RESUMEN
The immune system and the kidneys are closely related. Immune components mediate acute kidney disease and are crucial to the progression of chronic kidney disease. Beyond its pathogenic functions, the immune system supports immunological homeostasis in healthy kidneys. The kidneys help maintain immune equilibrium by removing metabolic waste products and toxins, thereby limiting local and systemic inflammation. In this review, we describe the close relationship between the immune system and the kidneys. We discuss how the imbalance in the immune response can be deleterious to the kidneys and how immunomodulation can be important in preventing end-stage renal disease. In addition, recent tools such as in silico platforms and kidney organoids can help unveil the relationship between immune cells and kidney homeostasis.
Asunto(s)
Enfermedades Renales , Humanos , Animales , Enfermedades Renales/inmunología , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Riñón/inmunología , Riñón/metabolismo , Homeostasis , Inmunomodulación , Susceptibilidad a EnfermedadesRESUMEN
Gastrointestinal nematode (GIN) infection has applied significant evolutionary pressure to the mammalian immune system and remains a global economic and human health burden. Upon infection, type 2 immune sentinels activate a common antihelminth response that mobilizes and remodels the intestinal tissue for effector function; however, there is growing appreciation of the impact GIN infection also has on the distal tissue immune state. Indeed, this effect is observed even in tissues through which GINs never transit. This review highlights how GIN infection modulates systemic immunity through (a) induction of host resistance and tolerance responses, (b) secretion of immunomodulatory products, and (c) interaction with the intestinal microbiome. It also discusses the direct consequences that changes to distal tissue immunity can have for concurrent and subsequent infection, chronic noncommunicable diseases, and vaccination efficacy.
Asunto(s)
Microbioma Gastrointestinal , Nematodos , Infecciones por Nematodos , Animales , Humanos , Infecciones por Nematodos/inmunología , Nematodos/inmunología , Nematodos/fisiología , Microbioma Gastrointestinal/inmunología , Inmunomodulación , Interacciones Huésped-Parásitos/inmunología , Parasitosis Intestinales/inmunología , Tolerancia Inmunológica , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/parasitologíaRESUMEN
A striking change has happened in the field of immunology whereby specific metabolic processes have been shown to be a critical determinant of immune cell activation. Multiple immune receptor types rewire metabolic pathways as a key part of how they promote effector functions. Perhaps surprisingly for immunologists, the Krebs cycle has emerged as the central immunometabolic hub of the macrophage. During proinflammatory macrophage activation, there is an accumulation of the Krebs cycle intermediates succinate and citrate, and the Krebs cycle-derived metabolite itaconate. These metabolites have distinct nonmetabolic signaling roles that influence inflammatory gene expression. A key bioenergetic target for the Krebs cycle, the electron transport chain, also becomes altered, generating reactive oxygen species from Complexes I and III. Similarly, alternatively activated macrophages require α-ketoglutarate-dependent epigenetic reprogramming to elicit anti-inflammatory gene expression. In this review, we discuss these advances and speculate on the possibility of targeting these events therapeutically for inflammatory diseases.
Asunto(s)
Ciclo del Ácido Cítrico , Inmunidad , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Susceptibilidad a Enfermedades , Metabolismo Energético , Humanos , Inmunomodulación , Activación de Macrófagos/inmunología , Transducción de SeñalRESUMEN
Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid-containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.
Asunto(s)
Susceptibilidad a Enfermedades , Proteínas de Punto de Control Inmunitario/genética , Proteínas de Punto de Control Inmunitario/metabolismo , Inmunomodulación , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Transducción de Señal , Animales , Biomarcadores , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismoRESUMEN
Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.
Asunto(s)
Hipoxia/inmunología , Hipoxia/metabolismo , Inmunidad Innata , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Metabolismo Energético , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Hipoxia/genética , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Inmunomodulación , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Transducción de SeñalRESUMEN
The interplay between the immune and nervous systems has been acknowledged in the past, but only more recent studies have started to unravel the cellular and molecular players of such interactions. Mounting evidence indicates that environmental signals are sensed by discrete neuro-immune cell units (NICUs), which represent defined anatomical locations in which immune and neuronal cells colocalize and functionally interact to steer tissue physiology and protection. These units have now been described in multiple tissues throughout the body, including lymphoid organs, adipose tissue, and mucosal barriers. As such, NICUs are emerging as important orchestrators of multiple physiological processes, including hematopoiesis, organogenesis, inflammation, tissue repair, and thermogenesis. In this review we focus on the impact of NICUs in tissue physiology and how this fast-evolving field is driving a paradigm shift in our understanding of immunoregulation and organismal physiology.
Asunto(s)
Sistema Inmunológico , Sistema Nervioso , Neuroinmunomodulación , Animales , Humanos , Inmunidad Mucosa , InmunomodulaciónRESUMEN
Pathogenic organisms exert a negative impact on host health, revealed by the clinical signs of infectious diseases. Immunity limits the severity of infectious diseases through resistance mechanisms that sense and target pathogens for containment, killing, or expulsion. These resistance mechanisms are viewed as the prevailing function of immunity. Under pathophysiologic conditions, however, immunity arises in response to infections that carry health and fitness costs to the host. Therefore, additional defense mechanisms are required to limit these costs, before immunity becomes operational as well as thereafter to avoid immunopathology. These are tissue damage control mechanisms that adjust the metabolic output of host tissues to different forms of stress and damage associated with infection. Disease tolerance is the term used to define this defense strategy, which does not exert a direct impact on pathogens but is essential to limit the health and fitness costs of infection. Under this argument, we propose that disease tolerance is an inherent component of immunity.
Asunto(s)
Resistencia a la Enfermedad/inmunología , Inmunidad Innata , Infecciones/inmunología , Microbiota/inmunología , Animales , Interacciones Huésped-Patógeno , Humanos , Tolerancia Inmunológica , InmunomodulaciónRESUMEN
Cytokines are secreted or otherwise released polypeptide factors that exert autocrine and/or paracrine actions, with most cytokines acting in the immune and/or hematopoietic system. They are typically pleiotropic, controlling development, cell growth, survival, and/or differentiation. Correspondingly, cytokines are clinically important, and augmenting or attenuating cytokine signals can have deleterious or therapeutic effects. Besides physiological fine-tuning of cytokine signals, altering the nature or potency of the signal can be important in pathophysiological responses and can also provide novel therapeutic approaches. Here, we give an overview of cytokines, their signaling and actions, and the physiological mechanisms and pharmacologic strategies to fine-tune their actions. In particular, the differential utilization of STAT proteins by a single cytokine or by different cytokines and STAT dimerization versus tetramerization are physiological mechanisms of fine-tuning, whereas anticytokine and anticytokine receptor antibodies and cytokines with altered activities, including cytokine superagonists, partial agonists, and antagonists, represent new ways of fine-tuning cytokine signals.
Asunto(s)
Citocinas/metabolismo , Inmunoterapia/tendencias , Animales , Citocinas/genética , Humanos , Inmunidad Humoral , Inmunomodulación , Multimerización de Proteína , Factores de Transcripción STAT/metabolismo , Transducción de Señal/inmunologíaRESUMEN
Platelets have dual physiologic roles as both cellular mediators of thrombosis and immune modulatory cells. Historically, the thrombotic function of platelets has received significant research and clinical attention, but emerging research indicates that the immune regulatory roles of platelets may be just as important. We now know that in addition to their role in the acute thrombotic event at the time of myocardial infarction, platelets initiate and accelerate inflammatory processes that are part of the pathogenesis of atherosclerosis and myocardial infarction expansion. Furthermore, it is increasingly apparent from recent studies that platelets impact the pathogenesis of many vascular inflammatory processes such as autoimmune diseases, sepsis, viral infections, and growth and metastasis of many types of tumors. Therefore, we must consider platelets as immune cells that affect all phases of immune responses.
Asunto(s)
Aterosclerosis/inmunología , Enfermedades Autoinmunes/inmunología , Plaquetas/inmunología , Inflamación , Infarto del Miocardio/inmunología , Trombosis/inmunología , Virosis/inmunología , Animales , Carcinogénesis/inmunología , Humanos , InmunomodulaciónRESUMEN
Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.
Asunto(s)
Inmunidad Innata/genética , ARN Bicatenario/genética , Virosis/inmunología , 2',5'-Oligoadenilato Sintetasa/metabolismo , Animales , Proteína 58 DEAD Box/metabolismo , Humanos , Inmunomodulación , Mamíferos , Nucleótido Desaminasas/metabolismo , Interferencia de ARN , eIF-2 Quinasa/metabolismoRESUMEN
The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Diabetes Mellitus Tipo 1/microbiología , Microbioma Gastrointestinal/inmunología , Inflamación/microbiología , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/microbiología , Animales , Autoinmunidad , Diabetes Mellitus Tipo 1/inmunología , Homeostasis , Humanos , Tolerancia Inmunológica , Inmunomodulación , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunologíaRESUMEN
The complement system is an evolutionarily ancient key component of innate immunity required for the detection and removal of invading pathogens. It was discovered more than 100 years ago and was originally defined as a liver-derived, blood-circulating sentinel system that classically mediates the opsonization and lytic killing of dangerous microbes and the initiation of the general inflammatory reaction. More recently, complement has also emerged as a critical player in adaptive immunity via its ability to instruct both B and T cell responses. In particular, work on the impact of complement on T cell responses led to the surprising discoveries that the complement system also functions within cells and is involved in regulating basic cellular processes, predominantly those of metabolic nature. Here, we review current knowledge about complement's role in T cell biology, with a focus on the novel intracellular and noncanonical activities of this ancient system.
Asunto(s)
Proteínas del Sistema Complemento/inmunología , Inmunomodulación , Linfocitos T/inmunología , Linfocitos T/metabolismo , Inmunidad Adaptativa , Animales , Autoinmunidad , Linfocitos B/inmunología , Linfocitos B/metabolismo , Activación de Complemento/inmunología , Metabolismo Energético , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Celular , Proteína Cofactora de Membrana/metabolismo , Células TH1/inmunología , Células TH1/metabolismoRESUMEN
The cellular degradative pathway of autophagy has a fundamental role in immunity. Here, we review the function of autophagy and autophagy proteins in inflammation. We discuss how the autophagy machinery controls the burden of infectious agents while simultaneously limiting inflammatory pathologies, which often involves processes that are distinct from conventional autophagy. Among the newly emerging processes we describe are LC3-associated phagocytosis and targeting by autophagy proteins, both of which require many of the same proteins that mediate conventional autophagy. We also discuss how autophagy contributes to differentiation of myeloid and lymphoid cell types, coordinates multicellular immunity, and facilitates memory responses. Together, these functions establish an intimate link between autophagy, mucosal immunity, and chronic inflammatory diseases. Finally, we offer our perspective on current challenges and barriers to translation.
Asunto(s)
Autofagia , Susceptibilidad a Enfermedades , Inflamación/etiología , Animales , Biomarcadores , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunomodulación , Inflamación/diagnóstico , Inflamación/metabolismo , Transducción de SeñalRESUMEN
A fundamental question in developmental immunology is how bipotential thymocyte precursors generate both CD4+ helper and CD8+ cytotoxic T cell lineages. The MHC specificity of αß T cell receptors (TCRs) on precursors is closely correlated with cell fate-determining processes, prompting studies to characterize how variations in TCR signaling are linked with genetic programs establishing lineage-specific gene expression signatures, such as exclusive CD4 or CD8 expression. The key transcription factors ThPOK and Runx3 have been identified as mediating development of helper and cytotoxic T cell lineages, respectively. Together with increasing knowledge of epigenetic regulators, these findings have advanced our understanding of the transcription factor network regulating the CD4/CD8 dichotomy. It has also become apparent that CD4+ T cells retain developmental plasticity, allowing them to acquire cytotoxic activity in the periphery. Despite such advances, further studies are necessary to identify the molecular links between TCR signaling and the nuclear machinery regulating expression of ThPOK and Runx3.
Asunto(s)
Diferenciación Celular/inmunología , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Antígenos CD4/genética , Antígenos CD4/metabolismo , Antígenos CD8/genética , Antígenos CD8/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Humanos , Inmunomodulación/genética , Inmunomodulación/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Factores de Transcripción/genética , Transcripción GenéticaRESUMEN
Antigen cross-presentation is an adaptation of the cellular process of loading MHC-I molecules with endogenous peptides during their biosynthesis within the endoplasmic reticulum. Cross-presented peptides derive from internalized proteins, microbial pathogens, and transformed or dying cells. The physical separation of internalized cargo from the endoplasmic reticulum, where the machinery for assembling peptide-MHC-I complexes resides, poses a challenge. To solve this problem, deliberate rewiring of organelle communication within cells is necessary to prepare for cross-presentation, and different endocytic receptors and vesicular traffic patterns customize the emergent cross-presentation compartment to the nature of the peptide source. Three distinct pathways of vesicular traffic converge to form the ideal cross-presentation compartment, each regulated differently to supply a unique component that enables cross-presentation of a diverse repertoire of peptides. Delivery of centerpiece MHC-I molecules is the critical step regulated by microbe-sensitive Toll-like receptors. Defining the subcellular sources of MHC-I and identifying sites of peptide loading during cross-presentation remain key challenges.
Asunto(s)
Presentación de Antígeno/inmunología , Antígenos/inmunología , Reactividad Cruzada/inmunología , Inmunomodulación , Animales , Transporte Biológico , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Endocitosis/inmunología , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Epítopos/inmunología , Epítopos/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Espacio Intracelular/metabolismo , Fagocitosis/inmunología , Proteolisis , Receptores de Superficie Celular/metabolismoRESUMEN
T cell receptors (TCRs) are protein complexes formed by six different polypeptides. In most T cells, TCRs are composed of αß subunits displaying immunoglobulin-like variable domains that recognize peptide antigens associated with major histocompatibility complex molecules expressed on the surface of antigen-presenting cells. TCRαß subunits are associated with the CD3 complex formed by the γ, δ, ε, and ζ subunits, which are invariable and ensure signal transduction. Here, we review how the expression and function of TCR complexes are orchestrated by several fine-tuned cellular processes that encompass (a) synthesis of the subunits and their correct assembly and expression at the plasma membrane as a single functional complex, (b) TCR membrane localization and dynamics at the plasma membrane and in endosomal compartments, (c) TCR signal transduction leading to T cell activation, and (d) TCR degradation. These processes balance each other to ensure efficient T cell responses to a variety of antigenic stimuli while preventing autoimmunity.
Asunto(s)
Regulación de la Expresión Génica , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Biomarcadores , Complejo CD3/genética , Complejo CD3/metabolismo , Membrana Celular/metabolismo , Endocitosis/genética , Endocitosis/inmunología , Endosomas/metabolismo , Humanos , Inmunomodulación , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteolisis , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Relación Estructura-ActividadRESUMEN
Respiratory syncytial virus (RSV) is an exceptional mucosal pathogen. It specializes in infection of the ciliated respiratory epithelium, causing disease of variable severity with little or no direct systemic effects. It infects virtually all children by the age of three years and then repeatedly infects throughout life; this it does despite relatively slight variations in antigenicity, apparently by inducing selective immunological amnesia. Inappropriate or dysregulated responses to RSV can be pathogenic, causing disease-enhancing inflammation that contributes to short- and long-term effects. In addition, RSV's importance as a largely unrecognized pathogen of debilitated older people is increasingly evident. Vaccines that induce nonpathogenic protective immunity may soon be available, and it is possible that different vaccines will be optimal for infants; older children; young to middle-age adults (including pregnant women); and elderly persons. At the dawn of RSV vaccination, it is timely to review what is known (and unknown) about immune responses to this fascinating virus.
Asunto(s)
Mucosa Respiratoria/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/inmunología , Vacunas Virales/inmunología , Adulto , Anciano , Animales , Niño , Humanos , Evasión Inmune , Inmunomodulación , Mucosa Respiratoria/virologíaRESUMEN
Vitamin A is a multifunctional vitamin implicated in a wide range of biological processes. Its control over the immune system and functions are perhaps the most pleiotropic not only for development but also for the functional fate of almost every cell involved in protective or regulatory adaptive or innate immunity. This is especially key at the intestinal border, where dietary vitamin A is first absorbed. Most effects of vitamin A are exerted by its metabolite, retinoic acid (RA), which through ligation of nuclear receptors controls transcriptional expression of RA target genes. In addition to this canonical function, RA and RA receptors (RARs), either as ligand-receptor or separately, play extranuclear, nongenomic roles that greatly expand the multiple mechanisms employed for their numerous and paradoxical functions that ultimately link environmental sensing with immune cell fate. This review discusses RA and RARs and their complex roles in innate and adaptive immunity.
Asunto(s)
Sistema Inmunológico , Mucosa Intestinal/fisiología , Receptores de Ácido Retinoico/inmunología , Tretinoina/metabolismo , Vitamina A/inmunología , Inmunidad Adaptativa , Animales , Humanos , Inmunidad Innata , Inmunomodulación , Receptores de Ácido Retinoico/metabolismo , Tretinoina/inmunologíaRESUMEN
Inheritance of a coding variant of the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is associated with increased susceptibility to autoimmunity and infection. Efforts to elucidate the mechanisms by which the PTPN22-C1858T variant modulates disease risk revealed that PTPN22 performs a signaling function in multiple biochemical pathways and cell types. Capable of both enzymatic activity and adaptor functions, PTPN22 modulates signaling through antigen and innate immune receptors. PTPN22 plays roles in lymphocyte development and activation, establishment of tolerance, and innate immune cell-mediated host defense and immunoregulation. The disease-associated PTPN22-R620W variant protein is likely involved in multiple stages of the pathogenesis of autoimmunity. Establishment of a tolerant B cell repertoire is disrupted by PTPN22-R620W action during immature B cell selection, and PTPN22-R620W alters mature T cell responsiveness. However, after autoimmune attack has initiated tissue injury, PTPN22-R620W may foster inflammation through modulating the balance of myeloid cell-produced cytokines.
Asunto(s)
Inmunidad/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 22/metabolismo , Transducción de Señal , Animales , Autoinmunidad/genética , Autoinmunidad/inmunología , Predisposición Genética a la Enfermedad , Humanos , Sistema Inmunológico/fisiología , Tolerancia Inmunológica , Inmunomodulación , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genéticaRESUMEN
Barrier tissue immune responses are regulated in part by nociceptors. Nociceptor ablation alters local immune responses at peripheral sites and within draining lymph nodes (LNs). The mechanisms and significance of nociceptor-dependent modulation of LN function are unknown. Using high-resolution imaging, viral tracing, single-cell transcriptomics, and optogenetics, we identified and functionally tested a sensory neuro-immune circuit that is responsive to lymph-borne inflammatory signals. Transcriptomics profiling revealed that multiple sensory neuron subsets, predominantly peptidergic nociceptors, innervate LNs, distinct from those innervating surrounding skin. To uncover LN-resident cells that may interact with LN-innervating sensory neurons, we generated a LN single-cell transcriptomics atlas and nominated nociceptor target populations and interaction modalities. Optogenetic stimulation of LN-innervating sensory fibers triggered rapid transcriptional changes in the predicted interacting cell types, particularly endothelium, stromal cells, and innate leukocytes. Thus, a unique population of sensory neurons monitors peripheral LNs and may locally regulate gene expression.