Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.749
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 180(1): 50-63.e12, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31923399

RESUMEN

Mucosal barrier immunity is essential for the maintenance of the commensal microflora and combating invasive bacterial infection. Although immune and epithelial cells are thought to be the canonical orchestrators of this complex equilibrium, here, we show that the enteric nervous system (ENS) plays an essential and non-redundant role in governing the antimicrobial protein (AMP) response. Using confocal microscopy and single-molecule fluorescence in situ mRNA hybridization (smFISH) studies, we observed that intestinal neurons produce the pleiotropic cytokine IL-18. Strikingly, deletion of IL-18 from the enteric neurons alone, but not immune or epithelial cells, rendered mice susceptible to invasive Salmonella typhimurium (S.t.) infection. Mechanistically, unbiased RNA sequencing and single-cell sequencing revealed that enteric neuronal IL-18 is specifically required for homeostatic goblet cell AMP production. Together, we show that neuron-derived IL-18 signaling controls tissue-wide intestinal immunity and has profound consequences on the mucosal barrier and invasive bacterial killing.


Asunto(s)
Inmunidad Mucosa/inmunología , Interleucina-18/inmunología , Mucosa Intestinal/inmunología , Animales , Citocinas/inmunología , Sistema Nervioso Entérico/inmunología , Sistema Nervioso Entérico/metabolismo , Células Epiteliales/inmunología , Femenino , Células Caliciformes/inmunología , Interleucina-18/biosíntesis , Mucosa Intestinal/metabolismo , Intestino Delgado/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/inmunología , Ratas , Ratas Sprague-Dawley , Infecciones por Salmonella/inmunología , Salmonella typhimurium/inmunología , Transducción de Señal/inmunología
2.
Nat Immunol ; 22(10): 1245-1255, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34556884

RESUMEN

Innate lymphoid cells (ILCs) are guardians of mucosal immunity, yet the transcriptional networks that support their function remain poorly understood. We used inducible combinatorial deletion of key transcription factors (TFs) required for ILC development (RORγt, RORα and T-bet) to determine their necessity in maintaining ILC3 identity and function. Both RORγt and RORα were required to preserve optimum effector functions; however, RORα was sufficient to support robust interleukin-22 production among the lymphoid tissue inducer (LTi)-like ILC3 subset, but not natural cytotoxicity receptor (NCR)+ ILC3s. Lymphoid tissue inducer-like ILC3s persisted with only selective loss of phenotype and effector functions even after the loss of both TFs. In contrast, continued RORγt expression was essential to restrain transcriptional networks associated with type 1 immunity within NCR+ ILC3s, which coexpress T-bet. Full differentiation to an ILC1-like population required the additional loss of RORα. Together, these data demonstrate how TF networks integrate within mature ILCs after development to sustain effector functions, imprint phenotype and restrict alternative differentiation programs.


Asunto(s)
Inmunidad Innata/inmunología , Linfocitos/inmunología , Animales , Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Células Cultivadas , Femenino , Regulación de la Expresión Génica/inmunología , Inmunidad Mucosa/inmunología , Tejido Linfoide/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor 1 Gatillante de la Citotoxidad Natural/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Proteínas de Dominio T Box/inmunología , Factores de Transcripción/inmunología
3.
Nat Immunol ; 21(2): 168-177, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31873294

RESUMEN

Group 3 innate lymphoid cell (ILC3)-mediated production of the cytokine interleukin-22 (IL-22) is critical for the maintenance of immune homeostasis in the gastrointestinal tract. Here, we find that the function of ILC3s is not constant across the day, but instead oscillates between active phases and resting phases. Coordinate responsiveness of ILC3s in the intestine depended on the food-induced expression of the neuropeptide vasoactive intestinal peptide (VIP). Intestinal ILC3s had high expression of the G protein-coupled receptor vasoactive intestinal peptide receptor 2 (VIPR2), and activation by VIP markedly enhanced the production of IL-22 and the barrier function of the epithelium. Conversely, deficiency in signaling through VIPR2 led to impaired production of IL-22 by ILC3s and increased susceptibility to inflammation-induced gut injury. Thus, intrinsic cellular rhythms acted in synergy with the cyclic patterns of food intake to drive the production of IL-22 and synchronize protection of the intestinal epithelium through a VIP-VIPR2 pathway in ILC3s.


Asunto(s)
Inmunidad Mucosa/inmunología , Subgrupos Linfocitarios/inmunología , Linfocitos/inmunología , Periodicidad , Péptido Intestinal Vasoactivo/inmunología , Animales , Ingestión de Alimentos/inmunología , Inmunidad Innata/inmunología , Subgrupos Linfocitarios/metabolismo , Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Péptido Intestinal Vasoactivo/metabolismo
4.
Nat Immunol ; 20(5): 593-601, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30886417

RESUMEN

Interferon-λ (IFN-λ) acts on mucosal epithelial cells and thereby confers direct antiviral protection. In contrast, the role of IFN-λ in adaptive immunity is far less clear. Here, we report that mice deficient in IFN-λ signaling exhibited impaired CD8+ T cell and antibody responses after infection with a live-attenuated influenza virus. Virus-induced release of IFN-λ triggered the synthesis of thymic stromal lymphopoietin (TSLP) by M cells in the upper airways that, in turn, stimulated migratory dendritic cells and boosted antigen-dependent germinal center reactions in draining lymph nodes. The IFN-λ-TSLP axis also boosted production of the immunoglobulins IgG1 and IgA after intranasal immunization with influenza virus subunit vaccines and improved survival of mice after challenge with virulent influenza viruses. IFN-λ did not influence the efficacy of vaccines applied by subcutaneous or intraperitoneal routes, indicating that IFN-λ plays a vital role in potentiating adaptive immune responses that initiate at mucosal surfaces.


Asunto(s)
Inmunidad Adaptativa/inmunología , Citocinas/inmunología , Inmunidad Mucosa/inmunología , Interleucinas/inmunología , Inmunidad Adaptativa/efectos de los fármacos , Inmunidad Adaptativa/genética , Animales , Formación de Anticuerpos/efectos de los fármacos , Formación de Anticuerpos/inmunología , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/virología , Inmunidad Mucosa/efectos de los fármacos , Inmunidad Mucosa/genética , Inmunización/métodos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Interleucinas/administración & dosificación , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Receptores de Interferón/genética , Receptores de Interferón/inmunología , Receptores de Interferón/metabolismo , Linfopoyetina del Estroma Tímico
5.
Nat Immunol ; 19(2): 173-182, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29311694

RESUMEN

CD8+ T cell immunosurveillance dynamics influence the outcome of intracellular infections and cancer. Here we used two-photon intravital microscopy to visualize the responses of CD8+ resident memory T cells (TRM cells) within the reproductive tracts of live female mice. We found that mucosal TRM cells were highly motile, but paused and underwent in situ division after local antigen challenge. TRM cell reactivation triggered the recruitment of recirculating memory T cells that underwent antigen-independent TRM cell differentiation in situ. However, the proliferation of pre-existing TRM cells dominated the local mucosal recall response and contributed most substantially to the boosted secondary TRM cell population. We observed similar results in skin. Thus, TRM cells can autonomously regulate the expansion of local immunosurveillance independently of central memory or proliferation in lymphoid tissue.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunidad Mucosa/inmunología , Memoria Inmunológica/inmunología , Vigilancia Inmunológica/inmunología , Membrana Mucosa/inmunología , Animales , Femenino , Microscopía Intravital , Ratones , Membrana Mucosa/citología , Piel/inmunología
6.
Nat Immunol ; 19(11): 1224-1235, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30250187

RESUMEN

Dendritic cells (DCs) play an integral role in regulating mucosal immunity and homeostasis, but the signaling network mediating this function of DCs is poorly defined. We identified the noncanonical NF-κB-inducing kinase (NIK) as a crucial mediator of mucosal DC function. DC-specific NIK deletion impaired intestinal immunoglobulin A (IgA) secretion and microbiota homeostasis, rendering mice sensitive to an intestinal pathogen, Citrobacter rodentium. DC-specific NIK was required for expression of the IgA transporter polymeric immunoglobulin receptor (pIgR) in intestinal epithelial cells, which in turn relied on the cytokine IL-17 produced by TH17 cells and innate lymphoid cells (ILCs). NIK-activated noncanonical NF-κB induced expression of IL-23 in DCs, contributing to the maintenance of TH17 cells and type 3 ILCs. Consistent with the dual functions of IL-23 and IL-17 in mucosal immunity and inflammation, NIK deficiency also ameliorated colitis induction. Thus, our data suggest a pivotal role for the NIK signaling axis in regulating DC functions in intestinal immunity and homeostasis.


Asunto(s)
Células Dendríticas/inmunología , Homeostasis/inmunología , Inmunidad Mucosa/inmunología , Mucosa Intestinal/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Animales , Colitis/inmunología , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/inmunología , Quinasa de Factor Nuclear kappa B
7.
Nature ; 626(7998): 385-391, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096903

RESUMEN

A limitation of current SARS-CoV-2 vaccines is that they provide minimal protection against infection with current Omicron subvariants1,2, although they still provide protection against severe disease. Enhanced mucosal immunity may be required to block infection and onward transmission. Intranasal administration of current vaccines has proven inconsistent3-7, suggesting that alternative immunization strategies may be required. Here we show that intratracheal boosting with a bivalent Ad26-based SARS-CoV-2 vaccine results in substantial induction of mucosal humoral and cellular immunity and near-complete protection against SARS-CoV-2 BQ.1.1 challenge. A total of 40 previously immunized rhesus macaques were boosted with a bivalent Ad26 vaccine by the intramuscular, intranasal and intratracheal routes, or with a bivalent mRNA vaccine by the intranasal route. Ad26 boosting by the intratracheal route led to a substantial expansion of mucosal neutralizing antibodies, IgG and IgA binding antibodies, and CD8+ and CD4+ T cell responses, which exceeded those induced by Ad26 boosting by the intramuscular and intranasal routes. Intratracheal Ad26 boosting also led to robust upregulation of cytokine, natural killer, and T and B cell pathways in the lungs. After challenge with a high dose of SARS-CoV-2 BQ.1.1, intratracheal Ad26 boosting provided near-complete protection, whereas the other boosting strategies proved less effective. Protective efficacy correlated best with mucosal humoral and cellular immune responses. These data demonstrate that these immunization strategies induce robust mucosal immunity, suggesting the feasibility of developing vaccines that block respiratory viral infections.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunidad Mucosa , Inmunización Secundaria , Macaca mulatta , SARS-CoV-2 , Animales , Humanos , Administración Intranasal , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Citocinas/inmunología , Inmunidad Mucosa/inmunología , Inmunización Secundaria/métodos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inyecciones Intramusculares , Células Asesinas Naturales/inmunología , Pulmón/inmunología , Macaca mulatta/inmunología , Macaca mulatta/virología , Vacunas de ARNm/administración & dosificación , Vacunas de ARNm/inmunología , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Tráquea/inmunología , Tráquea/virología
8.
Nat Immunol ; 18(8): 851-860, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28722709

RESUMEN

The study of the intestinal microbiota has begun to shift from cataloging individual members of the commensal community to understanding their contributions to the physiology of the host organism in health and disease. Here, we review the effects of the microbiome on innate and adaptive immunological players from epithelial cells and antigen-presenting cells to innate lymphoid cells and regulatory T cells. We discuss recent studies that have identified diverse microbiota-derived bioactive molecules and their effects on inflammation within the intestine and distally at sites as anatomically remote as the brain. Finally, we highlight new insights into how the microbiome influences the host response to infection, vaccination and cancer, as well as susceptibility to autoimmune and neurodegenerative disorders.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Infecciones/inmunología , Inflamación/inmunología , Neoplasias/inmunología , Inmunidad Adaptativa/inmunología , Células Presentadoras de Antígenos/inmunología , Enfermedades Autoinmunes/inmunología , Humanos , Inmunidad Innata/inmunología , Inmunidad Mucosa/inmunología , Linfocitos/inmunología , Enfermedades Neurodegenerativas/inmunología , Simbiosis , Linfocitos T Reguladores/inmunología , Vacunación
9.
Nat Immunol ; 18(7): 771-779, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28530714

RESUMEN

TCRαß+CD4-CD8α+CD8ß- intestinal intraepithelial lymphocytes (CD8αα IELs) are an abundant population of thymus-derived T cells that protect the gut barrier surface. We sought to better define the thymic IEL precursor (IELp) through analysis of its maturation, localization and emigration. We defined two precursor populations among TCRß+CD4-CD8- thymocytes by dependence on the kinase TAK1 and rigorous lineage-exclusion criteria. Those IELp populations included a nascent PD-1+ population and a T-bet+ population that accumulated with age. Both gave rise to intestinal CD8αα IELs after adoptive transfer. The PD-1+ IELp population included more strongly self-reactive clones and was largely restricted by classical major histocompatibility complex (MHC) molecules. Those cells localized to the cortex and efficiently emigrated in a manner dependent on the receptor S1PR1. The T-bet+ IELp population localized to the medulla, included cells restricted by non-classical MHC molecules and expressed the receptor NK1.1, the integrin CD103 and the chemokine receptor CXCR3. The two IELp populations further differed in their use of the T cell antigen receptor (TCR) α-chain variable region (Vα) and ß-chain variable region (Vß). These data provide a foundation for understanding the biology of CD8αα IELs.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Mucosa Intestinal/inmunología , Células Precursoras de Linfocitos T/inmunología , Timocitos/inmunología , Inmunidad Adaptativa/inmunología , Traslado Adoptivo , Animales , Antígenos CD , Antígenos Ly/inmunología , Antígenos CD8/inmunología , Linaje de la Célula , Movimiento Celular/inmunología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Antígenos de Histocompatibilidad/inmunología , Inmunidad Mucosa/inmunología , Cadenas alfa de Integrinas , Mucosa Intestinal/citología , Linfocitos , Ratones , Subfamilia B de Receptores Similares a Lectina de Células NK/inmunología , Fenotipo , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Receptores CXCR3 , Receptores de Lisoesfingolípidos/inmunología , Receptores de Esfingosina-1-Fosfato , Proteínas de Dominio T Box/inmunología , Timocitos/citología , Timo/citología
10.
Immunity ; 52(3): 557-570.e6, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32160523

RESUMEN

The intestine contains some of the most diverse and complex immune compartments in the body. Here we describe a method for isolating human gut-associated lymphoid tissues (GALTs) that allows unprecedented profiling of the adaptive immune system in submucosal and mucosal isolated lymphoid follicles (SM-ILFs and M-ILFs, respectively) as well as in GALT-free intestinal lamina propria (LP). SM-ILF and M-ILF showed distinct patterns of distribution along the length of the intestine, were linked to the systemic circulation through MAdCAM-1+ high endothelial venules and efferent lymphatics, and had immune profiles consistent with immune-inductive sites. IgA sequencing analysis indicated that human ILFs are sites where intestinal adaptive immune responses are initiated in an anatomically restricted manner. Our findings position ILFs as key inductive hubs for regional immunity in the human intestine, and the methods presented will allow future assessment of these compartments in health and disease.


Asunto(s)
Inmunidad Adaptativa/inmunología , Inmunidad Mucosa/inmunología , Mucosa Intestinal/inmunología , Intestinos/inmunología , Tejido Linfoide/inmunología , Inmunidad Adaptativa/genética , Animales , Citometría de Flujo , Mucosa Gástrica/inmunología , Mucosa Gástrica/metabolismo , Mucosa Gástrica/ultraestructura , Humanos , Inmunidad Mucosa/genética , Inmunoglobulina A/genética , Inmunoglobulina A/inmunología , Inmunoglobulina M/genética , Inmunoglobulina M/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestructura , Intestinos/ultraestructura , Linfocitos/inmunología , Linfocitos/metabolismo , Tejido Linfoide/metabolismo , Tejido Linfoide/ultraestructura , Microscopía Confocal , Microscopía Electrónica de Rastreo , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/metabolismo , Ganglios Linfáticos Agregados/ultraestructura , Análisis de Secuencia de ADN
11.
Nature ; 620(7974): 634-642, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438525

RESUMEN

The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.


Asunto(s)
Alérgenos , Reacción de Prevención , Hipersensibilidad , Mastocitos , Animales , Ratones , Alérgenos/inmunología , Reacción de Prevención/fisiología , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Mastocitos/inmunología , Estómago/inmunología , Vagotomía , Inmunidad Innata/inmunología , Inmunidad Mucosa/inmunología , Células Th2/inmunología , Citocinas/inmunología , Leucotrienos/biosíntesis , Leucotrienos/inmunología , Intestino Delgado/inmunología
12.
Nature ; 624(7992): 630-638, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38093012

RESUMEN

The COVID-19 pandemic has fostered major advances in vaccination technologies1-4; however, there are urgent needs for vaccines that induce mucosal immune responses and for single-dose, non-invasive administration4-6. Here we develop an inhalable, single-dose, dry powder aerosol SARS-CoV-2 vaccine that induces potent systemic and mucosal immune responses. The vaccine encapsulates assembled nanoparticles comprising proteinaceous cholera toxin B subunits displaying the SARS-CoV-2 RBD antigen within microcapsules of optimal aerodynamic size, and this unique nano-micro coupled structure supports efficient alveoli delivery, sustained antigen release and antigen-presenting cell uptake, which are favourable features for the induction of immune responses. Moreover, this vaccine induces strong production of IgG and IgA, as well as a local T cell response, collectively conferring effective protection against SARS-CoV-2 in mice, hamsters and nonhuman primates. Finally, we also demonstrate a mosaic iteration of the vaccine that co-displays ancestral and Omicron antigens, extending the breadth of antibody response against co-circulating strains and transmission of the Omicron variant. These findings support the use of this inhaled vaccine as a promising multivalent platform for fighting COVID-19 and other respiratory infectious diseases.


Asunto(s)
Vacunas contra la COVID-19 , Inmunidad Mucosa , Animales , Cricetinae , Humanos , Ratones , Administración por Inhalación , Aerosoles , Anticuerpos Antivirales/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos Virales/inmunología , Toxina del Cólera , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Inmunidad Mucosa/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Nanopartículas , Polvos , Primates/virología , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Vacunación , Cápsulas
13.
Nat Immunol ; 17(3): 230-40, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26882261

RESUMEN

Inflammation is emerging as one of the hallmarks of cancer, yet its role in most tumors remains unclear. Whereas a minority of solid tumors are associated with overt inflammation, long-term treatment with non-steroidal anti-inflammatory drugs is remarkably effective in reducing cancer rate and death. This indicates that inflammation might have many as-yet-unrecognized facets, among which an indolent course might be far more prevalent than previously appreciated. In this Review, we explore the various inflammatory processes underlying the development and progression of colorectal cancer and discuss anti-inflammatory means for its prevention and treatment.


Asunto(s)
Adenocarcinoma/inmunología , Adenoma/inmunología , Carcinogénesis/inmunología , Neoplasias Colorrectales/inmunología , Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Inflamación , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/prevención & control , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/prevención & control , Daño del ADN/inmunología , Progresión de la Enfermedad , Humanos , Inmunidad Innata/inmunología , Inmunidad Mucosa/inmunología , Interleucina-1beta/antagonistas & inhibidores , Quinasas Janus/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores de Interleucina-6/antagonistas & inhibidores , Factores de Transcripción STAT/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
14.
Nat Immunol ; 16(9): 918-26, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26237551

RESUMEN

Mucosal immunity protects a host from intestinal inflammation and infection and is profoundly influenced by symbiotic bacteria. Here we report that in mice symbiotic bacteria directed selective cargo sorting in Paneth cells to promote symbiosis through Nod2, a cytosolic bacterial sensor, and the multifunctional protein kinase LRRK2, both encoded by inflammatory bowel disease (IBD)-associated genes. Commensals recruited Nod2 onto lysozyme-containing dense core vesicles (DCVs), which was required for DCV localization of LRRK2 and a small GTPase, Rab2a. Deficiency of Nod2, LRRK2 or Rab2a or depletion of commensals resulted in lysosomal degradation of lysozyme. Thus, commensal bacteria and host factors orchestrate the lysozyme-sorting process to protect the host from enteric infection, implicating Paneth cell dysfunction in IBD pathogenesis.


Asunto(s)
Enterocolitis/inmunología , Inmunidad Mucosa/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Intestinos/inmunología , Listeriosis/inmunología , Células de Paneth/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Simbiosis/inmunología , Animales , Enterocolitis/genética , Inmunidad Mucosa/genética , Enfermedades Inflamatorias del Intestino/genética , Intestinos/microbiología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Listeriosis/genética , Lisosomas , Ratones , Ratones Noqueados , Muramidasa , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/inmunología , Proteínas Serina-Treonina Quinasas/genética , Vesículas Secretoras/inmunología , Simbiosis/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/inmunología
15.
Immunity ; 49(2): 211-224, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134201

RESUMEN

Various immune mechanisms are deployed in the mucosa to confront the immense diversity of resident bacteria. A substantial fraction of the commensal microbiota is coated with immunoglobulin A (IgA) antibodies, and recent findings have established the identities of these bacteria under homeostatic and disease conditions. Here we review the current understanding of IgA biology, and present a framework wherein two distinct types of humoral immunity coexist in the gastrointestinal mucosa. Homeostatic IgA responses employ a polyreactive repertoire to bind a broad but taxonomically distinct subset of microbiota. In contrast, mucosal pathogens and vaccines elicit high-affinity, T cell-dependent antibody responses. This model raises fundamental questions including how polyreactive IgA specificities are generated, how these antibodies exert effector functions, and how they exist together with other immune responses during homeostasis and disease.


Asunto(s)
Inmunidad Humoral/inmunología , Inmunidad Mucosa/inmunología , Inmunoglobulina A/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Microbiota/inmunología , Animales , Linfocitos B/inmunología , Bacterias/inmunología , Humanos , Ratones , Linfocitos T/inmunología
16.
Immunity ; 48(6): 1245-1257.e9, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29858010

RESUMEN

The mammalian gut microbiota provides essential metabolites to the host and promotes the differentiation and accumulation of extrathymically generated regulatory T (pTreg) cells. To explore the impact of these cells on intestinal microbial communities, we assessed the composition of the microbiota in pTreg cell-deficient and -sufficient mice. pTreg cell deficiency led to heightened type 2 immune responses triggered by microbial exposure, which disrupted the niche of border-dwelling bacteria early during colonization. Moreover, impaired pTreg cell generation led to pervasive changes in metabolite profiles, altered features of the intestinal epithelium, and reduced body weight in the presence of commensal microbes. Absence of a single species of bacteria depleted in pTreg cell-deficient animals, Mucispirillum schaedleri, partially accounted for the sequelae of pTreg cell deficiency. These observations suggest that pTreg cells modulate the metabolic function of the intestinal microbiota by restraining immune defense mechanisms that may disrupt a particular bacterial niche.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Interacciones Microbiota-Huesped/inmunología , Linfocitos T Reguladores/inmunología , Animales , Inmunidad Mucosa/inmunología , Mucosa Intestinal/inmunología , Ratones
17.
PLoS Pathog ; 20(10): e1012557, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39356719

RESUMEN

Increasing evidence points to the microbial exposome as a critical factor in maturing and shaping the host immune system, thereby influencing responses to immune challenges such as infections or vaccines. To investigate the effect of early-life viral exposures on immune development and vaccine responses, we inoculated mice with six distinct viral pathogens in sequence beginning in the neonatal period, and then evaluated their immune signatures before and after intramuscular or intranasal vaccination against SARS-CoV-2. Sequential viral infection drove profound changes in all aspects of the immune system, including increasing circulating leukocytes, altering innate and adaptive immune cell lineages in tissues, and markedly influencing serum cytokine and total antibody levels. Beyond changes in the immune responses, these exposures also modulated the composition of the endogenous intestinal microbiota. Although sequentially-infected mice exhibited increased systemic immune activation and T cell responses after intramuscular and intranasal SARS-CoV-2 immunization, we observed decreased vaccine-induced antibody responses in these animals. These results suggest that early-life viral exposures are sufficient to diminish antibody responses to vaccination in mice, and highlight the potential importance of considering prior microbial exposures when investigating vaccine responses.


Asunto(s)
Inmunidad Adaptativa , COVID-19 , SARS-CoV-2 , Vacunación , Animales , Ratones , Inmunidad Adaptativa/inmunología , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Microbioma Gastrointestinal/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Femenino , Microbiota/inmunología , Administración Intranasal , Ratones Endogámicos C57BL , Inmunidad Mucosa/inmunología
18.
Immunity ; 46(1): 133-147, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28087239

RESUMEN

Immuno-surveillance networks operating at barrier sites are tuned by local tissue cues to ensure effective immunity. Site-specific commensal bacteria provide key signals ensuring host defense in the skin and gut. However, how the oral microbiome and tissue-specific signals balance immunity and regulation at the gingiva, a key oral barrier, remains minimally explored. In contrast to the skin and gut, we demonstrate that gingiva-resident T helper 17 (Th17) cells developed via a commensal colonization-independent mechanism. Accumulation of Th17 cells at the gingiva was driven in response to the physiological barrier damage that occurs during mastication. Physiological mechanical damage, via induction of interleukin 6 (IL-6) from epithelial cells, tailored effector T cell function, promoting increases in gingival Th17 cell numbers. These data highlight that diverse tissue-specific mechanisms govern education of Th17 cell responses and demonstrate that mechanical damage helps define the immune tone of this important oral barrier.


Asunto(s)
Encía/inmunología , Inmunidad Mucosa/inmunología , Vigilancia Inmunológica/inmunología , Mucosa Bucal/inmunología , Células Th17/inmunología , Animales , Citometría de Flujo , Encía/microbiología , Humanos , Masticación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota , Mucosa Bucal/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Nature ; 578(7796): 527-539, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32103191

RESUMEN

Inflammatory bowel disease (IBD) is a complex genetic disease that is instigated and amplified by the confluence of multiple genetic and environmental variables that perturb the immune-microbiome axis. The challenge of dissecting pathological mechanisms underlying IBD has led to the development of transformative approaches in human genetics and functional genomics. Here we describe IBD as a model disease in the context of leveraging human genetics to dissect interactions in cellular and molecular pathways that regulate homeostasis of the mucosal immune system. Finally, we synthesize emerging insights from multiple experimental approaches into pathway paradigms and discuss future prospects for disease-subtype classification and therapeutic intervention.


Asunto(s)
Enfermedades Inflamatorias del Intestino/genética , Animales , Citocinas/inmunología , Exoma/genética , Fibrosis/inmunología , Fibrosis/patología , Predisposición Genética a la Enfermedad , Homeostasis , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunidad Innata , Inmunidad Mucosa/genética , Inmunidad Mucosa/inmunología , Inflamación/inmunología , Inflamación/patología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/terapia , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Análisis de la Célula Individual
20.
Nature ; 584(7820): 274-278, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760003

RESUMEN

Colonization by the microbiota causes a marked stimulation of B cells and induction of immunoglobulin, but mammals colonized with many taxa have highly complex and individualized immunoglobulin repertoires1,2. Here we use a simplified model of defined transient exposures to different microbial taxa in germ-free mice3 to deconstruct how the microbiota shapes the B cell pool and its functional responsiveness. We followed the development of the immunoglobulin repertoire in B cell populations, as well as single cells by deep sequencing. Microbial exposures at the intestinal mucosa generated oligoclonal responses that differed from those of germ-free mice, and from the diverse repertoire that was generated after intravenous systemic exposure to microbiota. The IgA repertoire-predominantly to cell-surface antigens-did not expand after dose escalation, whereas increased systemic exposure broadened the IgG repertoire to both microbial cytoplasmic and cell-surface antigens. These microbial exposures induced characteristic immunoglobulin heavy-chain repertoires in B cells, mainly at memory and plasma cell stages. Whereas sequential systemic exposure to different microbial taxa diversified the IgG repertoire and facilitated alternative specific responses, sequential mucosal exposure produced limited overlapping repertoires and the attrition of initial IgA binding specificities. This shows a contrast between a flexible response to systemic exposure with the need to avoid fatal sepsis, and a restricted response to mucosal exposure that reflects the generic nature of host-microbial mutualism in the mucosa.


Asunto(s)
Linfocitos B/citología , Linfocitos B/inmunología , Inmunidad Mucosa/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Simbiosis/inmunología , Administración Intravenosa , Administración Oral , Animales , Clostridiales/inmunología , Clostridiales/aislamiento & purificación , Escherichia coli/inmunología , Escherichia coli/aislamiento & purificación , Femenino , Vida Libre de Gérmenes , Inmunoglobulina A/química , Inmunoglobulina A/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Cadenas Pesadas de Inmunoglobulina/inmunología , Memoria Inmunológica/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Plasmáticas/citología , Células Plasmáticas/inmunología , Memoria Implícita
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA