Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63.021
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(3): 750-763.e20, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242132

RESUMEN

Breastfeeding offers demonstrable benefits to newborns and infants by providing nourishment and immune protection and by shaping the gut commensal microbiota. Although it has been appreciated for decades that breast milk contains complement components, the physiological relevance of complement in breast milk remains undefined. Here, we demonstrate that weanling mice fostered by complement-deficient dams rapidly succumb when exposed to murine pathogen Citrobacter rodentium (CR), whereas pups fostered on complement-containing milk from wild-type dams can tolerate CR challenge. The complement components in breast milk were shown to directly lyse specific members of gram-positive gut commensal microbiota via a C1-dependent, antibody-independent mechanism, resulting in the deposition of the membrane attack complex and subsequent bacterial lysis. By selectively eliminating members of the commensal gut community, complement components from breast milk shape neonate and infant gut microbial composition to be protective against environmental pathogens such as CR.


Asunto(s)
Proteínas del Sistema Complemento , Microbioma Gastrointestinal , Leche , Animales , Femenino , Humanos , Lactante , Ratones , Bacterias , Lactancia Materna , Citrobacter rodentium , Proteínas del Sistema Complemento/análisis , Factores Inmunológicos , Salud del Lactante , Leche Humana , Leche/química , Infecciones por Enterobacteriaceae/inmunología
2.
Annu Rev Immunol ; 34: 151-72, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-26772212

RESUMEN

Butyrophilin molecules (commonly contracted to BTN), collectively take their name from the eponymous protein in cow's milk. They are considered to be members of the B7 family of costimulatory receptors, which includes B7.1 (CD80), B7.2 (CD86), and related molecules, such as PD-L1 (B7-H1, CD274), ICOS-L (CD275), and B7-H3 (CD276). These coreceptors modulate T cell responses upon antigen presentation by major histocompatibility complex and cognate αß T cell receptor engagement. Molecules such as BTN3A1 (CD277), myelin oligodendrocyte glycoprotein, and mouse Skint1 and Btnl2, all members of the butyrophilin family, show greater structural and functional diversity than the canonical B7 receptors. Some butyrophilins mediate complex interactions between antigen-presenting cells and conventional αß T cells, and others regulate the immune responses of specific γδ T cell subsets by mechanisms that have characteristics of both innate and adaptive immunity.


Asunto(s)
Inmunidad Adaptativa , Células Presentadoras de Antígenos/inmunología , Antígenos B7/metabolismo , Butirofilinas/metabolismo , Inmunidad Innata , Leche/metabolismo , Linfocitos T/inmunología , Animales , Butirofilinas/inmunología , Bovinos , Humanos , Activación de Linfocitos , Ratones , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
3.
Cell ; 178(1): 44-59.e7, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31104844

RESUMEN

Hypothalamic Agrp neurons regulate food ingestion in adult mice. Whether these neurons are functional before animals start to ingest food is unknown. Here, we studied the functional ontogeny of Agrp neurons during breastfeeding using postnatal day 10 mice. In contrast to adult mice, we show that isolation from the nursing nest, not milk deprivation or ingestion, activated Agrp neurons. Non-nutritive suckling and warm temperatures blunted this effect. Using in vivo fiber photometry, neonatal Agrp neurons showed a rapid increase in activity upon isolation from the nest, an effect rapidly diminished following reunion with littermates. Neonates unable to release GABA from Agrp neurons expressed blunted emission of isolation-induced ultrasonic vocalizations. Chemogenetic overactivation of these neurons further increased emission of these ultrasonic vocalizations, but not milk ingestion. We uncovered important functional properties of hypothalamic Agrp neurons during mouse development, suggesting these neurons facilitate offspring-to-caregiver bonding.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Conducta Alimentaria/fisiología , Hipotálamo/citología , Neuronas/metabolismo , Proteína Relacionada con Agouti/genética , Animales , Animales Recién Nacidos , Ingestión de Alimentos/fisiología , Conducta Materna/fisiología , Ratones , Ratones Noqueados , Leche , Proteínas Proto-Oncogénicas c-fos/metabolismo , Aislamiento Social , Conducta en la Lactancia/fisiología , Temperatura , Vocalización Animal/fisiología , Ácido gamma-Aminobutírico/metabolismo
4.
Cell ; 164(5): 859-71, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26898329

RESUMEN

Identifying interventions that more effectively promote healthy growth of children with undernutrition is a pressing global health goal. Analysis of human milk oligosaccharides (HMOs) from 6-month-postpartum mothers in two Malawian birth cohorts revealed that sialylated HMOs are significantly less abundant in those with severely stunted infants. To explore this association, we colonized young germ-free mice with a consortium of bacterial strains cultured from the fecal microbiota of a 6-month-old stunted Malawian infant and fed recipient animals a prototypic Malawian diet with or without purified sialylated bovine milk oligosaccharides (S-BMO). S-BMO produced a microbiota-dependent augmentation of lean body mass gain, changed bone morphology, and altered liver, muscle, and brain metabolism in ways indicative of a greater ability to utilize nutrients for anabolism. These effects were also documented in gnotobiotic piglets using the same consortium and Malawian diet. These preclinical models indicate a causal, microbiota-dependent relationship between S-BMO and growth promotion.


Asunto(s)
Desarrollo Infantil , Desnutrición/dietoterapia , Leche Humana/química , Leche/química , Oligosacáridos/metabolismo , Animales , Bacteroides fragilis/genética , Bifidobacterium/clasificación , Bifidobacterium/genética , Química Encefálica , Modelos Animales de Enfermedad , Escherichia coli/genética , Heces/microbiología , Vida Libre de Gérmenes , Humanos , Lactante , Malaui , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Microbiota
5.
Nature ; 634(8034): 669-676, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053575

RESUMEN

The highly pathogenic avian influenza (HPAI) H5N1 virus clade 2.3.4.4b has caused the death of millions of domestic birds and thousands of wild birds in the USA since January 2022 (refs. 1-4). Throughout this outbreak, spillovers to mammals have been frequently documented5-12. Here we report spillover of the HPAI H5N1 virus to dairy cattle across several states in the USA. The affected cows displayed clinical signs encompassing decreased feed intake, altered faecal consistency, respiratory distress and decreased milk production with abnormal milk. Infectious virus and viral RNA were consistently detected in milk from affected cows. Viral distribution in tissues via immunohistochemistry and in situ hybridization revealed a distinct tropism of the virus for the epithelial cells lining the alveoli of the mammary gland in cows. Whole viral genome sequences recovered from dairy cows, birds, domestic cats and a raccoon from affected farms indicated multidirectional interspecies transmissions. Epidemiological and genomic data revealed efficient cow-to-cow transmission after apparently healthy cows from an affected farm were transported to a premise in a different state. These results demonstrate the transmission of the HPAI H5N1 clade 2.3.4.4b virus at a non-traditional interface, underscoring the ability of the virus to cross species barriers.


Asunto(s)
Enfermedades de los Bovinos , Industria Lechera , Especificidad del Huésped , Subtipo H5N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Gatos , Bovinos , Femenino , Aves/virología , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/fisiopatología , Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/virología , Brotes de Enfermedades/estadística & datos numéricos , Brotes de Enfermedades/veterinaria , Granjas , Genoma Viral/genética , Inmunohistoquímica , Hibridación in Situ , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Gripe Aviar/mortalidad , Gripe Aviar/transmisión , Gripe Aviar/virología , Glándulas Mamarias Animales/virología , Leche/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/fisiopatología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Mapaches/virología , ARN Viral/análisis , ARN Viral/genética , Estados Unidos/epidemiología
6.
Nature ; 633(8029): 426-432, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977017

RESUMEN

Highly pathogenic H5N1 avian influenza (HPAI H5N1) viruses occasionally infect, but typically do not transmit, in mammals. In the spring of 2024, an unprecedented outbreak of HPAI H5N1 in bovine herds occurred in the USA, with virus spread within and between herds, infections in poultry and cats, and spillover into humans, collectively indicating an increased public health risk1-4. Here we characterize an HPAI H5N1 virus isolated from infected cow milk in mice and ferrets. Like other HPAI H5N1 viruses, the bovine H5N1 virus spread systemically, including to the mammary glands of both species, however, this tropism was also observed for an older HPAI H5N1 virus isolate. Bovine HPAI H5N1 virus bound to sialic acids expressed in human upper airways and inefficiently transmitted to exposed ferrets (one of four exposed ferrets seroconverted without virus detection). Bovine HPAI H5N1 virus thus possesses features that may facilitate infection and transmission in mammals.


Asunto(s)
Enfermedades de los Bovinos , Subtipo H5N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Virulencia , Animales , Bovinos , Femenino , Humanos , Ratones , Hurones/virología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/fisiología , Gripe Humana/transmisión , Gripe Humana/virología , Gripe Humana/epidemiología , Glándulas Mamarias Animales/virología , Ratones Endogámicos BALB C , Leche/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Ácidos Siálicos/metabolismo , Tropismo Viral , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/virología , Estados Unidos/epidemiología , Zoonosis Virales , Seroconversión , Máscaras Laríngeas/virología
7.
Nature ; 623(7989): 1034-1043, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37993715

RESUMEN

Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8+ T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously1. Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter2,3, but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively4,5. Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands6-8. TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP-PKA-CREB axis for enhanced CD8+ T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8+ T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ácidos Oléicos , Animales , Bovinos , Humanos , Ratones , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Productos Lácteos , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/uso terapéutico , Leche/química , Neoplasias/dietoterapia , Neoplasias/inmunología , Ácidos Oléicos/farmacología , Ácidos Oléicos/uso terapéutico , Carne Roja , Ovinos
8.
Nature ; 608(7922): 336-345, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896751

RESUMEN

In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions2,3. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation-proxies for these drivers-provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.


Asunto(s)
Arqueología , Industria Lechera , Enfermedad , Genética de Población , Lactasa , Leche , Selección Genética , Animales , Animales Salvajes , Bancos de Muestras Biológicas , Cerámica/historia , Estudios de Cohortes , Industria Lechera/historia , Europa (Continente)/epidemiología , Europa (Continente)/etnología , Hambruna/estadística & datos numéricos , Frecuencia de los Genes , Genotipo , Historia Antigua , Humanos , Lactasa/genética , Leche/metabolismo , Reino Unido
9.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38391249

RESUMEN

Lactation is an essential process for mammals. In sheep, the R96C mutation in suppressor of cytokine signaling 2 (SOCS2) protein is associated with greater milk production and increased mastitis sensitivity. To shed light on the involvement of R96C mutation in mammary gland development and lactation, we developed a mouse model carrying this mutation (SOCS2KI/KI). Mammary glands from virgin adult SOCS2KI/KI mice presented a branching defect and less epithelial tissue, which were not compensated for in later stages of mammary development. Mammary epithelial cell (MEC) subpopulations were modified, with mutated mice having three times as many basal cells, accompanied by a decrease in luminal cells. The SOCS2KI/KI mammary gland remained functional; however, MECs contained more lipid droplets versus fat globules, and milk lipid composition was modified. Moreover, the gene expression dynamic from virgin to pregnancy state resulted in the identification of about 3000 differentially expressed genes specific to SOCS2KI/KI or control mice. Our results show that SOCS2 is important for mammary gland development and milk production. In the long term, this finding raises the possibility of ensuring adequate milk production without compromising animal health and welfare.


Asunto(s)
Lactancia , Glándulas Mamarias Animales , Animales , Femenino , Ratones , Embarazo , Células Epiteliales/metabolismo , Lactancia/genética , Glándulas Mamarias Animales/metabolismo , Leche/metabolismo , Mutación/genética
10.
Nature ; 598(7882): 629-633, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34526723

RESUMEN

During the Early Bronze Age, populations of the western Eurasian steppe expanded across an immense area of northern Eurasia. Combined archaeological and genetic evidence supports widespread Early Bronze Age population movements out of the Pontic-Caspian steppe that resulted in gene flow across vast distances, linking populations of Yamnaya pastoralists in Scandinavia with pastoral populations (known as the Afanasievo) far to the east in the Altai Mountains1,2 and Mongolia3. Although some models hold that this expansion was the outcome of a newly mobile pastoral economy characterized by horse traction, bulk wagon transport4-6 and regular dietary dependence on meat and milk5, hard evidence for these economic features has not been found. Here we draw on proteomic analysis of dental calculus from individuals from the western Eurasian steppe to demonstrate a major transition in dairying at the start of the Bronze Age. The rapid onset of ubiquitous dairying at a point in time when steppe populations are known to have begun dispersing offers critical insight into a key catalyst of steppe mobility. The identification of horse milk proteins also indicates horse domestication by the Early Bronze Age, which provides support for its role in steppe dispersals. Our results point to a potential epicentre for horse domestication in the Pontic-Caspian steppe by the third millennium BC, and offer strong support for the notion that the novel exploitation of secondary animal products was a key driver of the expansions of Eurasian steppe pastoralists by the Early Bronze Age.


Asunto(s)
Industria Lechera/historia , Migración Humana , Proteoma , Animales , Arqueología , Asia , Cálculos Dentales/metabolismo , Domesticación , Europa (Continente) , Flujo Génico , Pradera , Historia Antigua , Caballos , Humanos , Leche
11.
Nature ; 590(7844): 151-156, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33442055

RESUMEN

Up to 20% of people worldwide develop gastrointestinal symptoms following a meal1, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.


Asunto(s)
Dolor Abdominal/inmunología , Dolor Abdominal/patología , Alérgenos/inmunología , Hipersensibilidad a los Alimentos/inmunología , Alimentos/efectos adversos , Intestinos/inmunología , Síndrome del Colon Irritable/inmunología , Dolor Abdominal/etiología , Dolor Abdominal/microbiología , Adulto , Animales , Citrobacter rodentium/inmunología , Diarrea/inmunología , Diarrea/microbiología , Diarrea/patología , Infecciones por Enterobacteriaceae/complicaciones , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Femenino , Hipersensibilidad a los Alimentos/complicaciones , Hipersensibilidad a los Alimentos/microbiología , Hipersensibilidad a los Alimentos/patología , Glútenes/inmunología , Humanos , Inmunoglobulina E/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Intestinos/microbiología , Intestinos/patología , Síndrome del Colon Irritable/etiología , Síndrome del Colon Irritable/microbiología , Síndrome del Colon Irritable/patología , Masculino , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Leche/inmunología , Ovalbúmina/inmunología , Calidad de Vida , Receptores Histamínicos H1/metabolismo , Proteínas de Soja/inmunología , Triticum/inmunología
12.
Bioessays ; 46(2): e2300061, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38058119

RESUMEN

Sarcopenia is a process of progressive aging-associated loss of skeletal muscle mass (SMM) recognized as a serious global health issue contributing to frailty and increased all-cause mortality. Exercise and nutritional interventions (particularly intake of dairy products and milk) demonstrate good efficacy, safety, and broad applicability. Here, we propose that at least some of the well-documented favorable effects of milk and milk-derived protein supplements on SMM might be mediated by D-galactose, a monosaccharide present in large quantities in milk in the form of disaccharide lactose (milk sugar). We suggest that ingestion of dairy products results in exposure to D-galactose in concentrations metabolized primarily via the Leloir pathway with the potential to (i) promote anabolic signaling via maintenance of growth factor (e.g., insulin-like growth factor 1 [IGF-1]) receptor mature glycosylation patterns; and (ii) provide extracellular (liver glycogen) and intracellular substrates for short (muscle glycolysis) and long-term (muscle glycogen, intramyocellular lipids) energy availability. Additionally, D-galactose might optimize the metabolic function of skeletal muscles by increasing mitochondrial content and stimulating glucose and fatty acid utilization. The proposed potential of D-galactose to promote the accretion of SMM is discussed in the context of its therapeutic potential in sarcopenia.


Asunto(s)
Sarcopenia , Humanos , Animales , Sarcopenia/metabolismo , Leche/química , Leche/metabolismo , Galactosa/análisis , Galactosa/metabolismo , Galactosa/farmacología , Músculo Esquelético/fisiología , Nutrientes , Hipertrofia
13.
PLoS Genet ; 19(6): e1010746, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37289658

RESUMEN

Pigeons (Columba livia) are among a select few avian species that have developed a specialized reproductive mode wherein the parents produce a 'milk' in their crop to feed newborn squabs. Nonetheless, the transcriptomic dynamics and role in the rapid transition of core crop functions during 'lactation' remain largely unexplored. Here, we generated a de novo pigeon genome assembly to construct a high resolution spatio-temporal transcriptomic landscape of the crop epithelium across the entire breeding stage. This multi-omics analysis identified a set of 'lactation'-related genes involved in lipid and protein metabolism, which contribute to the rapid functional transitions in the crop. Analysis of in situ high-throughput chromatin conformation capture (Hi-C) sequencing revealed extensive reorganization of promoter-enhancer interactions linked to the dynamic expression of these 'lactation'-related genes between stages. Moreover, their expression is spatially localized in specific epithelial layers, and can be correlated with phenotypic changes in the crop. These results illustrate the preferential de novo synthesis of 'milk' lipids and proteins in the crop, and provides candidate enhancer loci for further investigation of the regulatory elements controlling pigeon 'lactation'.


Asunto(s)
Columbidae , Transcriptoma , Animales , Femenino , Transcriptoma/genética , Columbidae/genética , Columbidae/metabolismo , Perfilación de la Expresión Génica , Leche , Lactancia
14.
Proc Natl Acad Sci U S A ; 120(28): e2218900120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399384

RESUMEN

Milk production is an ancient adaptation that unites all mammals. Milk contains a microbiome that can contribute to offspring health and microbial-immunological development. We generated a comprehensive milk microbiome dataset (16S rRNA gene) for the class Mammalia, representing 47 species from all placental superorders, to determine processes structuring milk microbiomes. We show that across Mammalia, milk exposes offspring to maternal bacterial and archaeal symbionts throughout lactation. Deterministic processes of environmental selection accounted for 20% of milk microbiome assembly processes; milk microbiomes were similar from mammals with the same host superorder (Afrotheria, Laurasiathera, Euarchontoglires, and Xenarthra: 6%), environment (marine captive, marine wild, terrestrial captive, and terrestrial wild: 6%), diet (carnivore, omnivore, herbivore, and insectivore: 5%), and milk nutrient content (sugar, fat, and protein: 3%). We found that diet directly and indirectly impacted milk microbiomes, with indirect effects being mediated by milk sugar content. Stochastic processes, such as ecological drift, accounted for 80% of milk microbiome assembly processes, which was high compared to mammalian gut and mammalian skin microbiomes (69% and 45%, respectively). Even amid high stochasticity and indirect effects, our results of direct dietary effects on milk microbiomes provide support for enteromammary trafficking, representing a mechanism by which bacteria are transferred from the mother's gut to mammary gland and then to offspring postnatally. The microbial species present in milk reflect both selective pressures and stochastic processes at the host level, exemplifying various ecological and evolutionary factors acting on milk microbiomes, which, in turn, set the stage for offspring health and development.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Femenino , Embarazo , Leche , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Placenta , Microbiota/genética , Mamíferos/genética , Bacterias/genética , Euterios/genética
15.
J Virol ; 98(7): e0088124, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38958444

RESUMEN

In March 2024, clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus (HPAIV) was detected in dairy cattle in the US, and it was discovered that the virus could be detected in raw milk. Although affected cow's milk is diverted from human consumption and current pasteurization requirements are expected to reduce or eliminate infectious HPAIV from the milk supply, a study was conducted to characterize whether the virus could be detected by quantitative real-time RT-PCR (qrRT-PCR) in pasteurized retail dairy products and, if detected, to determine whether the virus was viable. From 18 April to 22 April 2024, a total of 297 samples of Grade A pasteurized retail milk products (23 product types) were collected from 17 US states that represented products from 132 processors in 38 states. Viral RNA was detected in 60 samples (20.2%), with qrRT-PCR-based quantity estimates (non-infectious) of up to 5.4log1050% egg infectious doses per mL, with a mean and median of 3.0log10/mL and 2.9log10/mL, respectively. Samples that were positive for type A influenza by qrRT-PCR were confirmed to be clade 2.3.4.4 H5 HPAIV by qrRT-PCR. No infectious virus was detected in any of the qrRT-PCR-positive samples in embryonating chicken eggs. Further studies are needed to monitor the milk supply, but these results provide evidence that the infectious virus did not enter the US pasteurized milk supply before control measures for HPAIV were implemented in dairy cattle.IMPORTANCEHighly pathogenic avian influenza virus (HPAIV) infections in US dairy cattle were first confirmed in March 2024. Because the virus could be detected in raw milk, a study was conducted to determine whether it had entered the retail food supply. Pasteurized dairy products were collected from 17 states in April 2024. Viral RNA was detected in one in five samples, but infectious virus was not detected. This provides a snapshot of HPAIV in milk products early in the event and reinforces that with current safety measures, infectious viruses in milk are unlikely to enter the food supply.


Asunto(s)
Productos Lácteos , Leche , ARN Viral , Animales , Bovinos , Leche/virología , Estados Unidos , Productos Lácteos/virología , ARN Viral/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Pasteurización , Gripe Aviar/virología , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
J Virol ; 98(3): e0170923, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305156

RESUMEN

Tick-borne flaviviruses (TBFs) are transmitted to humans through milk and tick bites. Although a case of possible mother-to-child transmission of tick-borne encephalitis virus (TBEV) through breast milk has been reported, this route has not been confirmed in experimental models. Therefore, in this study, using type I interferon receptor-deficient A129 mice infected with Langat virus (LGTV), we aimed to demonstrate the presence of infectious virus in the milk and mammary glands of infected mice. Our results showed viral RNA of LGTV in the pup's stomach milk clots (SMCs) and blood, indicating that the virus can be transmitted from dam to pup through breast milk. In addition, we observed that LGTV infection causes tissue lesions in the mammary gland, and viral particles were present in mammary gland epithelial cells. Furthermore, we found that milk from infected mice could infect adult mice via the intragastric route, which has a milder infection process, longer infection time, and a lower rate of weight loss than other modes of infection. Specifically, we developed a nano-luciferase-LGTV reporter virus system to monitor the dynamics of different infection routes and observed dam-to-pup infection using in vivo bioluminescence imaging. This study provides comprehensive evidence to support breast milk transmission of TBF in mice and has helped provide useful data for studying TBF transmission routes.IMPORTANCETo date, no experimental models have confirmed mother-to-child transmission of tick-borne flavivirus (TBF) through breastfeeding. In this study, we used a mouse model to demonstrate the presence of infectious viruses in mouse breast milk and mammary gland epithelial cells. Our results showed that pups could become infected through the gastrointestinal route by suckling milk, and the infection dynamics could be monitored using a reporter virus system during breastfeeding in vivo. We believe our findings have provided substantial evidence to understand the underlying mechanism of breast milk transmission of TBF in mice, which has important implications for understanding and preventing TBF transmission in humans.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Transmisión Vertical de Enfermedad Infecciosa , Glándulas Mamarias Animales , Leche , Animales , Femenino , Ratones , Virus de la Encefalitis Transmitidos por Garrapatas/crecimiento & desarrollo , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/transmisión , Encefalitis Transmitida por Garrapatas/virología , Glándulas Mamarias Animales/virología , Leche/virología , Animales Recién Nacidos/virología
17.
PLoS Pathog ; 19(11): e1011764, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37948460

RESUMEN

Subacute ruminal acidosis (SARA) has been demonstrated to promote the development of mastitis, one of the most serious diseases in dairy farming worldwide, but the underlying mechanism is unclear. Using untargeted metabolomics, we found hexadecanamide (HEX) was significantly reduced in rumen fluid and milk from cows with SARA-associated mastitis. Herein, we aimed to assess the protective role of HEX in Staphylococcus aureus (S. aureus)- and SARA-induced mastitis and the underlying mechanism. We showed that HEX ameliorated S. aureus-induced mastitis in mice, which was related to the suppression of mammary inflammatory responses and repair of the blood-milk barrier. In vitro, HEX depressed S. aureus-induced activation of the NF-κB pathway and improved barrier integrity in mouse mammary epithelial cells (MMECs). In detail, HEX activated PPARα, which upregulated SIRT1 and subsequently inhibited NF-κB activation and inflammatory responses. In addition, ruminal microbiota transplantation from SARA cows (S-RMT) caused mastitis and aggravated S. aureus-induced mastitis, while these changes were reversed by HEX. Our findings indicate that HEX effectively attenuates S. aureus- and SARA-induced mastitis by limiting inflammation and repairing barrier integrity, ultimately highlighting the important role of host or microbiota metabolism in the pathogenesis of mastitis and providing a potential strategy for mastitis prevention.


Asunto(s)
Mastitis , Staphylococcus aureus , Humanos , Femenino , Animales , Ratones , Bovinos , Staphylococcus aureus/metabolismo , FN-kappa B/metabolismo , Leche , Mastitis/metabolismo
18.
PLoS Biol ; 20(1): e3001518, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041644

RESUMEN

Lipid droplets (LDs) have increasingly been recognized as an essential organelle for eukaryotes. Although the biochemistry of lipid synthesis and degradation is well characterized, the regulation of LD dynamics, including its formation, maintenance, and secretion, is poorly understood. Here, we report that mice lacking Occludin (Ocln) show defective lipid metabolism. We show that LDs were larger than normal along its biogenesis and secretion pathway in Ocln null mammary cells. This defect in LD size control did not result from abnormal lipid synthesis or degradation; rather, it was because of secretion failure during the lactation stage. We found that OCLN was located on the LD membrane and was bound to essential regulators of lipid secretion, including BTN1a1 and XOR, in a C-terminus-dependent manner. Finally, OCLN was a phosphorylation target of Src kinase, whose loss causes lactation failure. Together, we demonstrate that Ocln is a downstream target of Src kinase and promotes LD secretion by binding to BTN1a1 and XOR.


Asunto(s)
Gotas Lipídicas/fisiología , Metabolismo de los Lípidos , Glándulas Mamarias Animales/metabolismo , Ocludina/metabolismo , Animales , Butirofilinas/metabolismo , Femenino , Lactancia/metabolismo , Ratones , Leche/metabolismo , Ocludina/genética , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
19.
Nature ; 574(7777): 246-248, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31554964

RESUMEN

The study of childhood diet, including breastfeeding and weaning, has important implications for our understanding of infant mortality and fertility in past societies1. Stable isotope analyses of nitrogen from bone collagen and dentine samples of infants have provided information on the timing of weaning2; however, little is known about which foods were consumed by infants in prehistory. The earliest known clay vessels that were possibly used for feeding infants appear in Neolithic Europe, and become more common throughout the Bronze and Iron Ages. However, these vessels-which include a spout through which liquid could be poured-have also been suggested to be feeding vessels for the sick or infirm3,4. Here we report evidence for the foods that were contained in such vessels, based on analyses of the lipid 'fingerprints' and the compound-specific δ13C and Δ13C values of the major fatty acids of residues from three small, spouted vessels that were found in Bronze and Iron Age graves of infants in Bavaria. The results suggest that the vessels were used to feed infants with milk products derived from ruminants. This evidence of the foodstuffs that were used to either feed or wean prehistoric infants confirms the importance of milk from domesticated animals for these early communities, and provides information on the infant-feeding behaviours that were practised by prehistoric human groups.


Asunto(s)
Alimentación con Biberón/historia , Entierro , Cerámica , Leche/química , Rumiantes , Alcanos/análisis , Alcanos/química , Animales , Entierro/historia , Cementerios , Cerámica/historia , Niño , Grasas de la Dieta/análisis , Alemania , Historia Antigua , Humanos , Leche/historia
20.
Cell Mol Life Sci ; 81(1): 29, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212474

RESUMEN

Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 h of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6, and TGFß3, all of which appear to be upregulated by increased intracellular calcium. We further demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis through a process involving inhibition of CDK4/6 and cell cycle progression. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.


Asunto(s)
Calcio , Leche , Femenino , Animales , Leche/metabolismo , Calcio/metabolismo , Muerte Celular , Lactancia , Lisosomas/metabolismo , Glándulas Mamarias Animales/metabolismo , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA