Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.640
Filtrar
Más filtros

Intervalo de año de publicación
1.
Bioorg Chem ; 143: 106984, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056389

RESUMEN

Inflammation is a multifaceted phenomenon triggered by potentially active mediators acutely released arachidonic acid metabolites partially in lipoxygenase (LOX) pathway which are primarily accountable for causing several diseases in humans. It is widely believed that an inhibitor of the LOX pathway represents a rational approach for designing more potent antiinflammatory leads with druggable super safety profiles. In our continual efforts in search for anti-LOX molecules, the present work was to design a new series of N-alkyl/aralkyl/aryl derivatives (7a-o) of 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol which was commenced in seriate formation of phenylcarbamoyl derivative (1), hydrazide (2), semicarbazide (3) and 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol (4). The aimed compounds were obtained by reacting 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol with assorted N-alkyl/aralkyl/aryl electrophiles. All compounds were characterized by FTIR, 1H-, 13C-NMR spectroscopy, EI-MS and HR-EI-MS spectrometry and screened against soybean 15-LOX for their inhibitory potential using chemiluminescence method. All the compounds except 7m and 7h inhibited the said enzyme remarkably. Compounds 7c,7l, 7j and 7a displayed potent inhibitions ranging from IC50 1.92 ± 0.13 µM to 7.65 ± 0.12 µM. Other analogues 7g, 7o, 7e, 7b, 7d, 7k and 7n revealed excellent inhibitory values ranging from IC50 12.45 ± 0.38 µM to 24.81 ± 0.47 µM. All these compounds did not reveal DPPH radical scavenging activity. Compounds 7i-o maintained > 90 % human blood mononuclear cells (MNCs) viability at 0.125 mM as assayed by MTT whilst others were found toxic. Pharmacokinetic profiles predicted good oral bioavailability and drug-likeness properties of the active scaffolds. SAR investigations showed that phenyl substituted analogue on amide side decreased inhibitory activity due to inductive and mesomeric effects while the mono-alkyl substituted analogues were more active than disubstituted ones and ortho substituted analogues were more potent than meta substituted ones. MD simulation predicted the stability of the 7c ligand and receptor complex as shown by their relative RMSD (root mean square deviation) values. Molecular docking studies displayed hydrogen bonding between the compounds and the enzyme with Arg378 which was common in 7n, 7g, 7h and baicalein. In 7a and quercetin, hydrogen bonding was established through Asn375. RMSD values exhibited good inhibitory profiles in the order quercetin (0.73 Å) < 7 g < baicalein < 7a < 7n < 7 h (1.81 Å) and the binding free energies followed similar pattern. Density functional theory (DFT) data established good correlation between the active compounds and significant activity was associated with more stabilized LUMO (lowest unoccupied molecular orbitals) orbitals. Nevertheless, the present studies declare active analogues like 7c, 7 l, 7a, 7j as leads. Work is ongoing in derivatizing active molecules to explore more effective leads as 15-LOX inhibitors as antiinflammatory agents.


Asunto(s)
Inhibidores de la Lipooxigenasa , Quercetina , Triazoles , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Teoría Funcional de la Densidad , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/química , Compuestos de Sulfhidrilo , Estructura Molecular
2.
Bioorg Chem ; 145: 107244, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428284

RESUMEN

Complications of the worldwide use of non-steroidal anti-inflammatory drugs (NSAIDs) sparked scientists to design novel harmless alternatives as an urgent need. So, a unique hybridization tactic of quinoline/pyrazole/thioamide (4a-c) has been rationalized and synthesized as potential COX-2/15-LOX dual inhibitors, utilizing relevant reported studies on these pharmacophores. Moreover, we extended these preceding hybrids into more varied functionality, bearing crucial thiazole scaffolds(5a-l). All the synthesized hybrids were evaluatedin vitroas COX-2/15-LOX dual inhibitors. Initially, series4a-cexhibited significant potency towards 15-LOX inhibition (IC50 = 5.454-4.509 µM) compared to meclofenamate sodium (IC50 = 3.837 µM). Moreover, they revealed reasonable inhibitory activities against the COX-2 enzyme in comparison to celecoxib.Otherwise, conjugates 5a-ldisclosed marked inhibitory activity against 15-LOX and strong inhibitory to COX-2. In particular, hybrids5d(IC50 = 0.239 µM, SI = 8.95), 5h(IC50 = 0.234 µM, SI = 20.35) and 5l (IC50 = 0.201 µM, SI = 14.42) revealed more potency and selectivity outperforming celecoxib (IC50 = 0.512 µM, SI = 4.28). In addition, the most potentcompounds, 4a, 5d, 5h, and 5l have been elected for further in vivoevaluation and displayed potent inhibition of edema in the carrageenan-induced rat paw edema test that surpassed indomethacin. Further, compounds5d, 5h, and 5l decreased serum inflammatory markers including oxidative biomarkersiNO, and pro-inflammatory mediators cytokines like TNF-α, IL-6, and PGE. Ulcerogenic liability for tested compounds demonstrated obvious gastric mucosal safety. Furthermore, a histopathological study for compound 5l suggested a confirmatory comprehensive safety profile for stomach, kidney, and heart tissues. Docking and drug-likeness studies offered a good convention with the obtained biological investigation.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2 , Quinolinas , Ratas , Animales , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Ciclooxigenasa 2/metabolismo , Celecoxib/uso terapéutico , Ciclooxigenasa 1/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/uso terapéutico , Simulación del Acoplamiento Molecular , Antiinflamatorios no Esteroideos , Quinolinas/farmacología , Quinolinas/uso terapéutico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Relación Estructura-Actividad , Estructura Molecular
3.
J Sep Sci ; 47(5): e2300647, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466162

RESUMEN

Accurate screening and targeted preparative isolation of active substances in natural medicines have long been two technical challenges in natural medicine research. This study outlines a new approach to improve the efficiency of natural product preparation, focusing on rapidly and accurately screening potential active ingredients in Inonotus obliquus as well as efficiently preparing 5-lipoxidase (5-LOX) inhibitors, to provide new ideas for the treatment of asthma with Inonotus obliquus. First, we used ultrafiltration (UF) mass spectrometry to screen for three potential inhibitors of 5-LOX in Inonotus obliquus. Subsequently, the inhibitory effect of the active ingredients screened in the UF assay on 5-LOX was verified using the molecular docking technique, and the potential role of the active compounds in Inonotus obliquus for the treatment of asthma was analyzed by network pharmacology. Finally, based on the above activity screening guidelines, we used semi-preparative liquid chromatography and consecutive high-speed countercurrent chromatography to isolate three high-purity 5-LOX inhibitors such as betulin, lanosterol, and quercetin. Obviously, through the above approach, we have seamlessly combined rapid discovery, screening, and centralized preparation of the active ingredient with molecular-level interactions between the active ingredient and the protease.


Asunto(s)
Asma , Inhibidores de la Lipooxigenasa , Inhibidores de la Lipooxigenasa/farmacología , Simulación del Acoplamiento Molecular , Inonotus , Asma/tratamiento farmacológico
4.
J Enzyme Inhib Med Chem ; 39(1): 2301756, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38213304

RESUMEN

The oxidation of unsaturated lipids, facilitated by the enzyme Arachidonic acid 15-lipoxygenase (ALOX15), is an essential element in the development of ferroptosis. This study combined a dual-score exclusion strategy with high-throughput virtual screening, naive Bayesian and recursive partitioning machine learning models, the already established ALOX15 inhibitor i472, and a docking-based fragment substitution optimisation approach to identify potential ALOX15 inhibitors, ultimately leading to the discovery of three FDA-approved drugs that demonstrate optimal inhibitory potential against ALOX15. Through fragment substitution-based optimisation, seven new inhibitor structures have been developed. To evaluate their practicality, ADMET predictions and molecular dynamics simulations were performed. In conclusion, the compounds found in this study provide a novel approach to combat conditions related to ferroptosis-related injury by inhibiting ALOX15.


Asunto(s)
Inhibidores de la Lipooxigenasa , Simulación de Dinámica Molecular , Araquidonato 15-Lipooxigenasa/metabolismo , Teorema de Bayes , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Inhibidores de la Lipooxigenasa/farmacología
5.
J Enzyme Inhib Med Chem ; 39(1): 2309171, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38291670

RESUMEN

New thymol-3,4-disubstitutedthiazole hybrids were synthesised as dual COX-2/5-LOX inhibitors. Compounds 6b, 6d, 6e, and 6f displayed in vitro inhibitory activity against COX-2 (IC50= 0.037, 0.042, 0.046, and 0.039 µM) nearly equal to celecoxib (IC50= 0.045 µM). 6b, 6d, and 6f showed SI (379, 341, and 374, respectively) higher than that of celecoxib (327). 6a-l elicited in vitro 5-LOX inhibitory activity higher than quercetin. 6a-f, 6i-l, 7a, and 7c possessed in vivo inhibition of formalin induced paw edoema higher than celecoxib. 6a, 6b, 6f, 6h-l, and 7b showed gastrointestinal safety profile as celecoxib and diclofenac sodium in the population of fasted rats. Induced fit docking and molecular dynamics simulation predicted good fitting of 6b and 6f without changing the packing and globularity of the apo protein. In conclusion, 6b and 6f achieved the target goal as multitarget inhibitors of inflammation.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2 , Timol , Ratas , Animales , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Celecoxib , Timol/farmacología , Tiazoles/farmacología , Ciclooxigenasa 1/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de la Lipooxigenasa/farmacología , Relación Estructura-Actividad , Estructura Molecular
6.
Arch Pharm (Weinheim) ; 357(5): e2300615, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38315093

RESUMEN

Novel arylidene-5(4H)-imidazolone derivatives 4a-r were designed and evaluated as multidrug-directed ligands, that is, inflammatory, proinflammatory mediators, and reactive oxygen species (ROS) inhibitors. All of the tested compounds showed cyclooxygenase (COX)-1 inhibitory effect more than celecoxib and less than indomethacin and also demonstrated an improved inhibitory activity against 15-lipoxygenase (15-LOX). Compounds 4f, 4l, and 4p exhibited COX-2 selectivity comparable to that of celecoxib, while 4k was the most selective COX-2 inhibitor. Interestingly, the screened results showed that compound 4k exhibited a superior inhibition effect against 15-LOX and was found to be the most selective COX-2 inhibitor over celecoxib, whereas compound 4f showed promising COX-2 and 15-LOX inhibitory activities besides its inhibitory effect against ROS production and its lowering effect of both tumor necrosis factor-α and interleukin-6 levels by ∼80%. Moreover, compound 4f attenuated the lipopolysaccharide-mediated increase in NF-κB activation in RAW 264.7 macrophages. The preferred binding affinity of these molecules was confirmed by docking studies. We conclude that arylidene-5(4H)-imidazolone scaffolds provide promising hits for developing new synthons with anti-inflammatory and antioxidant activities.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Inhibidores de la Ciclooxigenasa 2 , Diseño de Fármacos , Inhibidores de la Lipooxigenasa , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno , Ratones , Animales , Células RAW 264.7 , Relación Estructura-Actividad , Araquidonato 15-Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Ciclooxigenasa 2/metabolismo , Relación Dosis-Respuesta a Droga , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Humanos
7.
Phytochem Anal ; 35(3): 599-616, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287705

RESUMEN

INTRODUCTION: Accurate screening and targeted preparative isolation of active substances from natural medicines have long been technical challenges in natural medicine research. OBJECTIVES: This study outlines a new approach for improving the efficiency of natural product preparation, focusing on the rapid and accurate screening of potential active ingredients in Ganoderma lucidum and efficient preparation of lipoxidase inhibitors, with the aim of providing new ideas for the treatment of Alzheimer's disease with G. lucidum. METHODS: The medicinal plant G. lucidum was selected through ultrafiltration coupled with liquid chromatography and mass spectrometry (UF-LC-MS) and computer-assisted screening for lipoxygenase (LOX) inhibitors. In addition, the inhibitory effect of the active compounds on LOX was studied using enzymatic reaction kinetics, and the underlying mechanism is discussed. Finally, based on the earlier activity screening guidelines, the identified ligands were isolated and purified through complex chromatography (high-speed countercurrent chromatography and semi-preparative high-performance liquid chromatography). RESULTS: Five active ingredients, ganoderic acids A, B, C2, D2, and F, were identified and isolated from G. lucidum. We improved the efficiency and purity of active compound preparation using virtual computer screening and enzyme inhibition assays combined with complex chromatography. CONCLUSION: The innovative methods of UF-LC-MS, computer-aided screening, and complex chromatography provide powerful tools for screening and separating LOX inhibitors from complex matrices and provide a favourable platform for the large-scale production of bioactive substances and nutrients.


Asunto(s)
Antineoplásicos , Reishi , Inhibidores de la Lipooxigenasa/farmacología , Cromatografía Líquida de Alta Presión , Distribución en Contracorriente
8.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125865

RESUMEN

Inflammation is a protective stress response triggered by external stimuli, with 5-lipoxygenase (5LOX) playing a pivotal role as a potent mediator of the leukotriene (Lts) inflammatory pathway. Nordihydroguaiaretic acid (NDGA) functions as a natural orthosteric inhibitor of 5LOX, while 3-acetyl-11-keto-ß-boswellic acid (AKBA) acts as a natural allosteric inhibitor targeting 5LOX. However, the precise mechanisms of inhibition have remained unclear. In this study, Gaussian accelerated molecular dynamics (GaMD) simulation was employed to elucidate the inhibitory mechanisms of NDGA and AKBA on 5LOX. It was found that the orthosteric inhibitor NDGA was tightly bound in the protein's active pocket, occupying the active site and inhibiting the catalytic activity of the 5LOX enzyme through competitive inhibition. The binding of the allosteric inhibitor AKBA induced significant changes at the distal active site, leading to a conformational shift of residues 168-173 from a loop to an α-helix and significant negative correlated motions between residues 285-290 and 375-400, reducing the distance between these segments. In the simulation, the volume of the active cavity in the stable conformation of the protein was reduced, hindering the substrate's entry into the active cavity and, thereby, inhibiting protein activity through allosteric effects. Ultimately, Markov state models (MSM) were used to identify and classify the metastable states of proteins, revealing the transition times between different conformational states. In summary, this study provides theoretical insights into the inhibition mechanisms of 5LOX by AKBA and NDGA, offering new perspectives for the development of novel inhibitors specifically targeting 5LOX, with potential implications for anti-inflammatory drug development.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Inhibidores de la Lipooxigenasa , Cadenas de Markov , Simulación de Dinámica Molecular , Araquidonato 5-Lipooxigenasa/metabolismo , Araquidonato 5-Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/química , Humanos , Dominio Catalítico , Unión Proteica , Masoprocol/farmacología , Masoprocol/química , Conformación Proteica
9.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892102

RESUMEN

The synthesis, antioxidant capacity, and anti-inflammatory activity of four novel N-benzyl-2-[4-(aryl)-1H-1,2,3-triazol-1-yl]ethan-1-imine oxides 10a-d are reported herein. The nitrones 10a-d were tested for their antioxidant properties and their ability to inhibit soybean lipoxygenase (LOX). Four diverse antioxidant tests were used for in vitro antioxidant assays, namely, interaction with the stable free radical DPPH (1,1-diphenyl-2-picrylhydrazyl radical) as well as with the water-soluble azo compound AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride), competition with DMSO for hydroxyl radicals, and the scavenging of cationic radical ABTS•+ (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation). Nitrones 10b, 10c, and 10d, having the 4-fluorophenyl, 2,4-difluorophenyl, and 4-fluoro-3-methylphenyl motif, respectively, exhibited high interaction with DPPH (64.5-81% after 20 min; 79-96% after 60 min), whereas nitrone 10a with unfunctionalized phenyl group showed the lowest inhibitory potency (57% after 20 min, 78% after 60 min). Nitrones 10a and 10d, decorated with phenyl and 4-fluoro-3-methylphenyl motif, respectively, appeared the most potent inhibitors of lipid peroxidation. The results obtained from radical cation ABTS•+ were not significant, since all tested compounds 10a-d showed negligible activity (8-46%), much lower than Trolox (91%). Nitrone 10c, bearing the 2,4-difluorophenyl motif, was found to be the most potent LOX inhibitor (IC50 = 10 µM).


Asunto(s)
Antioxidantes , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Lipooxigenasa/metabolismo , Glycine max/enzimología , Glycine max/química , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/síntesis química , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Iminas/química , Iminas/farmacología , Compuestos de Bifenilo/química , Compuestos de Bifenilo/antagonistas & inhibidores , Picratos/química , Picratos/antagonistas & inhibidores , Óxidos de Nitrógeno/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/síntesis química
10.
Inflammopharmacology ; 32(4): 2395-2411, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38858336

RESUMEN

Quinone-containing compounds have risen as promising anti-inflammatory targets; however, very little research has been directed to investigate their potentials. Accordingly, the current study aimed to design and synthesize group of quinones bearing different substituents to investigate the effect of these functionalities on the anti-inflammatory activities of this important scaffold. The choice of these substituents was carefully done, varying from a directly attached heterocyclic ring to different aromatic moieties linked through a nitrogen spacer. Both in vitro and in vivo anti-inflammatory activities of the synthesized compounds were assessed relative to the positive standards: celecoxib and indomethacin. The in vitro enzymatic and transcription inhibitory actions of all the synthesized compounds were tested against cyclooxygenase-2 (COX-2), cyclooxygenase-1 (COX-1), and 5-lipoxygenase (LOX) and the in vivo gene expression of Interleukin-1, interleukin 10, and Tumor Necrosis Factor-α (TNF-α) were determined. The IC50 against COX-1 and COX-2 enzymes obtained by the immunoassay test revealed promising activities of sixteen compounds with selectivity indices higher than 100-fold COX-2 selectivity. Out of those, four compounds revealed selectivity indices comparable to celecoxib as a reference drug. Furthermore, all the tested compounds inhibited LOX with an IC50 in the range of 1.59-3.11 µM superior to that of the reference drug used; zileuton (IC50 = 3.50 µM). Consequently, these results highlight the promising LOX inhibitory activity of the tested compounds. The obtained in vivo paw edema results showed high inhibitory percentage for the compounds 9a, 9b, and 11a with the significant lower TNF-α relative mRNA expression for compounds 5a, 5d, 9a, 9b, 12d, and 12e. Finally, in silico docking of the most active compounds (5b, 5d, 9a, 9b) against COX2 enzymes presented an acceptable justification of the obtained in vitro inhibitory activities. As a conclusion, Compounds 5b, 5d, 9a, 9b, and 11b showed promising results and thus deserves further investigation.


Asunto(s)
Antiinflamatorios , Ciclooxigenasa 2 , Edema , Inhibidores de la Lipooxigenasa , Quinonas , Animales , Inhibidores de la Lipooxigenasa/farmacología , Ratas , Ciclooxigenasa 2/metabolismo , Edema/tratamiento farmacológico , Quinonas/farmacología , Antiinflamatorios/farmacología , Masculino , Inhibidores de la Ciclooxigenasa/farmacología , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular/métodos , Araquidonato 5-Lipooxigenasa/metabolismo , Ratas Wistar , Ciclooxigenasa 1/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Carragenina
11.
Molecules ; 29(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542826

RESUMEN

The pyrimidine ring is present in various biomolecules such as DNA and RNA bases, aminoacids, vitamins, etc. Additionally, many clinically used drugs including methotrexate and risperidone contain the pyrimidine heterocyclic scaffold as well. Pyrimidine derivatives present diverse biological activities including antioxidant and anticancer activities and can be considered as privileged scaffolds in drug discovery for the treatment of various diseases. Piperidine pyrimidine amides have gained significant attention due to their enzymatic inhibitory activity. Based on our experience and ongoing investigation on cinnamic acid derivatives, their hybrids and substituted pteridines acting as lipoxygenase inhibitors, antioxidants, anti-cancer, and anti-inflammatory agents a series of novel piperidine pyrimidine cinnamic acids amides have been designed and synthesized. The novel hybrids were studied for their antioxidant and anti-inflammatory potential. They exhibit moderate antioxidant activity in the DPPH assay which may be related to their bulkiness. Moreover, moderate to good lipid peroxidation inhibition potential was measured. With regards to their lipoxygenase inhibitory activity, however, two highly potent inhibitors out of the nine tested derivatives were identified, demonstrating IC50 values of 10.7 µM and 1.1 µM, respectively. Molecular docking studies to the target enzyme lipoxygenase support the experimental results.


Asunto(s)
Acrilamidas , Antioxidantes , Antioxidantes/química , Simulación del Acoplamiento Molecular , Lipooxigenasa/metabolismo , Antiinflamatorios/farmacología , Inhibidores de la Lipooxigenasa/química , Amidas/química , Pirimidinas/farmacología , Piperidinas , Relación Estructura-Actividad , Estructura Molecular
12.
Hepatology ; 75(1): 28-42, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34387870

RESUMEN

BACKGROUND AND AIMS: We previously demonstrated that cancer-associated fibroblasts (CAFs) promote tumor growth through recruitment of myeloid-derived suppressor cells (MDSCs). 5-lipoxygenase (5-LO) is highly expressed in myeloid cells and is critical for synthesizing leukotriene B4 (LTB4), which is involved in tumor progression by activating its receptor leukotriene B4 receptor type 2 (BLT2). In this study, we investigated whether and how CAFs regulate MDSC function to enhance cancer stemness, the driving force of the cancer aggressiveness and chemotherapy refractoriness, in highly desmoplastic intrahepatic cholangiocarcinoma (ICC). APPROACH AND RESULTS: RNA-sequencing analysis revealed enriched metabolic pathways but decreased inflammatory pathways in cancer MDSCs compared with blood MDSCs from patients with ICC. Co-injection of ICC patient-derived CAFs promoted cancer stemness in an orthotopic ICC model, which was blunted by MDSC depletion. Conditioned media (CM) from CAF-educated MDSCs drastically promoted tumorsphere formation efficiency and stemness marker gene expression in ICC cells. CAF-CM stimulation increased expression and activity of 5-LO in MDSCs, while 5-LO inhibitor impaired the stemness-enhancing capacity of MDSCs in vitro and in vivo. Furthermore, IL-6 and IL-33 primarily expressed by CAFs mediated hyperactivated 5-LO metabolism in MDSCs. We identified the LTB4-BLT2 axis as the critical downstream metabolite signaling of 5-LO in promoting cancer stemness, as treatment with LTB4 was elevated in CAF-educated MDSCs, or blockade of BLT2 (which was preferentially expressed in stem-like ICC cells) significantly reduced stemness-enhancing effects of CAF-educated MDSCs. Finally, BLT2 blockade augmented chemotherapeutic efficacy in ICC patient-derived xenograft models. CONCLUSIONS: Our study reveals a role for CAFs in orchestrating the optimal cancer stemness-enhancing microenvironment by educating MDSCs, and suggests the 5-LO/LTB4-BLT2 axis as promising therapeutic targets for ICC chemoresistance by targeting cancer stemness.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Neoplasias de los Conductos Biliares/patología , Fibroblastos Asociados al Cáncer/metabolismo , Colangiocarcinoma/patología , Células Madre Neoplásicas/patología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos/patología , Comunicación Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colangiocarcinoma/tratamiento farmacológico , Medios de Cultivo Condicionados/metabolismo , Resistencia a Antineoplásicos , Humanos , Inhibidores de la Lipooxigenasa/farmacología , Masculino , Ratones , Células Supresoras de Origen Mieloide/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Receptores de Leucotrieno B4/antagonistas & inhibidores , Receptores de Leucotrieno B4/metabolismo , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Bioorg Med Chem Lett ; 94: 129448, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591315

RESUMEN

We report here small molecules consisting of dichlorophenyl substituted oxindole that is further tagged with pyrrole/indole moieties. These molecules were designed on the basis of the analysis of binding mode of 5-LOX with arachidonic acid and zileuton. The molecules traverse the active site pocket of the enzyme that otherwise hosts AA and zileuton. Moreover, with a provision of derivatization at pyrrole/indole-N, the physico-chemical properties of the molecules can be adjusted. Appreciable 5-LOX inhibitory activities of the compounds in sub-micromolar range were observed and their aqueous solubility, binding with human serum albumin and stability in blood plasma and liver microsomes were checked. The Michaelis-Menten constants obtained during the binding of the compounds with 5-LOX indicated competitive binding of the compounds with the enzyme. Overall, the combination of molecular modelling and experimental studies identified promising molecules against inflammatory diseases.


Asunto(s)
Indoles , Inhibidores de la Lipooxigenasa , Pirroles , Humanos , Unión Competitiva , Indoles/farmacología , Ligandos , Araquidonato 5-Lipooxigenasa , Inhibidores de la Lipooxigenasa/química
14.
Bioorg Med Chem Lett ; 94: 129464, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37634760

RESUMEN

Simplified analogues of the myxobacterial polyketide ajudazol were obtained by synthesis and evaluated for their biological activities. Potent simplified 5-lipoxygenase inhibitors were identified. Moreover, strong antiproliferative and apoptotic activities were observed in brain cancer cell lines at low nano- to micromolar concentrations.


Asunto(s)
Neoplasias Encefálicas , Inhibidores de la Lipooxigenasa , Neuroblastoma , Humanos , Araquidonato 5-Lipooxigenasa , Línea Celular , Neuroblastoma/tratamiento farmacológico , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología
15.
Bioorg Chem ; 139: 106685, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37418786

RESUMEN

Inflammatory responses are orchestrated by a plethora of lipid mediators, and perturbations of their biosynthesis or degradation hinder resolution and lead to uncontrolled inflammation, which contributes to diverse pathologies. Small molecules that induce a switch from pro-inflammatory to anti-inflammatory lipid mediators are considered valuable for the treatment of chronic inflammatory diseases. Commonly used non-steroidal anti-inflammatory drugs (NSAIDs) are afflicted with side effects caused by the inhibition of beneficial prostanoid formation and redirection of arachidonic acid (AA) into alternative pathways. Multi-target inhibitors like diflapolin, the first dual inhibitor of soluble epoxide hydrolase (sEH) and 5-lipoxygenase-activating protein (FLAP), promise improved efficacy and safety but are confronted by poor solubility and bioavailability. Four series of derivatives bearing isomeric thiazolopyridines as bioisosteric replacement of the benzothiazole core and two series additionally containing mono- or diaza-isosteres of the phenylene spacer were designed and synthesized to improve solubility. The combination of thiazolo[5,4-b]pyridine, a pyridinylen spacer and a 3,5-Cl2-substituted terminal phenyl ring (46a) enhances solubility and FLAP antagonism, while preserving sEH inhibition. Moreover, the thiazolo[4,5-c]pyridine derivative 41b, although being a less potent sEH/FLAP inhibitor, additionally decreases thromboxane production in activated human peripheral blood mononuclear cells. We conclude that the introduction of nitrogen, depending on the position, not only enhances solubility and FLAP antagonism (46a), but also represents a valid strategy to expand the scope of application towards inhibition of thromboxane biosynthesis.


Asunto(s)
Inhibidores de Proteína Activante de 5-Lipoxigenasa , Inhibidores de la Lipooxigenasa , Humanos , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de Proteína Activante de 5-Lipoxigenasa/farmacología , Solubilidad , Leucocitos Mononucleares/metabolismo , Epóxido Hidrolasas/metabolismo , Inhibidores Enzimáticos/farmacología , Antiinflamatorios/farmacología , Piridinas/farmacología , Tromboxanos , Lípidos
16.
Bioorg Chem ; 139: 106724, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37451146

RESUMEN

Fragment merging approach was applied for the design of thiazole/thiazolidinone clubbed pyrazoline derivatives 5a-e, 6a-c, 7 and 10a-d as dual COX-2 and 5-LOX inhibitors. Compounds 5a, 6a, and 6b were the most potent and COX-2 selective inhibitors (IC50= 0.03-0.06 µM, SI = 282.7-472.9) with high activity against 5-LOX (IC50 = 4.36-4.86 µM), while compounds 5b and 10a were active and selective 5-LOX inhibitors with IC50 = 2.43 and 1.58 µM, respectively. In vivo assay and histopathological examination for most active candidate 6a revealed significant decrease in inflammation with higher safety profile in comparison to standard drugs. Compound 6a exhibited the same orientation and binding interactions as the reference COX-2 and 5-LOX inhibitors (celecoxib and quercetin, respectively). Consequently, compound 6a has been identified as a potential lead for further optimization and the development of safe and effective anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios , Tiazoles , Antiinflamatorios/farmacología , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/química , Diseño de Fármacos , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/farmacología , Tiazolidinas/farmacología , Pirazoles/química , Pirazoles/farmacología
17.
Bioorg Chem ; 138: 106606, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37210826

RESUMEN

The 12R-lipoxygenase (12R-LOX), a (non-heme) iron-containing metalloenzyme belonging to the lipoxygenase (LOX) family catalyzes the conversion of arachidonic acid (AA) to its key metabolites. Studies suggested that 12R-LOX plays a critical role in immune modulation for the maintenance of skin homeostasis and therefore can be considered as a potential drug target for psoriasis and other skin related inflammatory diseases. However, unlike 12-LOX (or 12S-LOX) the enzyme 12R-LOX did not receive much attention till date. In our effort, the 2-aryl quinoline derivatives were designed, synthesized and evaluated for the identification of potential inhibitors of 12R-hLOX. The merit of selection of 2-aryl quinolines was assessed by in silico docking studies of a representative compound (4a) using the homology model of 12R-LOX. Indeed, in addition to participating in H-bonding with THR628 and LEU635 the molecule formed a hydrophobic interaction with VAL631. The desired 2-aryl quinolines were synthesized either via the Claisen-Schmidt condensation followed by one-pot reduction-cyclization or via the AlCl3 induced heteroarylation or via the O-alkylation approach in good to high (82-95%) yield. When screened against human 12R-LOX (12R-hLOX) in vitro four compounds (e.g. 4a, 4d, 4e and 7b) showed encouraging (>45%) inhibition at 100 µM among which 7b and 4a emerged as the initial hits. Both the compounds showed selectivity towards 12R-hLOX over 12S-hLOX, 15-hLOX and 15-hLOXB and concentration dependent inhibition of 12R-hLOX with IC50 = 12.48 ± 2.06 and 28.25 ± 1.63 µM, respectively. The selectivity of 4a and 7b towards 12R-LOX over 12S-LOX was rationalized with the help of molecular dynamics simulations. The SAR (Structure-Activity Relationship) within the present series of compounds suggested the need of a o-hydroxyl group on the C-2 phenyl ring for the activity. The compound 4a and 7b (at 10 and 20 µM) reduced the hyper-proliferative state and colony forming potential of IMQ-induced psoriatic keratinocytes in a concentration dependent manner. Further, both compounds decreased the protein levels of Ki67 and the mRNA expression of IL-17A in the IMQ-induced psoriatic-like keratinocytes. Notably, 4a but not 7b inhibited the production of IL-6 and TNF-α in the keratinocyte cells. In the preliminary toxicity studies (i.e. teratogenicity, hepatotoxicity and heart rate assays) in zebrafish both the compounds showed low safety (<30 µM) margin. Overall, being the first identified inhibitors of 12R-LOX both 4a and 7b deserve further investigations.


Asunto(s)
Quinolinas , Pez Cebra , Animales , Humanos , Pez Cebra/metabolismo , Araquidonato 12-Lipooxigenasa/metabolismo , Piel/metabolismo , Quinolinas/farmacología , Relación Estructura-Actividad , Inhibidores de la Lipooxigenasa/farmacología , Simulación del Acoplamiento Molecular
18.
J Enzyme Inhib Med Chem ; 38(1): 294-308, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36408833

RESUMEN

New thymol - 1,5-disubstitutedpyrazole hybrids were synthesised as dual COX-2/5-LOX inhibitors. Compounds 8b, 8g, 8c, and 4a displayed in vitro inhibitory activity against COX-2 (IC50 = 0.043, 0.045, 0.063, and 0.068 µM) nearly equal to celecoxib (IC50 = 0.045 µM) with high SI (316, 268, 204, and 151, respectively) comparable to celecoxib (327). All target compounds, 4a-c and 8a-i, showed in vitro 5-LOX inhibitory activity higher than reference quercetin. Besides, they possessed in vivo inhibition of formalin-induced paw oedema higher than celecoxib. In addition, compounds 4a, 4b, 8b, and 8g showed superior gastrointestinal safety profile (no ulceration) as celecoxib and diclofenac sodium in the population of fasted rats. In conclusion, compounds 4a, 8b, and 8g achieved the target goal. They elicited in vitro dual inhibition of COX-2/5-LOX higher than celecoxib and quercetin, in vivo potent anti-inflammatory activity higher than celecoxib and in vivo superior gastrointestinal safety profile (no ulceration) as celecoxib.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2 , Timol , Ratas , Animales , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2 , Inhibidores de la Lipooxigenasa/farmacología , Celecoxib/farmacología , Quercetina , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Pirazoles/farmacología
19.
J Allergy Clin Immunol ; 149(2): 579-588, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34547368

RESUMEN

BACKGROUND: The epithelium is increasingly recognized as a pathologic contributor to asthma and its phenotypes. Although delayed wound closure by asthmatic epithelial cells is consistently observed, underlying mechanisms remain poorly understood, partly due to difficulties in studying dynamic physiologic processes involving polarized multilayered cell systems. Although type-2 immunity has been suggested to play a role, the mechanisms by which repair is diminished are unclear. OBJECTIVES: This study sought to develop and utilize primary multilayered polarized epithelial cell systems, derived from patients with asthma, to evaluate cell migration in response to wounding under type-2 and untreated conditions. METHODS: A novel wounding device for multilayered polarized cells, along with time-lapse live cell/real-time confocal imaging were evaluated under IL-13 and untreated conditions. The influence of inhibition of 15 lipoxygenase (15LO1), a type-2 enzyme, on the process was also addressed. Cell migration patterns were analyzed by high-dimensional frequency modulated Möbius for statistical comparisons. RESULTS: IL-13 stimulation negatively impacts wound healing by altering the total speed, directionality, and acceleration of individual cells. Inhibition 15LO1 partially improved the wound repair through improving total speed. CONCLUSIONS: Migration abnormalities contributed to markedly slower wound closure of IL-13 treated cells, which was modestly reversed by 15LO1 inhibition, suggesting its potential as an asthma therapeutic target. These novel methodologies offer new ways to dynamically study cell movements and identify contributing pathologic processes.


Asunto(s)
Asma/etiología , Araquidonato 15-Lipooxigenasa/fisiología , Asma/diagnóstico por imagen , Asma/tratamiento farmacológico , Asma/inmunología , Movimiento Celular , Células Cultivadas , Células Epiteliales/fisiología , Humanos , Interleucina-13/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Cicatrización de Heridas/efectos de los fármacos
20.
Molecules ; 28(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37299023

RESUMEN

Targeting inflammatory mediators and related signaling pathways may offer a rational strategy for the treatment of cancer. The incorporation of metabolically stable, sterically demanding, and hydrophobic carboranes in dual cycloxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids is a promising approach. The di-tert-butylphenol derivatives R-830, S-2474, KME-4, and E-5110 represent potent dual COX-2/5-LO inhibitors. The incorporation of p-carborane and further substitution of the p-position resulted in four carborane-based di-tert-butylphenol analogs that showed no or weak COX inhibition but high 5-LO inhibitory activities in vitro. Cell viability studies on five human cancer cell lines revealed that the p-carborane analogs R-830-Cb, S-2474-Cb, KME-4-Cb, and E-5110-Cb exhibited lower anticancer activity compared to the related di-tert-butylphenols. Interestingly, R-830-Cb did not affect the viability of primary cells and suppressed HCT116 cell proliferation more potently than its carbon-based R-830 counterpart. Considering all the advantages of boron cluster incorporation for enhancement of drug biostability, selectivity, and availability of drugs, R-830-Cb can be tested in further mechanistic and in vivo studies.


Asunto(s)
Boranos , Inhibidores de la Lipooxigenasa , Humanos , Ciclooxigenasa 2 , Inhibidores de la Lipooxigenasa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA