RESUMEN
In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.
Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Animales , Comunicación Celular/inmunología , Diferenciación Celular/inmunología , Selección Clonal Mediada por Antígenos , Resistencia a la Enfermedad , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Humanos , Linfocitos/citología , Linfocitos/inmunología , Linfocitos/metabolismo , Estrés FisiológicoRESUMEN
The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including Notch, Gata3, Tcf7, and Bcl11b. We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.
Asunto(s)
Inmunidad Adaptativa/genética , Linaje de la Célula/genética , Regulación de la Expresión Génica , Inmunidad Innata/genética , Linfocitos/inmunología , Linfocitos/metabolismo , Transcripción Genética , Animales , Diferenciación Celular , Humanos , Linfocitos/citología , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/metabolismoRESUMEN
Dynamic tuning of cellular responsiveness as a result of repeated stimuli improves the ability of cells to distinguish physiologically meaningful signals from each other and from noise. In particular, lymphocyte activation thresholds are subject to tuning, which contributes to maintaining tolerance to self-antigens and persisting foreign antigens, averting autoimmunity and immune pathogenesis, but allowing responses to strong, structured perturbations that are typically associated with acute infection. Such tuning is also implicated in conferring flexibility to positive selection in the thymus, in controlling the magnitude of the immune response, and in generating memory cells. Additional functional properties are dynamically and differentially tuned in parallel via subthreshold contact interactions between developing or mature lymphocytes and self-antigen-presenting cells. These interactions facilitate and regulate lymphocyte viability, maintain their functional integrity, and influence their responses to foreign antigens and accessory signals, qualitatively and quantitatively. Bidirectional tuning of T cells and antigen-presenting cells leads to the definition of homeostatic set points, thus maximizing clonal diversity.
Asunto(s)
Linfocitos/inmunología , Linfocitos/metabolismo , Animales , Supervivencia Celular/inmunología , Homeostasis , Humanos , Memoria Inmunológica , Infecciones/inmunología , Infecciones/metabolismo , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Linfocitos/citología , Fenotipo , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Timocitos/citología , Timocitos/inmunología , Timocitos/metabolismoRESUMEN
Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.
Asunto(s)
Inmunidad Adaptativa/fisiología , Inmunidad Innata/fisiología , Canales Iónicos/metabolismo , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Humanos , Hipersensibilidad/genética , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Síndromes de Inmunodeficiencia/tratamiento farmacológico , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/metabolismo , Inmunoterapia/métodos , Canales Iónicos/genética , Linfocitos/citología , Linfocitos/inmunología , Linfocitos/metabolismo , Mastocitos/inmunología , Mastocitos/metabolismo , Terapia Molecular Dirigida , Mutación , Transducción de SeñalRESUMEN
The 2020 Lasker Awards, a celebration of one of the most prestigious international prizes given to individuals for extraordinary contributions to Basic and Clinical Medical Research, Pubic Health, and Special Achievement, was cancelled because of the COVID-19 pandemic. Typically, essays on the awardees and their scientific and medical contributions are solicited and published in Cell in collaboration with the Lasker Committee. This year, the Lasker Committee commissioned an essay to reflect on the historic contributions that scientists and physicians have made to our understanding of immunology and virology, and future directions in medical and basic research that have been highlighted by COVID-19 pandemic.
Asunto(s)
Alergia e Inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Inmunidad , Neumonía Viral/inmunología , Alergia e Inmunología/historia , Animales , Distinciones y Premios , COVID-19 , Citocinas/inmunología , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Sistema Inmunológico/citología , Inmunoglobulinas/genética , Inmunoglobulinas/inmunología , Linfocitos/citología , Pandemias , SARS-CoV-2 , Vacunación/historiaRESUMEN
Innate lymphoid cells (ILCs) are immune cells that lack a specific antigen receptor yet can produce an array of effector cytokines that in variety match that of T helper cell subsets. ILCs function in lymphoid organogenesis, tissue remodeling, antimicrobial immunity, and inflammation, particularly at barrier surfaces. Their ability to promptly respond to insults inflicted by stress-causing microbes strongly suggests that ILCs are critical in first-line immunological defenses. Here, we review current data on developmental requirements, lineage relationships, and effector functions of two families of ILCs: (a) Rorγt-expressing cells involved in lymphoid tissue formation, mucosal immunity, and inflammation and (b) type 2 ILCs that are important for helminth immunity. We also discuss the potential roles of ILCs in the pathology of immune-mediated inflammatory and infectious diseases including allergy.
Asunto(s)
Inmunidad Innata , Linfocitos/inmunología , Linfocitos/metabolismo , Animales , Diferenciación Celular/inmunología , Linaje de la Célula , Humanos , Linfocitos/citología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismoRESUMEN
Lampreys and hagfish are primitive jawless vertebrates capable of mounting specific immune responses. Lampreys possess different types of lymphocytes, akin to T and B cells of jawed vertebrates, that clonally express somatically diversified antigen receptors termed variable lymphocyte receptors (VLRs), which are composed of tandem arrays of leucine-rich repeats. The VLRs appear to be diversified by a gene conversion mechanism involving lineage-specific cytosine deaminases. VLRA is expressed on the surface of T-like lymphocytes; B-like lymphocytes express and secrete VLRB as a multivalent protein. VLRC is expressed by a distinct lymphocyte lineage. VLRA-expressing cells appear to develop in a thymus-like tissue at the tip of gill filaments, and VLRB-expressing cells develop in hematopoietic tissues. Reciprocal expression patterns of evolutionarily conserved interleukins and chemokines possibly underlie cell-cell interactions during an immune response. The discovery of VLRs in agnathans illuminates the origins of adaptive immunity in early vertebrates.
Asunto(s)
Inmunidad Adaptativa , Receptores de Antígenos/inmunología , Animales , Antígenos/inmunología , Antígenos/metabolismo , Evolución Biológica , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Citosina Desaminasa/genética , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Linfocitos/citología , Linfocitos/inmunología , Linfocitos/metabolismo , Unión Proteica/inmunología , Conformación Proteica , Receptores de Antígenos/química , Receptores de Antígenos/genéticaRESUMEN
Innate lymphoid cells (ILCs) are lymphocytes that do not express the type of diversified antigen receptors expressed on T cells and B cells. ILCs are largely tissue-resident cells and are deeply integrated into the fabric of tissues. The discovery and investigation of ILCs over the past decade has changed our perception of immune regulation and how the immune system contributes to the maintenance of tissue homeostasis. We now know that cytokine-producing ILCs contribute to multiple immune pathways by, for example, sustaining appropriate immune responses to commensals and pathogens at mucosal barriers, potentiating adaptive immunity, and regulating tissue inflammation. Critically, the biology of ILCs also extends beyond classical immunology to metabolic homeostasis, tissue remodeling, and dialog with the nervous system. The last 10 years have also contributed to our greater understanding of the transcriptional networks that regulate lymphocyte commitment and delineation. This, in conjunction with the recent advances in our understanding of the influence of local tissue microenvironments on the plasticity and function of ILCs, has led to a re-evaluation of their existing categorization. In this review, we distill the advances in ILC biology over the past decade to refine the nomenclature of ILCs and highlight the importance of ILCs in tissue homeostasis, morphogenesis, metabolism, repair, and regeneration.
Asunto(s)
Inmunidad Adaptativa/fisiología , Inmunidad Innata , Linfocitos/citología , Animales , Linfocitos B/inmunología , Citocinas/inmunología , Homeostasis , Humanos , Sistema Hipotálamo-Hipofisario , Inflamación/inmunología , Células Asesinas Naturales/citología , Ratones , Fenotipo , Sistema Hipófiso-Suprarrenal , Regeneración , Linfocitos T/inmunologíaRESUMEN
The immune system is critical in modulating cancer progression, but knowledge of immune composition, phenotype, and interactions with tumor is limited. We used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to simultaneously quantify in situ expression of 36 proteins covering identity, function, and immune regulation at sub-cellular resolution in 41 triple-negative breast cancer patients. Multi-step processing, including deep-learning-based segmentation, revealed variability in the composition of tumor-immune populations across individuals, reconciled by overall immune infiltration and enriched co-occurrence of immune subpopulations and checkpoint expression. Spatial enrichment analysis showed immune mixed and compartmentalized tumors, coinciding with expression of PD1, PD-L1, and IDO in a cell-type- and location-specific manner. Ordered immune structures along the tumor-immune border were associated with compartmentalization and linked to survival. These data demonstrate organization in the tumor-immune microenvironment that is structured in cellular composition, spatial arrangement, and regulatory-protein expression and provide a framework to apply multiplexed imaging to immune oncology.
Asunto(s)
Linfocitos/inmunología , Espectrometría de Masas , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral/inmunología , Antígenos CD/metabolismo , Antígeno B7-H1/metabolismo , Análisis por Conglomerados , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Estimación de Kaplan-Meier , Linfocitos/citología , Linfocitos/metabolismo , Aprendizaje Automático , Análisis de Componente Principal , Receptor de Muerte Celular Programada 1/metabolismo , Análisis Espacial , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/mortalidad , Proteína del Gen 3 de Activación de LinfocitosRESUMEN
An emerging family of innate lymphoid cells (termed ILCs) has an essential role in the initiation and regulation of inflammation. However, it is still unclear how ILCs are regulated in the duration of intestinal inflammation. Here, we identify a regulatory subpopulation of ILCs (called ILCregs) that exists in the gut and harbors a unique gene identity that is distinct from that of ILCs or regulatory T cells (Tregs). During inflammatory stimulation, ILCregs can be induced in the intestine and suppress the activation of ILC1s and ILC3s via secretion of IL-10, leading to protection against innate intestinal inflammation. Moreover, TGF-ß1 is induced by ILCregs during the innate intestinal inflammation, and autocrine TGF-ß1 sustains the maintenance and expansion of ILCregs. Therefore, ILCregs play an inhibitory role in the innate immune response, favoring the resolution of intestinal inflammation.
Asunto(s)
Colitis/inmunología , Inmunidad Innata , Linfocitos/citología , Linfocitos/inmunología , Membrana Mucosa/citología , Membrana Mucosa/inmunología , Animales , Linfocitos B/inmunología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta1/inmunologíaRESUMEN
Innate lymphoid cells (ILCs) represent innate versions of T helper and cytotoxic T cells that differentiate from committed ILC precursors (ILCPs). How ILCPs give rise to mature tissue-resident ILCs remains unclear. Here, we identify circulating and tissue ILCPs in humans that fail to express the transcription factors and cytokine outputs of mature ILCs but have these signature loci in an epigenetically poised configuration. Human ILCPs robustly generate all ILC subsets in vitro and in vivo. While human ILCPs express low levels of retinoic acid receptor (RAR)-related orphan receptor C (RORC) transcripts, these cells are found in RORC-deficient patients and retain potential for EOMES+ natural killer (NK) cells, interferon gamma-positive (IFN-γ+) ILC1s, interleukin (IL)-13+ ILC2s, and for IL-22+, but not for IL-17A+ ILC3s. Our results support a model of tissue ILC differentiation ("ILC-poiesis"), whereby diverse ILC subsets are generated in situ from systemically distributed ILCPs in response to local environmental signals.
Asunto(s)
Linfocitos/citología , Células Madre/citología , Animales , Antígenos CD34/análisis , Diferenciación Celular , Linaje de la Célula , Sangre Fetal/citología , Feto/citología , Humanos , Inmunidad Innata , Interleucina-17 , Hígado/citología , Pulmón/citología , Linfocitos/inmunología , Tejido Linfoide/citología , Ratones , Proteínas Proto-Oncogénicas c-kit/análisis , Transcripción GenéticaRESUMEN
Here we identify a group 2 innate lymphoid cell (ILC2) subpopulation that can convert into interleukin-17 (IL-17)-producing NKp44- ILC3-like cells. c-Kit and CCR6 define this ILC2 subpopulation that exhibits ILC3 features, including RORγt, enabling the conversion into IL-17-producing cells in response to IL-1ß and IL-23. We also report a role for transforming growth factor-ß in promoting the conversion of c-Kit- ILC2s into RORγt-expressing cells by inducing the upregulation of IL23R, CCR6 and KIT messenger RNA in these cells. This switch was dependent on RORγt and the downregulation of GATA-3. IL-4 was able to reverse this event, supporting a role for this cytokine in maintaining ILC2 identity. Notably, this plasticity has physiological relevance because a subset of RORγt+ ILC2s express the skin-homing receptor CCR10, and the frequencies of IL-17-producing ILC3s are increased at the expense of ILC2s within the lesional skin of patients with psoriasis.
Asunto(s)
Interleucina-17/inmunología , Linfocitos/inmunología , Psoriasis/patología , Piel/patología , Células Cultivadas , Humanos , Interleucina-1beta/inmunología , Subunidad p19 de la Interleucina-23/inmunología , Interleucina-4/inmunología , Linfocitos/citología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Psoriasis/inmunología , Receptores CCR10/metabolismo , Piel/inmunología , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Innate lymphoid cells (ILCs) are tissue-resident lymphocytes categorized on the basis of their core regulatory programs and the expression of signature cytokines. Human ILC3s that produce the cytokine interleukin-22 convert into ILC1-like cells that produce interferon-γ in vitro, but whether this conversion occurs in vivo remains unclear. In the present study we found that ILC3s and ILC1s in human tonsils represented the ends of a spectrum that included additional discrete subsets. RNA velocity analysis identified an intermediate ILC3-ILC1 cluster, which had strong directionality toward ILC1s. In humanized mice, the acquisition of ILC1 features by ILC3s showed tissue dependency. Chromatin studies indicated that the transcription factors Aiolos and T-bet cooperated to repress regulatory elements active in ILC3s. A transitional ILC3-ILC1 population was also detected in the human intestine. We conclude that ILC3s undergo conversion into ILC1-like cells in human tissues in vivo, and that tissue factors and Aiolos were required for this process.
Asunto(s)
Inmunidad Innata/inmunología , Interferón gamma/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/inmunología , Linfocitos/inmunología , Tonsila Palatina/inmunología , Animales , Diferenciación Celular/inmunología , Células Cultivadas , Niño , Preescolar , Humanos , Factor de Transcripción Ikaros/metabolismo , Mucosa Intestinal/citología , Linfocitos/clasificación , Linfocitos/citología , Ratones , Proteínas de Dominio T Box/metabolismo , Interleucina-22RESUMEN
Innate lymphoid cells (ILCs) play key roles in host defense, barrier integrity, and homeostasis and mirror adaptive CD4(+) T helper (Th) cell subtypes in both usage of effector molecules and transcription factors. To better understand the relationship between ILC subsets and their Th cell counterparts, we measured genome-wide chromatin accessibility. We find that chromatin in proximity to effector genes is selectively accessible in ILCs prior to high-level transcription upon activation. Accessibility of these regions is acquired in a stepwise manner during development and changes little after in vitro or in vivo activation. Conversely, dramatic chromatin remodeling occurs in naive CD4(+) T cells during Th cell differentiation using a type-2-infection model. This alteration results in a substantial convergence of Th2 cells toward ILC2 regulomes. Our data indicate extensive sharing of regulatory circuitry across the innate and adaptive compartments of the immune system, in spite of their divergent developing pathways.
Asunto(s)
Redes Reguladoras de Genes , Linfocitos/citología , Linfocitos/inmunología , Animales , Linaje de la Célula , Femenino , Regulación de la Expresión Génica , Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , TranscriptomaRESUMEN
Although they are classically viewed as continuously recirculating through the lymphoid organs and blood, lymphocytes also establish residency in non-lymphoid tissues, most prominently at barrier sites, including the mucosal surfaces and skin. These specialized tissue-resident lymphocyte subsets span the innate-adaptive continuum and include innate lymphoid cells (ILCs), unconventional T cells (e.g., NKT, MAIT, γδ T cells, and CD8αα(+) IELs), and tissue-resident memory T (T(RM)) cells. Although these diverse cell types differ in the particulars of their biology, they nonetheless exhibit important shared features, including a role in the preservation of tissue integrity and function during homeostasis, infection, and non-infectious perturbations. In this Review, we discuss the hallmarks of tissue-resident innate, innate-like, and adaptive lymphocytes, as well as their potential functions in non-lymphoid organs.
Asunto(s)
Linfocitos/citología , Linfocitos/inmunología , Inmunidad Adaptativa , Animales , Humanos , Inmunidad Innata , Memoria Inmunológica , Infecciones/inmunología , Linfocitos/clasificación , Linfocitos T/citología , Linfocitos T/inmunologíaRESUMEN
Innate lymphoid cells (ILCs) serve as sentinels in mucosal tissues, sensing release of soluble inflammatory mediators, rapidly communicating danger via cytokine secretion, and functioning as guardians of tissue homeostasis. Although ILCs have been extensively studied in model organisms, little is known about these "first responders" in humans, especially their lineage and functional kinships to cytokine-secreting T helper (Th) cell counterparts. Here, we report gene regulatory circuitries for four human ILC-Th counterparts derived from mucosal environments, revealing that each ILC subset diverges as a distinct lineage from Th and circulating natural killer cells but shares circuitry devoted to functional polarization with their Th counterparts. Super-enhancers demarcate cohorts of cell-identity genes in each lineage, uncovering new modes of regulation for signature cytokines, new molecules that likely impart important functions to ILCs, and potential mechanisms for autoimmune disease SNP associations within ILC-Th subsets.
Asunto(s)
Linfocitos/citología , Linfocitos/inmunología , Inmunidad Adaptativa , Animales , Citocinas/inmunología , Citocinas/metabolismo , Elementos de Facilitación Genéticos , Humanos , Inmunidad Innata , Inmunidad Mucosa , Células Asesinas Naturales , Linfocitos/metabolismo , Ratones , Tonsila Palatina/citología , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Factores de Transcripción/metabolismo , TranscriptomaRESUMEN
Innate lymphoid cells (ILCs) are critical effectors of innate immunity and inflammation, whose development and activation pathways make for attractive therapeutic targets. However, human ILC generation has not been systematically explored, and previous in vitro investigations relied on the analysis of few markers or cytokines, which are suboptimal to assign lineage identity. Here, we developed a platform that reliably generated human ILC lineages from CD34+ hematopoietic progenitors derived from cord blood and bone marrow. We showed that one culture condition is insufficient to generate all ILC subsets, and instead, distinct combination of cytokines and Notch signaling are essential. The identity of natural killer (NK)/ILC1s, ILC2s, and ILC3s generated in vitro was validated by protein expression, functional assays, and both global and single-cell transcriptome analysis, recapitulating the signatures and functions of their ex vivo ILC counterparts. These data represent a resource to aid in clarifying ILC biology and differentiation.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Linaje de la Célula/inmunología , Células Madre Hematopoyéticas/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , Antígenos CD34/inmunología , Diferenciación Celular/inmunología , Células Madre Hematopoyéticas/citología , Humanos , Linfocitos/citología , Análisis de la Célula Individual/métodosRESUMEN
Development of mature blood cell progenies from hematopoietic stem cells involves the transition through lineage-restricted progenitors. The first branching point along this developmental process is thought to separate the erythro-myeloid and lymphoid lineage fate by yielding two intermediate progenitors, the common myeloid and the common lymphoid progenitors (CMPs and CLPs). Here, we use single-cell lineage tracing to demonstrate that so-called CMPs are highly heterogeneous with respect to cellular output, with most individual CMPs yielding either only erythrocytes or only myeloid cells after transplantation. Furthermore, based on the labeling of earlier progenitors, we show that the divergence between the myeloid and erythroid lineage develops within multipotent progenitors (MPP). These data provide evidence for a model of hematopoietic branching in which multiple distinct lineage commitments occur in parallel within the MPP pool.
Asunto(s)
Linaje de la Célula , Hematopoyesis , Células Progenitoras Mieloides/citología , Animales , Eritrocitos/citología , Linfocitos/citología , Ratones , Ratones Endogámicos C57BLRESUMEN
The RAG1 endonuclease, together with its cofactor RAG2, is essential for V(D)J recombination but is a potent threat to genome stability. The sources of RAG1 mis-targeting and the mechanisms that have evolved to suppress it are poorly understood. Here, we report that RAG1 associates with chromatin at thousands of active promoters and enhancers in the genome of developing lymphocytes. The mouse and human genomes appear to have responded by reducing the abundance of "cryptic" recombination signals near RAG1 binding sites. This depletion operates specifically on the RSS heptamer, whereas nonamers are enriched at RAG1 binding sites. Reversing this RAG-driven depletion of cleavage sites by insertion of strong recombination signals creates an ectopic hub of RAG-mediated V(D)J recombination and chromosomal translocations. Our findings delineate rules governing RAG binding in the genome, identify areas at risk of RAG-mediated damage, and highlight the evolutionary struggle to accommodate programmed DNA damage in developing lymphocytes.
Asunto(s)
Inestabilidad Genómica , Proteínas de Homeodominio/metabolismo , Linfocitos/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Secuencia de Bases , Sitios de Unión , Línea Celular , Proteínas de Unión al ADN/metabolismo , Humanos , Linfocitos/citología , Ratones , Datos de Secuencia Molecular , Translocación Genética , Recombinación V(D)JRESUMEN
Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5 and -13, participate in the maintenance of tissue homeostasis. Although type 2 immunity is critically important for mediating metabolic adaptations to environmental cold, the functions of ILC2s in beige or brown fat development are poorly defined. We report here that activation of ILC2s by IL-33 is sufficient to promote the growth of functional beige fat in thermoneutral mice. Mechanistically, ILC2 activation results in the proliferation of bipotential adipocyte precursors (APs) and their subsequent commitment to the beige fat lineage. Loss- and gain-of-function studies reveal that ILC2- and eosinophil-derived type 2 cytokines stimulate signaling via the IL-4Rα in PDGFRα(+) APs to promote beige fat biogenesis. Together, our results highlight a critical role for ILC2s and type 2 cytokines in the regulation of adipocyte precursor numbers and fate, and as a consequence, adipose tissue homeostasis. PAPERCLIP: