Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.953
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(21): 4583-4596.e13, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37725977

RESUMEN

The CD1 system binds lipid antigens for display to T cells. Here, we solved lipidomes for the four human CD1 antigen-presenting molecules, providing a map of self-lipid display. Answering a basic question, the detection of >2,000 CD1-lipid complexes demonstrates broad presentation of self-sphingolipids and phospholipids. Whereas peptide antigens are chemically processed, many lipids are presented in an unaltered form. However, each type of CD1 protein differentially edits the self-lipidome to show distinct capture motifs based on lipid length and chemical composition, suggesting general antigen display mechanisms. For CD1a and CD1d, lipid size matches the CD1 cleft volume. CD1c cleft size is more variable, and CD1b is the outlier, where ligands and clefts show an extreme size mismatch that is explained by uniformly seating two small lipids in one cleft. Furthermore, the list of compounds that comprise the integrated CD1 lipidome supports the ongoing discovery of lipid blockers and antigens for T cells.


Asunto(s)
Antígenos CD1 , Lípidos , Humanos , Presentación de Antígeno , Antígenos CD1/química , Antígenos CD1/metabolismo , Lipidómica , Lípidos/química , Linfocitos T , Secuencias de Aminoácidos
3.
Nature ; 631(8019): 207-215, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38926576

RESUMEN

Pyroptosis is a lytic cell death mode that helps limit the spread of infections and is also linked to pathology in sterile inflammatory diseases and autoimmune diseases1-4. During pyroptosis, inflammasome activation and the engagement of caspase-1 lead to cell death, along with the maturation and secretion of the inflammatory cytokine interleukin-1ß (IL-1ß). The dominant effect of IL-1ß in promoting tissue inflammation has clouded the potential influence of other factors released from pyroptotic cells. Here, using a system in which macrophages are induced to undergo pyroptosis without IL-1ß or IL-1α release (denoted Pyro-1), we identify unexpected beneficial effects of the Pyro-1 secretome. First, we noted that the Pyro-1 supernatants upregulated gene signatures linked to migration, cellular proliferation and wound healing. Consistent with this gene signature, Pyro-1 supernatants boosted migration of primary fibroblasts and macrophages, and promoted faster wound closure in vitro and improved tissue repair in vivo. In mechanistic studies, lipidomics and metabolomics of the Pyro-1 supernatants identified the presence of both oxylipins and metabolites, linking them to pro-wound-healing effects. Focusing specifically on the oxylipin prostaglandin E2 (PGE2), we find that its synthesis is induced de novo during pyroptosis, downstream of caspase-1 activation and cyclooxygenase-2 activity; further, PGE2 synthesis occurs late in pyroptosis, with its release dependent on gasdermin D pores opened during pyroptosis. As for the pyroptotic metabolites, they link to immune cell infiltration into the wounds, and polarization to CD301+ macrophages. Collectively, these data advance the concept that the pyroptotic secretome possesses oxylipins and metabolites with tissue repair properties that may be harnessed therapeutically.


Asunto(s)
Macrófagos , Oxilipinas , Piroptosis , Secretoma , Cicatrización de Heridas , Animales , Femenino , Humanos , Ratones , Caspasa 1/metabolismo , Movimiento Celular , Proliferación Celular , Ciclooxigenasa 2/metabolismo , Dinoprostona/biosíntesis , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citología , Gasderminas/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta , Lipidómica , Macrófagos/metabolismo , Macrófagos/citología , Ratones Endogámicos C57BL , Oxilipinas/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Secretoma/metabolismo , Cicatrización de Heridas/fisiología
4.
Nature ; 629(8010): 174-183, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693412

RESUMEN

Regular exercise promotes whole-body health and prevents disease, but the underlying molecular mechanisms are incompletely understood1-3. Here, the Molecular Transducers of Physical Activity Consortium4 profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid tissues in male and female Rattus norvegicus over eight weeks of endurance exercise training. The resulting data compendium encompasses 9,466 assays across 19 tissues, 25 molecular platforms and 4 training time points. Thousands of shared and tissue-specific molecular alterations were identified, with sex differences found in multiple tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological insights into the adaptive responses to endurance training, including widespread regulation of immune, metabolic, stress response and mitochondrial pathways. Many changes were relevant to human health, including non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health and tissue injury and recovery. The data and analyses presented in this study will serve as valuable resources for understanding and exploring the multi-tissue molecular effects of endurance training and are provided in a public repository ( https://motrpac-data.org/ ).


Asunto(s)
Entrenamiento Aeróbico , Multiómica , Condicionamiento Físico Animal , Resistencia Física , Animales , Femenino , Humanos , Masculino , Ratas , Acetilación , Sangre/inmunología , Sangre/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/metabolismo , Bases de Datos Factuales , Epigenoma , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Internet , Lipidómica , Metaboloma , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Especificidad de Órganos/fisiología , Fosforilación , Condicionamiento Físico Animal/fisiología , Resistencia Física/genética , Resistencia Física/fisiología , Proteoma/metabolismo , Proteómica , Factores de Tiempo , Transcriptoma/genética , Ubiquitinación , Heridas y Lesiones/genética , Heridas y Lesiones/inmunología , Heridas y Lesiones/metabolismo
5.
Nature ; 633(8029): 451-458, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39112706

RESUMEN

Cancer cells frequently alter their lipids to grow and adapt to their environment1-3. Despite the critical functions of lipid metabolism in membrane physiology, signalling and energy production, how specific lipids contribute to tumorigenesis remains incompletely understood. Here, using functional genomics and lipidomic approaches, we identified de novo sphingolipid synthesis as an essential pathway for cancer immune evasion. Synthesis of sphingolipids is surprisingly dispensable for cancer cell proliferation in culture or in immunodeficient mice but required for tumour growth in multiple syngeneic models. Blocking sphingolipid production in cancer cells enhances the anti-proliferative effects of natural killer and CD8+ T cells partly via interferon-γ (IFNγ) signalling. Mechanistically, depletion of glycosphingolipids increases surface levels of IFNγ receptor subunit 1 (IFNGR1), which mediates IFNγ-induced growth arrest and pro-inflammatory signalling. Finally, pharmacological inhibition of glycosphingolipid synthesis synergizes with checkpoint blockade therapy to enhance anti-tumour immune response. Altogether, our work identifies glycosphingolipids as necessary and limiting metabolites for cancer immune evasion.


Asunto(s)
Glicoesfingolípidos , Evasión Inmune , Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Escape del Tumor , Animales , Femenino , Ratones , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Proliferación Celular , Glicoesfingolípidos/biosíntesis , Glicoesfingolípidos/deficiencia , Glicoesfingolípidos/inmunología , Glicoesfingolípidos/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Interferón gamma/metabolismo , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Lipidómica
6.
Mol Cell ; 82(15): 2735-2737, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931038

RESUMEN

Rensvold, Shishkova, et al. (2022) apply an integrated systems biology approach spanning proteomics, lipidomics, and metabolomics to a collection of CRISPR knockout cells targeting 116 distinct human mitochondrial proteins, revealing new mitochondrial biology and guiding orphan disease diagnosis.


Asunto(s)
Proteoma , Proteómica , Humanos , Lipidómica , Metabolómica , Proteoma/genética , Proteoma/metabolismo , Biología de Sistemas
7.
Nature ; 617(7962): 798-806, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138087

RESUMEN

Inorganic phosphate (Pi) is one of the essential molecules for life. However, little is known about intracellular Pi metabolism and signalling in animal tissues1. Following the observation that chronic Pi starvation causes hyperproliferation in the digestive epithelium of Drosophila melanogaster, we determined that Pi starvation triggers the downregulation of the Pi transporter PXo. In line with Pi starvation, PXo deficiency caused midgut hyperproliferation. Interestingly, immunostaining and ultrastructural analyses showed that PXo specifically marks non-canonical multilamellar organelles (PXo bodies). Further, by Pi imaging with a Förster resonance energy transfer (FRET)-based Pi sensor2, we found that PXo restricts cytosolic Pi levels. PXo bodies require PXo for biogenesis and undergo degradation following Pi starvation. Proteomic and lipidomic characterization of PXo bodies unveiled their distinct feature as an intracellular Pi reserve. Therefore, Pi starvation triggers PXo downregulation and PXo body degradation as a compensatory mechanism to increase cytosolic Pi. Finally, we identified connector of kinase to AP-1 (Cka), a component of the STRIPAK complex and JNK signalling3, as the mediator of PXo knockdown- or Pi starvation-induced hyperproliferation. Altogether, our study uncovers PXo bodies as a critical regulator of cytosolic Pi levels and identifies a Pi-dependent PXo-Cka-JNK signalling cascade controlling tissue homeostasis.


Asunto(s)
Drosophila melanogaster , Homeostasis , Orgánulos , Fosfatos , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/metabolismo , Orgánulos/metabolismo , Fosfatos/deficiencia , Fosfatos/metabolismo , Proteómica , Transferencia Resonante de Energía de Fluorescencia , Lipidómica , Citosol/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo
8.
Mol Cell ; 81(18): 3708-3730, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34547235

RESUMEN

Lipids play crucial roles in signal transduction, contribute to the structural integrity of cellular membranes, and regulate energy metabolism. Questions remain as to which lipid species maintain metabolic homeostasis and which disrupt essential cellular functions, leading to metabolic disorders. Here, we discuss recent advances in understanding lipid metabolism with a focus on catabolism, synthesis, and signaling. Technical advances, including functional genomics, metabolomics, lipidomics, lipid-protein interaction maps, and advances in mass spectrometry, have uncovered new ways to prioritize molecular mechanisms mediating lipid function. By reviewing what is known about the distinct effects of specific lipid species in physiological pathways, we provide a framework for understanding newly identified targets regulating lipid homeostasis with implications for ameliorating metabolic diseases.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Enfermedades Metabólicas/metabolismo , Transducción de Señal/fisiología , Animales , Cromatina/metabolismo , Enfermedad , Metabolismo Energético/fisiología , Salud , Homeostasis/fisiología , Humanos , Inmunidad/fisiología , Lipidómica/métodos , Lípidos/fisiología , Enfermedades Metabólicas/fisiopatología , Metabolómica/métodos , Microbiota/fisiología
9.
EMBO J ; 42(24): e114054, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37933600

RESUMEN

Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.


Asunto(s)
Cardiolipinas , Lipidómica , Cardiolipinas/metabolismo , Membranas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo
10.
PLoS Biol ; 22(9): e3002830, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39325819

RESUMEN

Understanding perturbations in circulating lipid levels that often occur years or decades before clinical symptoms may enhance our understanding of disease mechanisms and provide novel intervention opportunities. Here, we assessed if polygenic scores (PGSs) for complex traits could detect lipid dysfunctions related to the traits and provide new biological insights. We constructed genome-wide PGSs (approximately 1 million genetic variants) for 50 complex traits in 7,169 Finnish individuals with routine clinical lipid profiles and lipidomics measurements (179 lipid species). We identified 678 associations (P < 9.0 × 10-5) involving 26 traits and 142 lipids. Most of these associations were also validated with the actual phenotype measurements where available (89.5% of 181 associations where the trait was available), suggesting that these associations represent early signs of physiological changes of the traits. We detected many known relationships (e.g., PGS for body mass index (BMI) and lysophospholipids, PGS for type 2 diabetes and triacyglycerols) and those that suggested potential target for prevention strategies (e.g., PGS for venous thromboembolism and arachidonic acid). We also found association of PGS for favorable adiposity with increased sphingomyelins levels, suggesting a probable role of sphingomyelins in increased risk for certain disease, e.g., venous thromboembolism as reported previously, in favorable adiposity despite its favorable metabolic effect. Altogether, our study provides a comprehensive characterization of lipidomic alterations in genetic predisposition for a wide range of complex traits. The study also demonstrates potential of PGSs for complex traits to capture early, presymptomatic lipid alterations, highlighting its utility in understanding disease mechanisms and early disease detection.


Asunto(s)
Estudio de Asociación del Genoma Completo , Lípidos , Herencia Multifactorial , Humanos , Herencia Multifactorial/genética , Masculino , Femenino , Lípidos/sangre , Lípidos/genética , Persona de Mediana Edad , Finlandia , Lipidómica/métodos , Adulto , Fenotipo , Índice de Masa Corporal , Metabolismo de los Lípidos/genética , Anciano , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad
11.
PLoS Biol ; 22(9): e3002813, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39348416

RESUMEN

Mycobacterium tuberculosis (Mtb) releases the unusual terpene nucleoside 1-tuberculosinyladenosine (1-TbAd) to block lysosomal function and promote survival in human macrophages. Using conventional approaches, we found that genes Rv3377c and Rv3378c, but not Rv3376, were necessary for 1-TbAd biosynthesis. Here, we introduce linear models for mass spectrometry (limms) software as a next-generation lipidomics tool to study the essential functions of lipid biosynthetic enzymes on a whole-cell basis. Using limms, whole-cell lipid profiles deepened the phenotypic landscape of comparative mass spectrometry experiments and identified a large family of approximately 100 terpene nucleoside metabolites downstream of Rv3378c. We validated the identity of previously unknown adenine-, adenosine-, and lipid-modified tuberculosinol-containing molecules using synthetic chemistry and collisional mass spectrometry, including comprehensive profiling of bacterial lipids that fragment to adenine. We tracked terpene nucleoside genotypes and lipid phenotypes among Mycobacterium tuberculosis complex (MTC) species that did or did not evolve to productively infect either human or nonhuman mammals. Although 1-TbAd biosynthesis genes were thought to be restricted to the MTC, we identified the locus in unexpected species outside the MTC. Sequence analysis of the locus showed nucleotide usage characteristic of plasmids from plant-associated bacteria, clarifying the origin and timing of horizontal gene transfer to a pre-MTC progenitor. The data demonstrated correlation between high level terpene nucleoside biosynthesis and mycobacterial competence for human infection, and 2 mechanisms of 1-TbAd biosynthesis loss. Overall, the selective gain and evolutionary retention of tuberculosinyl metabolites in modern species that cause human TB suggest a role in human TB disease, and the newly discovered molecules represent candidate disease-specific biomarkers.


Asunto(s)
Mycobacterium tuberculosis , Nucleósidos , Terpenos , Tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Terpenos/metabolismo , Humanos , Nucleósidos/metabolismo , Adenosina/metabolismo , Adenosina/análogos & derivados , Lipidómica/métodos , Espectrometría de Masas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Genes Bacterianos , Lípidos
12.
Proc Natl Acad Sci U S A ; 121(24): e2400711121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38833476

RESUMEN

Understanding how microbial lipidomes adapt to environmental and nutrient stress is crucial for comprehending microbial survival and functionality. Certain anaerobic bacteria can synthesize glycerolipids with ether/ester bonds, yet the complexities of their lipidome remodeling under varying physicochemical and nutritional conditions remain largely unexplored. In this study, we thoroughly examined the lipidome adaptations of Desulfatibacillum alkenivorans strain PF2803T, a mesophilic anaerobic sulfate-reducing bacterium known for its high proportions of alkylglycerol ether lipids in its membrane, under various cultivation conditions including temperature, pH, salinity, and ammonium and phosphorous concentrations. Employing an extensive analytical and computational lipidomic methodology, we identified an assemblage of nearly 400 distinct lipids, including a range of glycerol ether/ester lipids with various polar head groups. Information theory-based analysis revealed that temperature fluctuations and phosphate scarcity profoundly influenced the lipidome's composition, leading to an enhanced diversity and specificity of novel lipids. Notably, phosphorous limitation led to the biosynthesis of novel glucuronosylglycerols and sulfur-containing aminolipids, termed butyramide cysteine glycerols, featuring various ether/ester bonds. This suggests a novel adaptive strategy for anaerobic heterotrophs to thrive under phosphorus-depleted conditions, characterized by a diverse array of nitrogen- and sulfur-containing polar head groups, moving beyond a reliance on conventional nonphospholipid types.


Asunto(s)
Lipidómica , Nitrógeno , Fósforo , Azufre , Fósforo/metabolismo , Azufre/metabolismo , Nitrógeno/metabolismo , Adaptación Fisiológica , Sulfatos/metabolismo , Bacterias Anaerobias/metabolismo , Anaerobiosis
13.
Proc Natl Acad Sci U S A ; 121(34): e2321686121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39141352

RESUMEN

To broadly measure the spectrum of cellular self-antigens for natural killer T cells (NKT), we developed a sensitive lipidomics system to analyze lipids trapped between CD1d and NKT T cell receptors (TCRs). We captured diverse antigen complexes formed in cells from natural endogenous lipids, with or without inducing endoplasmic reticulum (ER) stress. After separating protein complexes with no, low, or high CD1d-TCR interaction, we eluted lipids to establish the spectrum of self-lipids that facilitate this interaction. Although this unbiased approach identified fifteen molecules, they clustered into only two related groups: previously known phospholipid antigens and unexpected neutral lipid antigens. Mass spectrometry studies identified the neutral lipids as ceramides, deoxyceramides, and diacylglycerols, which can be considered headless lipids because they lack polar headgroups that usually form the TCR epitope. The crystal structure of the TCR-ceramide-CD1d complex showed how the missing headgroup allowed the TCR to predominantly contact CD1d, supporting a model of CD1d autoreactivity. Ceramide and related headless antigens mediated physiological TCR binding affinity, weak NKT cell responses, and tetramer binding to polyclonal human and mouse NKT cells. Ceramide and sphingomyelin are oppositely regulated components of the "sphingomyelin cycle" that are altered during apoptosis, transformation, and ER stress. Thus, the unique molecular link of ceramide to NKT cell response, along with the recent identification of sphingomyelin blockers of NKT cell activation, provide two mutually reinforcing links for NKT cell response to sterile cellular stress conditions.


Asunto(s)
Antígenos CD1d , Lipidómica , Células T Asesinas Naturales , Receptores de Antígenos de Linfocitos T , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Antígenos CD1d/inmunología , Antígenos CD1d/metabolismo , Animales , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Ratones , Lipidómica/métodos , Humanos , Autoantígenos/inmunología , Autoantígenos/metabolismo , Ceramidas/metabolismo , Ceramidas/inmunología , Lípidos/química , Lípidos/inmunología , Estrés del Retículo Endoplásmico/inmunología
14.
Nat Methods ; 20(2): 193-204, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36543939

RESUMEN

Progress in mass spectrometry lipidomics has led to a rapid proliferation of studies across biology and biomedicine. These generate extremely large raw datasets requiring sophisticated solutions to support automated data processing. To address this, numerous software tools have been developed and tailored for specific tasks. However, for researchers, deciding which approach best suits their application relies on ad hoc testing, which is inefficient and time consuming. Here we first review the data processing pipeline, summarizing the scope of available tools. Next, to support researchers, LIPID MAPS provides an interactive online portal listing open-access tools with a graphical user interface. This guides users towards appropriate solutions within major areas in data processing, including (1) lipid-oriented databases, (2) mass spectrometry data repositories, (3) analysis of targeted lipidomics datasets, (4) lipid identification and (5) quantification from untargeted lipidomics datasets, (6) statistical analysis and visualization, and (7) data integration solutions. Detailed descriptions of functions and requirements are provided to guide customized data analysis workflows.


Asunto(s)
Biología Computacional , Lipidómica , Biología Computacional/métodos , Programas Informáticos , Informática , Lípidos/química
15.
Nucleic Acids Res ; 52(W1): W390-W397, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38709887

RESUMEN

In the field of lipidomics, where the complexity of lipid structures and functions presents significant analytical challenges, LipidSig stands out as the first web-based platform providing integrated, comprehensive analysis for efficient data mining of lipidomic datasets. The upgraded LipidSig 2.0 (https://lipidsig.bioinfomics.org/) simplifies the process and empowers researchers to decipher the complex nature of lipids and link lipidomic data to specific characteristics and biological contexts. This tool markedly enhances the efficiency and depth of lipidomic research by autonomously identifying lipid species and assigning 29 comprehensive characteristics upon data entry. LipidSig 2.0 accommodates 24 data processing methods, streamlining diverse lipidomic datasets. The tool's expertise in automating intricate analytical processes, including data preprocessing, lipid ID annotation, differential expression, enrichment analysis, and network analysis, allows researchers to profoundly investigate lipid properties and their biological implications. Additional innovative features, such as the 'Network' function, offer a system biology perspective on lipid interactions, and the 'Multiple Group' analysis aids in examining complex experimental designs. With its comprehensive suite of features for analyzing and visualizing lipid properties, LipidSig 2.0 positions itself as an indispensable tool for advanced lipidomics research, paving the way for new insights into the role of lipids in cellular processes and disease development.


Asunto(s)
Lipidómica , Lípidos , Programas Informáticos , Lípidos/química , Lipidómica/instrumentación , Lipidómica/métodos , Análisis de Datos , Internet , Algoritmos , Visualización de Datos
16.
Nucleic Acids Res ; 52(D1): D1677-D1682, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37855672

RESUMEN

LIPID MAPS (LIPID Metabolites and Pathways Strategy), www.lipidmaps.org, provides a systematic and standardized approach to organizing lipid structural and biochemical data. Founded 20 years ago, the LIPID MAPS nomenclature and classification has become the accepted community standard. LIPID MAPS provides databases for cataloging and identifying lipids at varying levels of characterization in addition to numerous software tools and educational resources, and became an ELIXIR-UK data resource in 2020. This paper describes the expansion of existing databases in LIPID MAPS, including richer metadata with literature provenance, taxonomic data and improved interoperability to facilitate FAIR compliance. A joint project funded by ELIXIR-UK, in collaboration with WikiPathways, curates and hosts pathway data, and annotates lipids in the context of their biochemical pathways. Updated features of the search infrastructure are described along with implementation of programmatic access via API and SPARQL. New lipid-specific databases have been developed and provision of lipidomics tools to the community has been updated. Training and engagement have been expanded with webinars, podcasts and an online training school.


Asunto(s)
Bases de Datos Factuales , Lipidómica , Lípidos , Metabolismo de los Lípidos , Lípidos/química , Programas Informáticos
17.
PLoS Genet ; 19(7): e1010713, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37523383

RESUMEN

We and others have previously shown that genetic association can be used to make causal connections between gene loci and small molecules measured by mass spectrometry in the bloodstream and in tissues. We identified a locus on mouse chromosome 7 where several phospholipids in liver showed strong genetic association to distinct gene loci. In this study, we integrated gene expression data with genetic association data to identify a single gene at the chromosome 7 locus as the driver of the phospholipid phenotypes. The gene encodes α/ß-hydrolase domain 2 (Abhd2), one of 23 members of the ABHD gene family. We validated this observation by measuring lipids in a mouse with a whole-body deletion of Abhd2. The Abhd2KO mice had a significant increase in liver levels of phosphatidylcholine and phosphatidylethanolamine. Unexpectedly, we also found a decrease in two key mitochondrial lipids, cardiolipin and phosphatidylglycerol, in male Abhd2KO mice. These data suggest that Abhd2 plays a role in the synthesis, turnover, or remodeling of liver phospholipids.


Asunto(s)
Cardiolipinas , Hidrolasas , Animales , Masculino , Ratones , Cardiolipinas/genética , Cardiolipinas/metabolismo , Ratones de Colaboración Cruzada/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Lipidómica , Fosfatidilcolinas/genética , Fosfolípidos/genética , Fosfolípidos/metabolismo
18.
J Biol Chem ; 300(1): 105496, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013088

RESUMEN

The yeast vacuole membrane can phase separate into ordered and disordered domains, a phenomenon that is required for micro-lipophagy under nutrient limitation. Despite its importance as a biophysical model and physiological significance, it is not yet resolved if specific lipidome changes drive vacuole phase separation. Here we report that the metabolism of sphingolipids (SLs) and their sorting into the vacuole membrane can control this process. We first developed a vacuole isolation method to identify lipidome changes during the onset of phase separation in early stationary stage cells. We found that early stationary stage vacuoles are defined by an increased abundance of putative raft components, including 40% higher ergosterol content and a nearly 3-fold enrichment in complex SLs (CSLs). These changes were not found in the corresponding whole cell lipidomes, indicating that lipid sorting is associated with domain formation. Several facets of SL composition-headgroup stoichiometry, longer chain lengths, and increased hydroxylations-were also markers of phase-separated vacuole lipidomes. To test SL function in vacuole phase separation, we carried out a systematic genetic dissection of their biosynthetic pathway. The abundance of CSLs controlled the extent of domain formation and associated micro-lipophagy processes, while their headgroup composition altered domain morphology. These results suggest that lipid trafficking can drive membrane phase separation in vivo and identify SLs as key mediators of this process in yeast.


Asunto(s)
Membranas , Saccharomyces cerevisiae , Esfingolípidos , Vacuolas , Membranas/metabolismo , Separación de Fases , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/química , Esfingolípidos/genética , Esfingolípidos/metabolismo , Vacuolas/metabolismo , Vacuolas/ultraestructura , Lipidómica , Microscopía Fluorescente
19.
J Biol Chem ; 300(1): 105563, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101568

RESUMEN

Intermediary metabolites and flux through various pathways have emerged as key determinants of post-translational modifications. Independently, dynamic fluctuations in their concentrations are known to drive cellular energetics in a bi-directional manner. Notably, intracellular fatty acid pools that drastically change during fed and fasted states act as precursors for both ATP production and fatty acylation of proteins. Protein fatty acylation is well regarded for its role in regulating structure and functions of diverse proteins; however, the effect of intracellular concentrations of fatty acids on protein modification is less understood. In this regard, we unequivocally demonstrate that metabolic contexts, viz. fed and fasted states, dictate the extent of global fatty acylation. Moreover, we show that presence or absence of glucose that influences cellular and mitochondrial uptake/utilization of fatty acids and affects palmitoylation and oleoylation, which is consistent with their intracellular abundance in fed and fasted states. Employing complementary approaches including click-chemistry, lipidomics, and imaging, we show the top-down control of cellular metabolic state. Importantly, our results establish the crucial role of mitochondria and retrograde signaling components like SIRT4, AMPK, and mTOR in orchestrating protein fatty acylation at a whole cell level. Specifically, pharmacogenetic perturbations that alter either mitochondrial functions and/or retrograde signaling affect protein fatty acylation. Besides illustrating the cross-talk between carbohydrate and lipid metabolism in mediating bulk post-translational modification, our findings also highlight the involvement of mitochondrial energetics.


Asunto(s)
Acilación , Ácidos Grasos , Metabolismo de los Lípidos , Procesamiento Proteico-Postraduccional , Proteínas , Adenosina Trifosfato/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Química Clic , Ayuno/fisiología , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Lipidómica , Lipoilación , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas/química , Proteínas/metabolismo , Sirtuinas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
20.
Plant J ; 119(3): 1570-1595, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761101

RESUMEN

The plant plasma membrane (PM) plays a key role in perception of environmental signals, and set-up of adaptive responses. An exhaustive and quantitative description of the whole set of lipids and proteins constituting the PM is necessary to understand how these components allow to fulfill such essential physiological functions. Here we provide by state-of-the-art approaches the first combined reference of the plant PM lipidome and proteome from Arabidopsis thaliana suspension cell culture. We identified and quantified a reproducible core set of 2165 proteins, which is by far the largest set of available data concerning this plant PM proteome. Using the same samples, combined lipidomic approaches, allowing the identification and quantification of an unprecedented repertoire of 414 molecular species of lipids showed that sterols, phospholipids, and sphingolipids are present in similar proportions in the plant PM. Within each lipid class, the precise amount of each lipid family and the relative proportion of each molecular species were further determined, allowing to establish the complete lipidome of Arabidopsis PM, and highlighting specific characteristics of the different molecular species of lipids. Results obtained point to a finely tuned adjustment of the molecular characteristics of lipids and proteins. More than a hundred proteins related to lipid metabolism, transport, or signaling have been identified and put in perspective of the lipids with which they are associated. This set of data represents an innovative resource to guide further research relative to the organization and functions of the plant PM.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Lipidómica , Proteómica , Arabidopsis/metabolismo , Arabidopsis/genética , Proteómica/métodos , Membrana Celular/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteoma/metabolismo , Esfingolípidos/metabolismo , Fosfolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA