Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.942
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 616(7956): 312-318, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36949193

RESUMEN

Our understanding of the functions and mechanisms of sleep remains incomplete, reflecting their increasingly evident complexity1-3. Likewise, studies of interhemispheric coordination during sleep4-6 are often hard to connect precisely to known sleep circuits and mechanisms. Here, by recording from the claustra of sleeping bearded dragons (Pogona vitticeps), we show that, although the onsets and offsets of Pogona rapid-eye-movement (REMP) and slow-wave sleep are coordinated bilaterally, these two sleep states differ markedly in their inter-claustral coordination. During slow-wave sleep, the claustra produce sharp-wave ripples independently of one another, showing no coordination. By contrast, during REMP sleep, the potentials produced by the two claustra are precisely coordinated in amplitude and time. These signals, however, are not synchronous: one side leads the other by about 20 ms, with the leading side switching typically once per REMP episode or in between successive episodes. The leading claustrum expresses the stronger activity, suggesting bilateral competition. This competition does not occur directly between the two claustra or telencephalic hemispheres. Rather, it occurs in the midbrain and depends on the integrity of a GABAergic (γ-aminobutyric-acid-producing) nucleus of the isthmic complex, which exists in all vertebrates and is known in birds to underlie bottom-up attention and gaze control. These results reveal that a winner-take-all-type competition exists between the two sides of the brain of Pogona, which originates in the midbrain and has precise consequences for claustrum activity and coordination during REMP sleep.


Asunto(s)
Encéfalo , Lateralidad Funcional , Lagartos , Sueño , Animales , Encéfalo/anatomía & histología , Encéfalo/fisiología , Lagartos/anatomía & histología , Lagartos/fisiología , Mesencéfalo/fisiología , Sueño/fisiología , Sueño REM/fisiología , Sueño de Onda Lenta/fisiología , Lateralidad Funcional/fisiología , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismo , Fijación Ocular , Atención , Aves/fisiología
2.
Nature ; 611(7934): 99-104, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36289329

RESUMEN

Squamates (lizards and snakes) include more than 10,000 living species, descended from an ancestor that diverged more than 240 million years ago from that of their closest living relative, Sphenodon. However, a deficiency of fossil evidence1-7, combined with serious conflicts between molecular and morphological accounts of squamate phylogeny8-13 (but see ref. 14), has caused uncertainty about the origins and evolutionary assembly of squamate anatomy. Here we report the near-complete skeleton of a stem squamate, Bellairsia gracilis, from the Middle Jurassic epoch of Scotland, documented using high-resolution synchrotron phase-contrast tomography. Bellairsia shares numerous features of the crown group, including traits related to cranial kinesis (an important functional feature of many extant squamates) and those of the braincase and shoulder girdle. Alongside these derived traits, Bellairsia also retains inferred ancestral features including a pterygoid-vomer contact and the presence of both cervical and dorsal intercentra. Phylogenetic analyses return strong support for Bellairsia as a stem squamate, suggesting that several features that it shares with extant gekkotans are plesiomorphies, consistent with the molecular phylogenetic hypothesis that gekkotans are early-diverging squamates. We also provide confident support of stem squamate affinities for the enigmatic Oculudentavis. Our findings indicate that squamate-like functional features of the suspensorium, braincase and shoulder girdle preceded the origin of their palatal and vertebral traits and indicate the presence of advanced stem squamates as persistent components of terrestrial assemblages up to at least the middle of the Cretaceous period.


Asunto(s)
Fósiles , Lagartos , Serpientes , Sincrotrones , Tomografía , Animales , Lagartos/anatomía & histología , Filogenia , Serpientes/anatomía & histología
3.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856078

RESUMEN

Embryonic development is a complex and dynamic process that unfolds over time and involves the production and diversification of increasing numbers of cells. The impact of developmental time on the formation of the central nervous system is well documented, with evidence showing that time plays a crucial role in establishing the identity of neuronal subtypes. However, the study of how time translates into genetic instructions driving cell fate is limited by the scarcity of suitable experimental tools. We introduce BirthSeq, a new method for isolating and analyzing cells based on their birth date. This innovative technique allows for in vivo labeling of cells, isolation via fluorescence-activated cell sorting, and analysis using high-throughput techniques. We calibrated the BirthSeq method for developmental organs across three vertebrate species (mouse, chick and gecko), and utilized it for single-cell RNA sequencing and novel spatially resolved transcriptomic approaches in mouse and chick, respectively. Overall, BirthSeq provides a versatile tool for studying virtually any tissue in different vertebrate organisms, aiding developmental biology research by targeting cells and their temporal cues.


Asunto(s)
Análisis de la Célula Individual , Animales , Ratones , Análisis de la Célula Individual/métodos , Embrión de Pollo , Lagartos/genética , Lagartos/embriología , Desarrollo Embrionario/genética , Transcriptoma/genética , Citometría de Flujo/métodos , Vertebrados/genética , Separación Celular/métodos , Pollos , Análisis de Secuencia de ARN/métodos
4.
PLoS Biol ; 22(2): e3002411, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422162

RESUMEN

Understanding behavior and its evolutionary underpinnings is crucial for unraveling the complexities of brain function. Traditional approaches strive to reduce behavioral complexity by designing short-term, highly constrained behavioral tasks with dichotomous choices in which animals respond to defined external perturbation. In contrast, natural behaviors evolve over multiple time scales during which actions are selected through bidirectional interactions with the environment and without human intervention. Recent technological advancements have opened up new possibilities for experimental designs that more closely mirror natural behaviors by replacing stringent experimental control with accurate multidimensional behavioral analysis. However, these approaches have been tailored to fit only a small number of species. This specificity limits the experimental opportunities offered by species diversity. Further, it hampers comparative analyses that are essential for extracting overarching behavioral principles and for examining behavior from an evolutionary perspective. To address this limitation, we developed ReptiLearn-a versatile, low-cost, Python-based solution, optimized for conducting automated long-term experiments in the home cage of reptiles, without human intervention. In addition, this system offers unique features such as precise temperature measurement and control, live prey reward dispensers, engagement with touch screens, and remote control through a user-friendly web interface. Finally, ReptiLearn incorporates low-latency closed-loop feedback allowing bidirectional interactions between animals and their environments. Thus, ReptiLearn provides a comprehensive solution for researchers studying behavior in ectotherms and beyond, bridging the gap between constrained laboratory settings and natural behavior in nonconventional model systems. We demonstrate the capabilities of ReptiLearn by automatically training the lizard Pogona vitticeps on a complex spatial learning task requiring association learning, displaced reward learning, and reversal learning.


Asunto(s)
Aprendizaje , Lagartos , Animales , Humanos , Evolución Biológica
5.
Nature ; 597(7875): 235-238, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433961

RESUMEN

The early evolution of diapsid reptiles is marked by a deep contrast between our knowledge of the origin and early evolution of archosauromorphs (crocodiles, avian and non-avian dinosaurs) to that of lepidosauromorphs (squamates (lizards, snakes) and sphenodontians (tuataras)). Whereas the former include hundreds of fossil species across various lineages during the Triassic period1, the latter are represented by an extremely patchy early fossil record comprising only a handful of fragmentary fossils, most of which have uncertain phylogenetic affinities and are confined to Europe1-3. Here we report the discovery of a three-dimensionally preserved reptile skull, assigned as Taytalura alcoberi gen. et sp. nov., from the Late Triassic epoch of Argentina that is robustly inferred phylogenetically as the earliest evolving lepidosauromorph, using various data types and optimality criteria. Micro-computed tomography scans of this skull reveal details about the origin of the lepidosaurian skull from early diapsids, suggesting that several traits traditionally associated with sphenodontians in fact originated much earlier in lepidosauromorph evolution. Taytalura suggests that the strongly evolutionarily conserved skull architecture of sphenodontians represents the plesiomorphic condition for all lepidosaurs, that stem and crown lepidosaurs were contemporaries for at least ten million years during the Triassic, and that early lepidosauromorphs had a much broader geographical distribution than has previously been thought.


Asunto(s)
Dinosaurios , Fósiles , Lagartos , Filogenia , Animales , Argentina , Teorema de Bayes , Dinosaurios/anatomía & histología , Lagartos/anatomía & histología , Filogeografía , Cráneo/anatomía & histología , Microtomografía por Rayos X
6.
Proc Natl Acad Sci U S A ; 121(24): e2320517121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38848301

RESUMEN

Self-propelling organisms locomote via generation of patterns of self-deformation. Despite the diversity of body plans, internal actuation schemes and environments in limbless vertebrates and invertebrates, such organisms often use similar traveling waves of axial body bending for movement. Delineating how self-deformation parameters lead to locomotor performance (e.g. speed, energy, turning capabilities) remains challenging. We show that a geometric framework, replacing laborious calculation with a diagrammatic scheme, is well-suited to discovery and comparison of effective patterns of wave dynamics in diverse living systems. We focus on a regime of undulatory locomotion, that of highly damped environments, which is applicable not only to small organisms in viscous fluids, but also larger animals in frictional fluids (sand) and on frictional ground. We find that the traveling wave dynamics used by mm-scale nematode worms and cm-scale desert dwelling snakes and lizards can be described by time series of weights associated with two principal modes. The approximately circular closed path trajectories of mode weights in a self-deformation space enclose near-maximal surface integral (geometric phase) for organisms spanning two decades in body length. We hypothesize that such trajectories are targets of control (which we refer to as "serpenoid templates"). Further, the geometric approach reveals how seemingly complex behaviors such as turning in worms and sidewinding snakes can be described as modulations of templates. Thus, the use of differential geometry in the locomotion of living systems generates a common description of locomotion across taxa and provides hypotheses for neuromechanical control schemes at lower levels of organization.


Asunto(s)
Lagartos , Locomoción , Animales , Locomoción/fisiología , Lagartos/fisiología , Serpientes/fisiología , Fenómenos Biomecánicos , Modelos Biológicos
7.
Proc Natl Acad Sci U S A ; 121(29): e2400486121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976731

RESUMEN

Reptilian skin coloration is spectacular and diverse, yet little is known about the ontogenetic processes that govern its establishment and the molecular signaling pathways that determine it. Here, we focus on the development of the banded pattern of leopard gecko hatchlings and the transition to black spots in the adult. With our histological analyses, we show that iridophores are present in the white and yellow bands of the hatchling and they gradually perish in the adult skin. Furthermore, we demonstrate that melanophores can autonomously form spots in the absence of the other chromatophores both on the regenerated skin of the tail and on the dorsal skin of the Mack Super Snow (MSS) leopard geckos. This color morph is characterized by uniform black coloration in hatchlings and black spots in adulthood; we establish that their skin is devoid of xanthophores and iridophores at both stages. Our genetic analyses identified a 13-nucleotide deletion in the PAX7 transcription factor of MSS geckos, affecting its protein coding sequence. With our single-cell transcriptomics analysis of embryonic skin, we confirm that PAX7 is expressed in iridophores and xanthophores, suggesting that it plays a key role in the differentiation of both chromatophores. Our in situ hybridizations on whole-mount embryos document the dynamics of the skin pattern formation and how it is impacted in the PAX7 mutants. We hypothesize that the melanophores-iridophores interactions give rise to the banded pattern of the hatchlings and black spot formation is an intrinsic capacity of melanophores in the postembryonic skin.


Asunto(s)
Cromatóforos , Lagartos , Pigmentación de la Piel , Animales , Lagartos/genética , Lagartos/metabolismo , Lagartos/fisiología , Cromatóforos/metabolismo , Pigmentación de la Piel/genética , Pigmentación de la Piel/fisiología , Piel/metabolismo , Melanóforos/metabolismo , Regulación del Desarrollo de la Expresión Génica
8.
Nature ; 584(7821): 403-409, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760000

RESUMEN

The tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana1,2-is an iconic species that is endemic to New Zealand2,3. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes2,4. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing.


Asunto(s)
Evolución Molecular , Genoma/genética , Filogenia , Reptiles/genética , Animales , Conservación de los Recursos Naturales/tendencias , Femenino , Genética de Población , Lagartos/genética , Masculino , Anotación de Secuencia Molecular , Nueva Zelanda , Caracteres Sexuales , Serpientes/genética , Sintenía
9.
Nature ; 578(7795): 413-418, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32051589

RESUMEN

The mammalian claustrum, owing to its widespread connectivity with other forebrain structures, has been hypothesized to mediate functions that range from decision-making to consciousness1. Here we report that a homologue of the claustrum, identified by single-cell transcriptomics and viral tracing of connectivity, also exists in a reptile-the Australian bearded dragon Pogona vitticeps. In Pogona, the claustrum underlies the generation of sharp waves during slow-wave sleep. The sharp waves, together with superimposed high-frequency ripples2, propagate to the entire neighbouring pallial dorsal ventricular ridge (DVR). Unilateral or bilateral lesions of the claustrum suppress the production of sharp-wave ripples during slow-wave sleep in a unilateral or bilateral manner, respectively, but do not affect the regular and rapidly alternating sleep rhythm that is characteristic of sleep in this species3. The claustrum is thus not involved in the generation of the sleep rhythm itself. Tract tracing revealed that the reptilian claustrum projects widely to a variety of forebrain areas, including the cortex, and that it receives converging inputs from, among others, areas of the mid- and hindbrain that are known to be involved in wake-sleep control in mammals4-6. Periodically modulating the concentration of serotonin in the claustrum, for example, caused a matching modulation of sharp-wave production there and in the neighbouring DVR. Using transcriptomic approaches, we also identified a claustrum in the turtle Trachemys scripta, a distant reptilian relative of lizards. The claustrum is therefore an ancient structure that was probably already present in the brain of the common vertebrate ancestor of reptiles and mammals. It may have an important role in the control of brain states owing to the ascending input it receives from the mid- and hindbrain, its widespread projections to the forebrain and its role in sharp-wave generation during slow-wave sleep.


Asunto(s)
Claustro/anatomía & histología , Claustro/fisiología , Lagartos/anatomía & histología , Lagartos/fisiología , Sueño/fisiología , Animales , Claustro/citología , Claustro/lesiones , Masculino , Mamíferos/fisiología , Mesencéfalo/citología , Mesencéfalo/fisiología , Vías Nerviosas , RNA-Seq , Rombencéfalo/citología , Rombencéfalo/fisiología , Serotonina/metabolismo , Análisis de la Célula Individual , Transcriptoma , Tortugas/anatomía & histología , Tortugas/fisiología
10.
Proc Natl Acad Sci U S A ; 120(3): e2216789120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36634133

RESUMEN

Urbanization drastically transforms landscapes, resulting in fragmentation, degradation, and the loss of local biodiversity. Yet, urban environments also offer opportunities to observe rapid evolutionary change in wild populations that survive and even thrive in these novel habitats. In many ways, cities represent replicated "natural experiments" in which geographically separated populations adaptively respond to similar selection pressures over rapid evolutionary timescales. Little is known, however, about the genetic basis of adaptive phenotypic differentiation in urban populations nor the extent to which phenotypic parallelism is reflected at the genomic level with signatures of parallel selection. Here, we analyzed the genomic underpinnings of parallel urban-associated phenotypic change in Anolis cristatellus, a small-bodied neotropical lizard found abundantly in both urbanized and forested environments. We show that phenotypic parallelism in response to parallel urban environmental change is underlain by genomic parallelism and identify candidate loci across the Anolis genome associated with this adaptive morphological divergence. Our findings point to polygenic selection on standing genetic variation as a key process to effectuate rapid morphological adaptation. Identified candidate loci represent several functions associated with skeletomuscular development, morphology, and human disease. Taken together, these results shed light on the genomic basis of complex morphological adaptations, provide insight into the role of contingency and determinism in adaptation to novel environments, and underscore the value of urban environments to address fundamental evolutionary questions.


Asunto(s)
Lagartos , Animales , Humanos , Lagartos/genética , Ecosistema , Adaptación Fisiológica/genética , Ciudades , Genoma/genética , Evolución Biológica
11.
Proc Natl Acad Sci U S A ; 120(24): e2221691120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276393

RESUMEN

The idea that changing environmental conditions drive adaptive evolution is a pillar of evolutionary ecology. But, the opposite-that adaptive evolution alters ecological processes-has received far less attention yet is critical for eco-evolutionary dynamics. We assessed the ecological impact of divergent values in a key adaptive trait using 16 populations of the brown anole lizard (Anolis sagrei). Mirroring natural variation, we established islands with short- or long-limbed lizards at both low and high densities. We then monitored changes in lower trophic levels, finding that on islands with a high density of short-limbed lizards, web-spider densities decreased and plants grew more via an indirect positive effect, likely through an herbivore-mediated trophic cascade. Our experiment provides strong support for evolution-to-ecology connections in nature, likely closing an otherwise well-characterized eco-evolutionary feedback loop.


Asunto(s)
Cadena Alimentaria , Lagartos , Animales , Herbivoria , Fenotipo , Estado Nutricional , Evolución Biológica
12.
Proc Natl Acad Sci U S A ; 120(18): e2215193120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37104475

RESUMEN

Many animals undergo changes in functional colors during development, requiring the replacement of integument or pigment cells. A classic example of defensive color switching is found in hatchling lizards, which use conspicuous tail colors to deflect predator attacks away from vital organs. These tail colors usually fade to concealing colors during ontogeny. Here, we show that the ontogenetic blue-to-brown tail color change in Acanthodactylus beershebensis lizards results from the changing optical properties of single types of developing chromatophore cells. The blue tail colors of hatchlings are produced by incoherent scattering from premature guanine crystals in underdeveloped iridophore cells. Cryptic tail colors emerge during chromatophore maturation upon reorganization of the guanine crystals into a multilayer reflector concomitantly with pigment deposition in the xanthophores. Ontogenetic changes in adaptive colors can thus arise not via the exchange of different optical systems, but by harnessing the timing of natural chromatophore development. The incoherent scattering blue color here differs from the multilayer interference mechanism used in other blue-tailed lizards, indicating that a similar trait can be generated in at least two ways. This supports a phylogenetic analysis showing that conspicuous tail colors are prevalent in lizards and that they evolved convergently. Our results provide an explanation for why certain lizards lose their defensive colors during ontogeny and yield a hypothesis for the evolution of transiently functional adaptive colors.


Asunto(s)
Cromatóforos , Lagartos , Animales , Filogenia , Pigmentación , Piel
13.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466135

RESUMEN

In the animal kingdom, sexually dimorphic color variation is a widespread phenomenon that significantly influences survival and reproductive success. However, the genetic underpinnings of this variation remain inadequately understood. Our investigation into sexually dimorphic color variation in the desert-dwelling Guinan population of the toad-headed agamid lizard (Phrynocephalus putjatai) utilized a multidisciplinary approach, encompassing phenotypic, ultrastructural, biochemical, genomic analyses, and behavioral experiments. Our findings unveil the association between distinct skin colorations and varying levels of carotenoid and pteridine pigments. The red coloration in males is determined by a genomic region on chromosome 14, housing four pigmentation genes: BCO2 and three 6-pyruvoyltetrahydropterin synthases. A Guinan population-specific nonsynonymous single nucleotide polymorphism in BCO2 is predicted to alter the electrostatic potential within the binding domain of the BCO2-ß-carotene complex, influencing their interaction. Additionally, the gene MAP7 on chromosome 2 emerges as a potential contributor to the blue coloration in subadults and adult females. Sex-specific expression patterns point to steroid hormone-associated genes (SULT2B1 and SRD5A2) as potential upstream regulators influencing sexually dimorphic coloration. Visual modeling and field experiments support the potential selective advantages of vibrant coloration in desert environments. This implies that natural selection, potentially coupled with assortative mating, might have played a role in fixing color alleles, contributing to prevalence in the local desert habitat. This study provides novel insights into the genetic basis of carotenoid and pteridine-based color variation, shedding light on the evolution of sexually dimorphic coloration in animals. Moreover, it advances our understanding of the driving forces behind such intricate coloration patterns.


Asunto(s)
Lagartos , Pigmentación de la Piel , Animales , Femenino , Masculino , Lagartos/genética , Carotenoides/metabolismo , Pteridinas , Reproducción , Pigmentación/genética , Color
14.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38243850

RESUMEN

Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.


Asunto(s)
Lagartos , Melaninas , Animales , Melaninas/genética , Lagartos/genética , Pez Cebra , Regulación de la Temperatura Corporal/genética , Pigmentación de la Piel/genética , Color
15.
Mol Microbiol ; 121(6): 1262-1272, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38830767

RESUMEN

Emerging and re-emerging pathogens often stem from zoonotic origins, cycling between humans and animals, and are frequently vectored and maintained by hematophagous arthropod vectors. The efficiency by which these disease agents are successfully transmitted between vertebrate hosts is influenced by many factors, including the host on which a vector feeds. The Lyme disease bacterium Borrelia burgdorferi sensu lato has adapted to survive in complex host environments, vectored by Ixodes ticks, and maintained in multiple vertebrate hosts. The versatility of Lyme borreliae in disparate host milieus is a compelling platform to investigate mechanisms dictating pathogen transmission through complex networks of vertebrates and ticks. Squamata, one of the most diverse clade of extant reptiles, is comprised primarily of lizards, many of which are readily fed upon by Ixodes ticks. Yet, lizards are one of the least studied taxa at risk of contributing to the transmission and life cycle maintenance of Lyme borreliae. In this review, we summarize the current evidence, spanning from field surveillance to laboratory infection studies, supporting their contributions to Lyme borreliae circulation. We also summarize the current understanding of divergent lizard immune responses that may explain the underlying molecular mechanisms to confer Lyme spirochete survival in vertebrate hosts. This review offers a critical perspective on potential enzootic cycles existing between lizard-tick-Borrelia interactions and highlights the importance of an eco-immunology lens for zoonotic pathogen transmission studies.


Asunto(s)
Ixodes , Lagartos , Enfermedad de Lyme , Animales , Lagartos/microbiología , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/transmisión , Ixodes/microbiología , Humanos , Grupo Borrelia Burgdorferi/fisiología , Grupo Borrelia Burgdorferi/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiología
16.
Development ; 149(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35388415

RESUMEN

Obligate parthenogenesis evolved in reptiles convergently several times, mainly through interspecific hybridization. The obligate parthenogenetic complexes typically include both diploid and triploid lineages. Offspring of parthenogenetic hybrids are genetic copies of their mother; however, the cellular mechanism enabling the production of unreduced cells is largely unknown. Here, we show that oocytes go through meiosis in three widespread, or even strongly invasive, obligate parthenogenetic complexes of geckos, namely in diploid and triploid Lepidodactylus lugubris, and triploid Hemiphyllodactylus typus and Heteronotia binoei. In all four lineages, the majority of oocytes enter the pachytene at the original ploidy level, but their chromosomes cannot pair properly and instead form univalents, bivalents and multivalents. Unreduced eggs with clonally inherited genomes are formed from germ cells that had undergone premeiotic endoreplication, in which appropriate segregation is ensured by the formation of bivalents made from copies of identical chromosomes. We conclude that the induction of premeiotic endoreplication in reptiles was independently co-opted at least four times as an essential component of parthenogenetic reproduction and that this mechanism enables the emergence of fertile polyploid lineages within parthenogenetic complexes.


Asunto(s)
Lagartos , Animales , Diploidia , Endorreduplicación , Lagartos/genética , Partenogénesis/genética , Triploidía
17.
Nature ; 570(7759): 58-64, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31168105

RESUMEN

Biological invasions are both a pressing environmental challenge and an opportunity to investigate fundamental ecological processes, such as the role of top predators in regulating biodiversity and food-web structure. In whole-ecosystem manipulations of small Caribbean islands on which brown anole lizards (Anolis sagrei) were the native top predator, we experimentally staged invasions by competitors (green anoles, Anolis smaragdinus) and/or new top predators (curly-tailed lizards, Leiocephalus carinatus). We show that curly-tailed lizards destabilized the coexistence of competing prey species, contrary to the classic idea of keystone predation. Fear-driven avoidance of predators collapsed the spatial and dietary niche structure that otherwise stabilized coexistence, which intensified interspecific competition within predator-free refuges and contributed to the extinction of green-anole populations on two islands. Moreover, whereas adding either green anoles or curly-tailed lizards lengthened food chains on the islands, adding both species reversed this effect-in part because the apex predators were trophic omnivores. Our results underscore the importance of top-down control in ecological communities, but show that its outcomes depend on prey behaviour, spatial structure, and omnivory. Diversity-enhancing effects of top predators cannot be assumed, and non-consumptive effects of predation risk may be a widespread constraint on species coexistence.


Asunto(s)
Biodiversidad , Cadena Alimentaria , Lagartos/fisiología , Conducta Predatoria , Animales , Evolución Biológica , Biota , Conducta Competitiva , Conducta Alimentaria , Femenino , Lagartos/clasificación , Masculino , Especificidad de la Especie , Indias Occidentales
18.
Proc Natl Acad Sci U S A ; 119(27): e2118456119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759665

RESUMEN

Although typically possessing four limbs and short bodies, lizards have evolved diverse morphologies, including elongate trunks with tiny limbs. Such forms are hypothesized to aid locomotion in cluttered/fossorial environments but propulsion mechanisms (e.g., the use of body and/or limbs to interact with substrates) and potential body/limb coordination remain unstudied. Here, we use biological experiments, a geometric theory of locomotion, and robophysical models to investigate body-limb coordination in diverse lizards. Locomotor field studies in short-limbed, elongate lizards (Brachymeles and Lerista) and laboratory studies of fully limbed lizards (Uma scoparia and Sceloporus olivaceus) and a snake (Chionactis occipitalis) reveal that body-wave dynamics can be described by a combination of standing and traveling waves; the ratio of the amplitudes of these components is inversely related to the degree of limb reduction and body elongation. The geometric theory (which replaces laborious calculation with diagrams) helps explain our observations, predicting that the advantage of traveling-wave body undulations (compared with a standing wave) emerges when the dominant thrust-generation mechanism arises from the body rather than the limbs and reveals that such soil-dwelling lizards propel via "terrestrial swimming" like sand-swimming lizards and snakes. We test our hypothesis by inducing the use of traveling waves in stereotyped lizards via modulating the ground-penetration resistance. Study of a limbed/undulatory robophysical model demonstrates that a traveling wave is beneficial when propulsion is generated by body-environment interaction. Our models could be valuable in understanding functional constraints on the evolutionary processes of elongation and limb reduction as well as advancing robot designs.


Asunto(s)
Lagartos , Natación , Animales , Evolución Biológica , Extremidades/anatomía & histología , Extremidades/fisiología , Lagartos/anatomía & histología , Lagartos/fisiología , Serpientes/anatomía & histología , Serpientes/fisiología
19.
Proc Natl Acad Sci U S A ; 119(29): e2121036119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858351

RESUMEN

Many processes of biological diversification can simultaneously affect multiple evolutionary lineages. Examples include multiple members of a gene family diverging when a region of a chromosome is duplicated, multiple viral strains diverging at a "super-spreading" event, and a geological event fragmenting whole communities of species. It is difficult to test for patterns of shared divergences predicted by such processes because all phylogenetic methods assume that lineages diverge independently. We introduce a Bayesian phylogenetic approach to relax the assumption of independent, bifurcating divergences by expanding the space of topologies to include trees with shared and multifurcating divergences. This allows us to jointly infer phylogenetic relationships, divergence times, and patterns of divergences predicted by processes of diversification that affect multiple evolutionary lineages simultaneously or lead to more than two descendant lineages. Using simulations, we find that the method accurately infers shared and multifurcating divergence events when they occur and performs as well as current phylogenetic methods when divergences are independent and bifurcating. We apply our approach to genomic data from two genera of geckos from across the Philippines to test if past changes to the islands' landscape caused bursts of speciation. Unlike previous analyses restricted to only pairs of gecko populations, we find evidence for patterns of shared divergences. By generalizing the space of phylogenetic trees in a way that is independent from the likelihood model, our approach opens many avenues for future research into processes of diversification across the life sciences.


Asunto(s)
Biodiversidad , Lagartos , Filogenia , Animales , Teorema de Bayes , Genoma , Lagartos/clasificación , Lagartos/genética
20.
Proc Natl Acad Sci U S A ; 119(12): e2122501119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290113

RESUMEN

SignificanceGeckos are lizards capable of vocalization and can detect frequencies up to 5 kHz, but the mechanism of frequency discrimination is incompletely understood. The gecko's auditory papilla has a unique arrangement over the high-frequency zone, with rows of mechanically sensitive hair bundles covered with gelatinous sallets. Lower-frequency hair cells are tuned by an electrical resonance employing Ca2+-activated K+ channels, but hair cells tuned above 1 kHz probably rely on a mechanical resonance of the sallets. The resonance may be boosted by an electromotile force from hair bundles found to be evoked by changes in hair cell membrane potential. This unusual mechanism operates independently of mechanotransduction and differs from mammals which amplify the mechanical input using the motor protein prestin.


Asunto(s)
Lagartos , Mecanotransducción Celular , Animales , Células Ciliadas Auditivas/fisiología , Mamíferos , Mecanotransducción Celular/fisiología , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA