitory concentration values were measured for 13 peptides (including all-D enantiomers) and peptidomimetics, covering more than seven orders of magnitude in inoculated cell density. In most cases, the inoculum effect was significant for cell densities above the standard inoculum of 5 × 105 cells/mL, while for lower densities the active concentrations remained essentially constant, with values in the micromolar range. In the case of membrane-active peptides, these data can be rationalized by considering a simple model, taking into account peptide-cell association, and hypothesizing that a threshold number of cell-bound peptide molecules is required in order to cause bacterial killing. The observed effect questions the clinical utility of activity and selectivity determinations performed at a fixed, standardized cell density. A routine evaluation of the dependence of the activity of antimicrobial peptides and peptidomimetics on the inoculum should be considered.