Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.692
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105585, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141760

RESUMEN

Fluorescent protein tags are convenient tools for tracking the aggregation states of amyloidogenic or phase separating proteins, but the effect of the tags is often not well understood. Here, we investigated the impact of a C-terminal red fluorescent protein (RFP) tag on the phase separation of huntingtin exon-1 (Httex1), an N-terminal portion of the huntingtin protein that aggregates in Huntington's disease. We found that the RFP-tagged Httex1 rapidly formed micron-sized, phase separated states in the presence of a crowding agent. The formed structures had a rounded appearance and were highly dynamic according to electron paramagnetic resonance and fluorescence recovery after photobleaching, suggesting that the phase separated state was largely liquid in nature. Remarkably, the untagged protein did not undergo any detectable liquid condensate formation under the same conditions. In addition to strongly promoting liquid-liquid phase separation, the RFP tag also facilitated fibril formation, as the tag-dependent liquid condensates rapidly underwent a liquid-to-solid transition. The rate of fibril formation under these conditions was significantly faster than that of the untagged protein. When expressed in cells, the RFP-tagged Httex1 formed larger aggregates with different antibody staining patterns compared to untagged Httex1. Collectively, these data reveal that the addition of a fluorescent protein tag significantly impacts liquid and solid phase separations of Httex1 in vitro and leads to altered aggregation in cells. Considering that the tagged Httex1 is commonly used to study the mechanisms of Httex1 misfolding and toxicity, our findings highlight the importance to validate the conclusions with untagged protein.


Asunto(s)
Artefactos , Exones , Proteína Huntingtina , Enfermedad de Huntington , Mediciones Luminiscentes , Separación de Fases , Agregado de Proteínas , Proteína Fluorescente Roja , Humanos , Espectroscopía de Resonancia por Spin del Electrón , Exones/genética , Fluorescencia , Recuperación de Fluorescencia tras Fotoblanqueo , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Mediciones Luminiscentes/métodos , Proteína Fluorescente Roja/genética , Proteína Fluorescente Roja/metabolismo , Reproducibilidad de los Resultados
2.
Nat Methods ; 19(7): 893-898, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35739310

RESUMEN

Bioluminescence imaging with luciferase-luciferin pairs is a well-established technique for visualizing biological processes across tissues and whole organisms. Applications at the microscale, by contrast, have been hindered by a lack of detection platforms and easily resolved probes. We addressed this limitation by combining bioluminescence with phasor analysis, a method commonly used to distinguish spectrally similar fluorophores. We built a camera-based microscope equipped with special optical filters to directly assign phasor locations to unique luciferase-luciferin pairs. Six bioluminescent reporters were easily resolved in live cells, and the readouts were quantitative and instantaneous. Multiplexed imaging was also performed over extended time periods. Bioluminescent phasor further provided direct measures of resonance energy transfer in single cells, setting the stage for dynamic measures of cellular and molecular features. The merger of bioluminescence with phasor analysis fills a long-standing void in imaging capabilities, and will bolster future efforts to visualize biological events in real time and over multiple length scales.


Asunto(s)
Mediciones Luminiscentes , Microscopía , Luciferasas , Mediciones Luminiscentes/métodos
3.
Nat Chem Biol ; 19(6): 731-739, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36759751

RESUMEN

Bioluminescence imaging (BLI) allows non-invasive visualization of cells and biochemical events in vivo and thus has become an indispensable technique in biomedical research. However, BLI in the central nervous system remains challenging because luciferases show relatively poor performance in the brain with existing substrates. Here, we report the discovery of a NanoLuc substrate with improved brain performance, cephalofurimazine (CFz). CFz paired with Antares luciferase produces greater than 20-fold more signal from the brain than the standard combination of D-luciferin with firefly luciferase. At standard doses, Antares-CFz matches AkaLuc-AkaLumine/TokeOni in brightness, while occasional higher dosing of CFz can be performed to obtain threefold more signal. CFz should allow the growing number of NanoLuc-based indicators to be applied to the brain with high sensitivity. Using CFz, we achieve video-rate non-invasive imaging of Antares in brains of freely moving mice and demonstrate non-invasive calcium imaging of sensory-evoked activity in genetically defined neurons.


Asunto(s)
Diagnóstico por Imagen , Mediciones Luminiscentes , Ratones , Animales , Mediciones Luminiscentes/métodos , Encéfalo/diagnóstico por imagen , Luciferina de Luciérnaga , Luciferinas
4.
Proc Natl Acad Sci U S A ; 119(43): e2207693119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252039

RESUMEN

Although the onset time of chemical reactions can be manipulated by mechanical, electrical, and optical methods, its chemical control remains highly challenging. Herein, we report a chemical timer approach for manipulating the emission onset time of chemiluminescence (CL) reactions. A mixture of Mn2+, NaHCO3, and a luminol analog with H2O2 produced reactive oxygen species (ROS) radicals and other superoxo species (superoxide containing complex) with high efficiency, accompanied by strong and immediate CL emission. Surprisingly, the addition of thiourea postponed CL emission in a concentration-dependent manner. The delay was attributed to a slow-generation-scavenging mechanism, which was found to be generally applicable not only to various types of CL reagents and ROS radical scavengers but also to popular chromogenic reactions. The precise regulation of CL kinetics was further utilized in dynamic chemical coding with improved coding density and security. This approach provides a powerful platform for engineering chemical reaction kinetics using chemical timers, which is of application potential in bioassays, biosensors, CL microscopic imaging, microchips, array chips, and informatics.


Asunto(s)
Luminiscencia , Luminol , Peróxido de Hidrógeno , Mediciones Luminiscentes/métodos , Especies Reactivas de Oxígeno , Superóxidos , Tiourea
5.
Biochemistry ; 63(6): 733-742, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38437583

RESUMEN

Photinus pyralis luciferase (FLuc) has proven a valuable tool for bioluminescence imaging, but much of the light emitted from the native enzyme is absorbed by endogenous biomolecules. Thus, luciferases displaying red-shifted emission enable higher resolution during deep-tissue imaging. A robust model of how protein structure determines emission color would greatly aid the engineering of red-shifted mutants, but no consensus has been reached to date. In this work, we applied deep mutational scanning to systematically assess 20 functionally important amino acid positions on FLuc for red-shifting mutations, predicting that an unbiased approach would enable novel contributions to this debate. We report dozens of red-shifting mutations as a result, a large majority of which have not been previously identified. Further characterization revealed that mutations N229T and T352M, in particular, bring about unimodal emission with the majority of photons being >600 nm. The red-shifting mutations identified by this high-throughput approach provide strong biochemical evidence for the multiple-emitter mechanism of color determination and point to the importance of a water network in the enzyme binding pocket for altering the emitter ratio. This work provides a broadly applicable mutational data set tying FLuc structure to emission color that contributes to our mechanistic understanding of emission color determination and should facilitate further engineering of improved probes for deep-tissue imaging.


Asunto(s)
Luciérnagas , Luciferasas de Luciérnaga , Animales , Luciferasas de Luciérnaga/química , Cinética , Luciferasas/metabolismo , Luciérnagas/genética , Mutación , Mediciones Luminiscentes/métodos
6.
J Am Chem Soc ; 146(19): 13406-13416, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698549

RESUMEN

Bioluminescent indicators are power tools for studying dynamic biological processes. In this study, we present the generation of novel bioluminescent indicators by modifying the luciferin molecule with an analyte-binding moiety. Specifically, we have successfully developed the first bioluminescent indicator for potassium ions (K+), which are critical electrolytes in biological systems. Our approach involved the design and synthesis of a K+-binding luciferin named potassiorin. Additionally, we engineered a luciferase enzyme called BRIPO (bioluminescent red indicator for potassium) to work synergistically with potassiorin, resulting in optimized K+-dependent bioluminescence responses. Through extensive validation in cell lines, primary neurons, and live mice, we demonstrated the efficacy of this new tool for detecting K+. Our research demonstrates an innovative concept of incorporating sensory moieties into luciferins to modulate luciferase activity. This approach has great potential for developing a wide range of bioluminescent indicators, advancing bioluminescence imaging (BLI), and enabling the study of various analytes in biological systems.


Asunto(s)
Luciferasas , Mediciones Luminiscentes , Potasio , Potasio/metabolismo , Potasio/química , Animales , Mediciones Luminiscentes/métodos , Ratones , Luciferasas/química , Luciferasas/metabolismo , Humanos , Ingeniería de Proteínas , Sustancias Luminiscentes/química , Luciferina de Luciérnaga/química , Luciferina de Luciérnaga/metabolismo
7.
Anal Chem ; 96(4): 1427-1435, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38226591

RESUMEN

Although porphyrins make up a promising class of electrochemiluminescence (ECL) luminophors, their aggregation-caused quenching (ACQ) characteristics lead to inferior ECL efficiency (ΦECL). Furthermore, current application of porphyrins is limited to cathodic emission. This work creatively exploited a cage-like porous complex (referred to as SWU-1) as the microreactor to recede the ACQ effect while modulating dual ECL emission of meso-tetra(4-carboxyphenyl)porphine (TCPP), which self-assembled with SWU-1 to form TCPP@SWU-1 nanocapsules (TCPP@SWU-1 NCs). As the microreactor, SWU-1 not only effectively constrained TCPP aggregation to improve electron-hole recombination efficiency but also improved stability of anion and cation radicals, thus significantly enhancing the dual emission of TCPP. Compared with TCPP aggregates, the resulting TCPP@SWU-1 NCs exhibited significantly enhanced anodic and cathodic emission, and their ΦECL was increased by 8.7-fold and 3.9-fold, respectively. Furthermore, black hole quencher-2 (BHQ2) can simultaneously quench anodic and cathodic signals. TCPP@SWU-1 NCs coupling BHQ2 conveniently achieved an ECL ratio detection of miRNA-126, and the limit of detection (S/N = 3) was 4.1 aM. This work pioneered the development of the cage-like porous complex SWU-1 as the microreactor to alleviate defects of the ACQ effect and mediate dual emission of TCPP. The coupling of dual-emitting TCPP@SWU-1 NCs and dual-function moderator BHQ2 created a novel single-luminophor-based ratio system for bioanalysis and provided a promising ECL analysis approach for miRNA-126.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Porfirinas , Porosidad , Fotometría , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos
8.
Anal Chem ; 96(12): 5022-5028, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38470563

RESUMEN

For conventional potential-resolved ratiometric electrochemiluminescence (ECL) systems, the introduction of multiplex coreactants is imperative. However, the undesirable interactions between different coreactants inevitably affect analytical accuracy and sensitivity. Herein, through the coordination of aggregation-induced emission ligands with gadolinium cations, the self-luminescent metal-organic framework (Gd-MOF) is prepared and serves as a novel coreactant-free anodic ECL emitter. By the intercalation of [Ru(bpy)2dppz]2+ with light switch effect into DNA duplex, one high-efficiency cathodic ECL probe is obtained using K2S2O8 as a coreactant. In the presence of acetamiprid, the strong affinity between the target and its aptamer induces the release of [Ru(bpy)2dppz]2+, resulting in a decreasing cathode signal and an increasing anode signal owing to the ECL resonance energy transfer from Gd-MOF to [Ru(bpy)2dppz]2+. In this way, an efficient dual-signal ECL aptasensor is constructed for the ratiometric analysis of acetamiprid, exhibiting a remarkably low detection limit of 0.033 pM. Strikingly, by using only one exogenous coreactant, the cross interference from multiple coreactants can be eliminated, thus improving the detection accuracy. The developed high-performance ECL sensing platform is successfully applied to monitor the residual level of acetamiprid in real samples, demonstrating its potential application in the field of food security.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Neonicotinoides , Mediciones Luminiscentes/métodos , Técnicas Biosensibles/métodos , Fotometría , Técnicas Electroquímicas/métodos
9.
Anal Chem ; 96(2): 934-942, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38165813

RESUMEN

The establishment of rapid target identification and analysis methods for antibiotic resistance genes (ARGs) is urgently needed. In this study, we unprecedently designed a target-catalyzed hairpin assembly (CHA) electrochemiluminescent (ECL) biosensor for the ultrasensitive detection of ampicillin resistance genes (ARGAMP) based on a novel, efficient near-infrared ruthenium carbene complex/TPrA/PEI ternary ECL system with low oxidation potential. The ternary NIR-ECL system illustrated in this work displayed double ECL intensity in comparison with their corresponding traditional binary ECL system. The as-prepared ECL biosensor illustrated in this work demonstrates highly selective and sensitive determination of ARGAMP from 1 fM to 1 nM and a low detection limit of 0.23 fM. Importantly, it also exhibits good accuracy and stabilities to identify ARGAMP in plasmid and bacterial genome DNA, which demonstrates its excellent reliability and great potential in detecting ARGAMP in real environmental samples.


Asunto(s)
Técnicas Biosensibles , Metano/análogos & derivados , Rutenio , Técnicas Electroquímicas/métodos , Reproducibilidad de los Resultados , Resistencia a la Ampicilina , Mediciones Luminiscentes/métodos , ADN , Técnicas Biosensibles/métodos , Límite de Detección
10.
Anal Chem ; 96(1): 514-521, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38145394

RESUMEN

Modulating the photon emission of the luminophore for boosting chemiluminescence (CL) response is very crucial for the construction of highly sensitive sensors via the introduction of functionalized materials. Herein, the integration of the emitter and coreactant accelerator into one entity is realized by simply assembling cucurbit[7]uril (CB[7]) on the surface of gold nanoparticles (AuNPs) through simple assembly via a Au-O bond. The loaded CB[7] on the AuNPs improves their catalytic capacity for the generation of hydroxyl radicals(•OH). Moreover, the host-guest recognition interaction between luminol and CB[7] enables the capture of luminol on AuNPs efficiently. Also, the intramolecular electron-transfer reaction between the luminol and •OH enables the CL response more effectively in the entity, which greatly boosts photon emission ca 100 folds compared with the individual luminol/H2O2. The host-guest recognition between luminol and CB[7] is revealed by Fourier transform infrared spectroscopy, electrochemical, and thermogravimetric characterization. Moreover, the proposed CL system is successfully used for the sensitive and selective determination of dopamine (DA) based on a synergistic quenching mechanism including the competition quenching and radical-scavenging effect from DA. The present amplified strategy by integrating recognized and amplified elements within one entity simplifies the sensing process and holds great potential for sensitive analysis based on the self-enhanced strategies.


Asunto(s)
Luminol , Nanopartículas del Metal , Luminol/química , Nanopartículas del Metal/química , Oro/química , Dopamina , Luminiscencia , Peróxido de Hidrógeno/química , Mediciones Luminiscentes/métodos
11.
Anal Chem ; 96(4): 1678-1685, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38215346

RESUMEN

In this paper, an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of CA19-9 was constructed using ternary compound CdSSe nanoparticles as ECL emitter. The immunosensor employs Cu2S and gold-doped diindium trioxide (Au-In2O3) nanocubes as coreaction accelerators to achieve a double-amplification strategy. In general, a hexagonal maple leaf-shaped Cu2S with a large surface area was selected as the template, and the in situ growth of CdSSe on its surface was achieved using a hydrothermal method. The presence of Cu2S not only inhibited the aggregation of CdSSe nanoparticles to reduce their surface energy but also acted as an ECL cathode coreaction promoter, facilitating the generation of SO4•-. Consequently, the ECL intensity of CdSSe was significantly enhanced, and the reduction potential was significantly lower. In addition, the template method was employed to synthesize Au-In2O3 nanocubes, which offers the advantage of directly connecting materials with antibodies, resulting in a more stable construction of the immunosensor. Furthermore, In2O3 serves as a coreaction promoter, enabling the amplification strategy for ECL intensity of CdSSe, thus contributing to the enhanced sensitivity and performance of the immunosensor. The constructed immunosensor exhibited a wide linear range (100 µU mL-1 to 100 U mL-1) and a low detection limit of 80 µU mL-1, demonstrating its high potential and practical value for sensitive detection of CA19-9.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Antígeno CA-19-9 , Inmunoensayo/métodos , Técnicas Biosensibles/métodos , Pruebas Inmunológicas , Semiconductores , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , Oro
12.
Anal Chem ; 96(5): 2165-2172, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38284353

RESUMEN

The profiling of multiple glycans on a single cell is important for elucidating glycosylation mechanisms and accurately identifying disease states. Herein, we developed a closed bipolar electrode (BPE) array chip for live single-cell trapping and in situ galactose and sialic acid detection with the electrochemiluminescence (ECL) method. Methylene blue-DNA (MB-DNA) as well as biotin-DNA (Bio-DNA) codecorated AuNPs were prepared as nanoprobes, which were selectively labeled on the cell surface through chemoselective labeling techniques. The individual cell was captured and labeled in the microtrap of the cathodic chamber, under an appropriate potential, MB molecules on the cellular membrane underwent oxidation, triggering the reduction of [Ru(bpy)3]2+/TPA and consequently generating ECL signals in the anodic chamber. The abundance of MB groups on the single cell enabled selective monitoring of both sialic acid and galactosyl groups with high sensitivity using ECL. The sialic acid and galactosyl content per HepG2 cell were detected to be 0.66 and 0.82 fmol, respectively. Through comprehensive evaluation of these two types of glycans on a single cell, tumor cells, and normal cells could be effectively discriminated and the accuracy of single-cell heterogeneous analysis was improved. Additionally, dynamic monitoring of variations in galactosyl groups on the surface of the single cell was also achieved. This work introduced a straightforward and convenient approach for heterogeneity analysis among single cells.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Mediciones Luminiscentes/métodos , Oro , Ácido N-Acetilneuramínico , Técnicas Biosensibles/métodos , Electrodos , ADN , Técnicas Electroquímicas/métodos
13.
Anal Chem ; 96(8): 3655-3661, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38362869

RESUMEN

Chemiluminescence is a powerful analytical technique with many advantages, while aptamers are well-known as good molecular recognition units. However, many aptamer-based chemiluminescence assays employed interface sensing, which often needed several immobilization, separation, and washing steps. To minimize the risks of contamination and false-positive, we for the first time proposed a photocatalytic aptamer chemiluminescent system for a homogeneous, label-free, generic assay of small molecules. After binding to a DNA aptamer, thioflavin T has a unique photocatalytic oxidase activity to activate the system's luminol chemiluminescence. Then, the specific binding between the aptamer and target molecules will compete with the above process. Therefore, we can realize the efficient assay of different analytes including estradiol and adenosine. Such a homogeneous chemiluminescent system allowed a direct assay of small molecules with limits of detection in a nM level. Several control tests were carried out to avoid possible false-positive results, which were originated from the interactions between analytes and sensing interfaces previously. This homogeneous chemiluminescent system provides a useful strategy to reliably assay various analytes in the pharmacy or biology field.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Mediciones Luminiscentes/métodos , Luminol/química , Adenosina
14.
Anal Chem ; 96(12): 4809-4816, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466895

RESUMEN

As an effective ECL emitter, tetraphenylethene (TPE)-based molecules have recently been reported with aggregation-induced electrochemiluminescence (AIECL) property, while it is still a big challenge to control its aggregation states and obtain uniform aggregates with intense ECL emission. In this study, we develop three TPE derivatives carrying a pyridinium group, an alkyl chain, and a quaternary ammonium group via the Menschutkin reaction. The resulting molecules exhibit significantly red-shifted FL and enhanced ECL emissions due to the tunable reduction of the energy gap between the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs). More importantly, the amphiphilicity of the as-developed molecules enables their spontaneous self-assembly into well-controlled spherical nanoaggregates, and the ECL intensity of nanoaggregates with 3 -CH2- (named as C3) is 17.0-fold higher compared to that of the original 4-(4-(1,2,2-triphenylvinyl)phenyl)pyridine (TPP) molecule. These cationic nanoaggregates demonstrate a high affinity toward bacteria, and an ECL sensor for the profiling of Escherichia coli (E. coli) was developed with a broad linear range and good selectivity in the presence of an E. coli-specific aptamer. This study provides an effective way to enhance the ECL emission of TPE molecules through their derivatization and a simple way to prepare well-controlled AIECL nanoaggregates for ECL application.


Asunto(s)
Técnicas Biosensibles , Escherichia coli , Límite de Detección , Mediciones Luminiscentes/métodos , Fotometría , Oligonucleótidos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
15.
Anal Chem ; 96(18): 7240-7247, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38661330

RESUMEN

In light of deep tissue penetration and ultralow background, near-infrared (NIR) persistent luminescence (PersL) bioprobes have become powerful tools for bioapplications. However, the inhomogeneous signal attenuation may significantly limit its application for precise biosensing owing to tissue absorption and scattering. In this work, a PersL lifetime-based nanoplatform via deep learning was proposed for high-fidelity bioimaging and biosensing in vivo. The persistent luminescence imaging network (PLI-Net), which consisted of a 3D-deep convolutional neural network (3D-CNN) and the PersL imaging system, was logically constructed to accurately extract the lifetime feature from the profile of PersL intensity-based decay images. Significantly, the NIR PersL nanomaterials represented by Zn1+xGa2-2xSnxO4: 0.4 % Cr (ZGSO) were precisely adjusted over their lifetime, enabling the PersL lifetime-based imaging with high-contrast signals. Inspired by the adjustable and reliable PersL lifetime imaging of ZGSO NPs, a proof-of-concept PersL nanoplatform was further developed and showed exceptional analytical performance for hypochlorite detection via a luminescence resonance energy transfer process. Remarkably, on the merits of the dependable and anti-interference PersL lifetimes, this PersL lifetime-based nanoprobe provided highly sensitive and accurate imaging of both endogenous and exogenous hypochlorite. This breakthrough opened up a new way for the development of high-fidelity biosensing in complex matrix systems.


Asunto(s)
Técnicas Biosensibles , Aprendizaje Profundo , Ácido Hipocloroso , Técnicas Biosensibles/métodos , Ácido Hipocloroso/análisis , Luminiscencia , Rayos Infrarrojos , Humanos , Animales , Nanoestructuras/química , Mediciones Luminiscentes/métodos , Ratones
16.
Anal Chem ; 96(24): 10102-10110, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38831537

RESUMEN

Owing to the limitations of dual-signal luminescent materials and coreactants, constructing a ratiometric electrochemiluminescence (ECL) biosensor based on a single luminophore is a huge challenge. This work developed an excellent zirconium metal-organic framework (MOF) Zr-TBAPY as a single ECL luminophore, which simultaneously exhibited cathodic and anodic ECL without any additional coreactants. First, Zr-TBAPY was successfully prepared by a solvothermal method with 1,3,6,8-tetra(4-carboxyphenyl)pyrene (TBAPY) as the organic ligand and Zr4+ cluster as the metal node. The exploration of ECL mechanisms confirmed that the cathodic ECL of Zr-TBAPY originated from the pathway of reactive oxygen species (ROS) as the cathodic coreactant, which is generated by dissolved oxygen (O2), while the anodic ECL stemmed from the pathway of generated Zr-TBAPY radical itself as the anodic coreactant. Besides, N,N-diethylethylenediamine (DEDA) was developed as a regulator to ECL signals, which quenched the cathodic ECL and enhanced the anodic ECL, and the specific mechanisms of its dual action were also investigated. DEDA can act as the anodic coreactant while consuming the cathodic coreactant ROS. Therefore, the coreactant-free ratiometric ECL biosensor was skillfully constructed by combining the regulatory role of DEDA with the signal amplification reaction of catalytic hairpin assembly (CHA). The ECL biosensor realized the ultrasensitive ratio detection of HIV DNA. The linear range was 1 fM to 100 pM, and the limit of detection (LOD) was as low as 550 aM. The outstanding characteristic of Zr-TBAPY provided new thoughts for the development of ECL materials and developed a new way of fabricating the coreactant-free and single-luminophore ratiometric ECL platform.


Asunto(s)
Técnicas Biosensibles , ADN Viral , Técnicas Electroquímicas , Mediciones Luminiscentes , Estructuras Metalorgánicas , Circonio , Circonio/química , Estructuras Metalorgánicas/química , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , ADN Viral/análisis , Técnicas Biosensibles/métodos , Límite de Detección , Humanos , VIH/aislamiento & purificación
17.
Anal Chem ; 96(25): 10459-10466, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38866706

RESUMEN

Exosomes, as an emerging biomarker, have exhibited remarkable promise in early cancer diagnosis. Here, a highly sensitive, selective, and automatic electrochemiluminescence (ECL) method for the detection of cancerous exosomes was developed. Specific aptamer-(EK)4 peptide-tagged magnetic beads (MBs-(EK)4-aptamer) were designed as a magnetic capture probe in which the (EK)4 peptide was used to reduce the steric binding hindrance of cancerous exosomes with a specific aptamer. One new universal ECL signal nanoprobe (CD9 Ab-PEG@SiO2ϵRu(bpy)32+) was designed and synthesized by using microporous SiO2 nanoparticles as the carrier for loading ECL reagent Ru(bpy)32+, polyethylene glycol (PEG) layer, and anticluster of differentiation 9 antibody (CD9 Ab). A "sandwich" biocomplex was formed on the surface of the magnetic capture probe after mixing the capture probe, target exosomes, and ECL signal nanoprobe, and then it was introduced into an automated ECL analyzer for rapid and automatic ECL measurement. It was found that the designed signal nanoprobe shows a 270-fold improvement in the signal-to-noise ratio than that of the ruthenium complex-labeled CD9 antibody signal probe. The relative ECL intensity was proportional to MCF-7 exosomes as a model in the range of 102 to 104 particle/µL, with a detection limit of 11 particle/µL. Furthermore, the ECL method was employed to discriminate cancerous exosomes based on fingerprint responses using the designed multiple magnetic capture probes and the universal ECL signal nanoprobe. This work demonstrates that the utilization of a designed automated ECL tactic using the MBs-(EK)4-aptamer capture probe and the CD9 Ab-PEG@SiO2ϵRu(bpy)32+ signal nanoprobe will provide a unique and robust method for the detection and discrimination of cancerous exosomes.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Electroquímicas , Exosomas , Mediciones Luminiscentes , Humanos , Exosomas/química , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Células MCF-7 , Dióxido de Silicio/química , Técnicas Biosensibles/métodos , Tetraspanina 29/análisis , Polietilenglicoles/química
18.
Anal Chem ; 96(2): 943-948, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38166359

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) exhibits multiresistance to a plethora of antibiotics, therefore, accurate detection methods must be employed for timely identification to facilitate effective infection control measures. Herein, we construct a high-efficiency ratiometric electrochemiluminescent (ECL) biosensor that integrates multiple exonuclease (Exo) III-assisted cyclic amplification units for rapid detection of trace amounts of MRSA. The target bacteria selectively bind to the aptamer, triggering the release of two single-stranded DNAs. One released DNA strand initiates the opening of a hairpin probe, inducing exonuclease cleavage to generate a single strand that can form a T-shaped structure with the double strand connecting the oxidation-reduction (O-R) emitter of N-(4-aminobutyl)-N-ethylisoluminol gold (ABEI-Au). Consequently, ABEI-Au is released upon Exo III cleavage. The other strand unwinds the hairpin DNA structure on the surface of the reduction-oxidation (R-O) emitter ZIF-8@CdS, facilitating the subsequent release of a specific single strand through Exo III cleavage. This process effectively anchors the cathode-emitting material to the electrode. The Fe(III) metal-organogel (Fe-MOG) is selected as a substrate, in which the catalytic reduction of hydrogen peroxide by Fe(III) active centers accelerates the generation of reactive oxygen species and enhances signals from both ABEI-Au and ZIF-8@CdS. In this way, the two emitters cooperate to achieve bacterial detection at the single-cell level, and a good linear range is obtained in the range of 100-107 CFU/mL. Moreover, the sensor exhibited excellent performance in detecting MRSA across various authentic samples and accurately quantifying MRSA levels in serum samples, demonstrating its immense potential in addressing clinical bacterial detection challenges.


Asunto(s)
Técnicas Biosensibles , Exodesoxirribonucleasas , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Mediciones Luminiscentes/métodos , Compuestos Férricos , ADN/química , Oro/química , Exonucleasas , Técnicas Biosensibles/métodos , Límite de Detección , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química
19.
Anal Chem ; 96(6): 2702-2710, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38289033

RESUMEN

Design of a ratiometric method is a promising pathway to improve the sensitivity and reliability of electrochemiluminescent (ECL) assay, for which the signals produced at two distinct potentials change reversely as it is applied to the target analyte. Herein, a biosensor for ECL assay of methicillin-resistant Staphylococcus aureus (MRSA) was constructed by immobilizing porcine IgG for capturing MRSA onto an electrode that was precoated with ß-cyclodextrin-conjugated luminol nanoparticles (ß-CD-Lu NPs) as an anodic luminophore. MOF PCN 224 loaded with an atomically distributed Zn element (PCN 224/Zn) was conjugated with phage recombinant cellular-binding domain (CBD) to act as a cathodic luminophore for tracing MRSA. After the formation of the sandwich complex of ß-CD-Lu NPs-porcine IgG/MRSA/PCN 224/Zn-CBD on the biosensor, two ECL reactions were triggered with cyclic voltammetry. The anodic process of the ß-CD-Lu NPs-H2O2 system and the cathodic process of the PCN 224/Zn-S2O82- system competed to react with reactive oxygen species (ROS) for producing ECL emission, which led to a reverse change of the two signals. Meanwhile, the overlap of the ß-CD-Lu NPs emission spectrum and PCN 224/Zn absorption spectrum effectively triggered ECL resonance energy transfer between the donor (ß-CD-Lu NPs) and the acceptor (PCN 224/Zn). Thus, a ratiometric ECL method was proposed for assaying MRSA with a dual-mechanism-driven mode. The detection limit for assaying MRSA is as low as 12 CFU/mL. The biosensor was applied to assay MRSA in various biological samples with recoveries ranging from 84.9 to 111.3%.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Animales , Porcinos , Mediciones Luminiscentes/métodos , Reproducibilidad de los Resultados , Peróxido de Hidrógeno , Técnicas Biosensibles/métodos , Inmunoglobulina G , Técnicas Electroquímicas/métodos , Límite de Detección , Nanopartículas del Metal/química
20.
Anal Chem ; 96(15): 5852-5859, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38556977

RESUMEN

A multicolor electrochemiluminescence (ECL) biosensor based on a closed bipolar electrode (BPE) array was proposed for the rapid and intuitive analysis of three prostate cancer staging indicators. First, [Irpic-OMe], [Ir(ppy)2(acac)], and [Ru(bpy)3]2+ were applied as blue, green, and red ECL emitters, respectively, whose mixed ECL emission colors covered the whole visible region by varying the applied voltages. Afterward, we designed a simple Mg2+-dependent DNAzyme (MNAzyme)-driven tripedal DNA walker (TD walker) to release three output DNAs. Immediately after, three output DNAs were added to the cathodic reservoirs of the BPE for incubation. After that, we found that the emission colors from the anode of the BPE changed as a driving voltage of 8.0 V was applied, mainly due to changes in the interfacial potential and faradaic currents at the two poles of the BPE. Via optimization of the experimental parameters, cutoff values of such three indicators at different clinical stages could be identified instantly with the naked eye, and standard precision swatches with multiple indicators could be prepared. Finally, in order to precisely determine the prostate cancer stage, the multicolor ECL device was used for clinical analysis, and the resulting images were then compared with standard swatches, laying the way for accurate prostate cancer therapy.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Próstata , Masculino , Humanos , Mediciones Luminiscentes/métodos , Fotometría , Neoplasias de la Próstata/diagnóstico , Antígeno Prostático Específico , ADN , Técnicas Biosensibles/métodos , Electrodos , Técnicas Electroquímicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA