Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 44, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233877

RESUMEN

Bacterial meningitis remains a leading cause of infection-related mortality worldwide. Although Escherichia coli (E. coli) is the most common etiology of neonatal meningitis, the underlying mechanisms governing bacterial blood-brain barrier (BBB) disruption during infection remain elusive. We observed that infection of human brain microvascular endothelial cells with meningitic E. coli triggers the activation of early growth response 1 (Egr-1), a host transcriptional activator. Through integrated chromatin immunoprecipitation sequencing and transcriptome analysis, we identified Egr-1 as a crucial regulator for maintaining BBB integrity. Mechanistically, Egr-1 induced cytoskeletal changes and downregulated tight junction protein expression by directly targeting VEGFA, PDGFB, and ANGPTL4, resulting in increased BBB permeability. Meanwhile, Egr-1 also served as a master regulator in the initiation of neuroinflammatory response during meningitic E. coli infection. Our findings support an Egr-1-dependent mechanism of BBB disruption by meningitic E. coli, highlighting a promising therapeutic target for bacterial meningitis.


Asunto(s)
Meningitis Bacterianas , Meningitis por Escherichia coli , Humanos , Recién Nacido , Barrera Hematoencefálica/microbiología , Células Endoteliales/metabolismo , Escherichia coli , Meningitis Bacterianas/metabolismo , Meningitis por Escherichia coli/metabolismo
2.
Cell Commun Signal ; 22(1): 123, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360663

RESUMEN

BACKGROUND: Meningitic Escherichia coli (E. coli) is the major etiological agent of bacterial meningitis, a life-threatening infectious disease with severe neurological sequelae and high mortality. The major cause of central nervous system (CNS) damage and sequelae is the bacterial-induced inflammatory storm, where the immune response of the blood-brain barrier (BBB) is crucial. METHODS: Western blot, real-time PCR, enzyme-linked immunosorbent assay, immunofluorescence, and dual-luciferase reporter assay were used to investigate the suppressor role of transforming growth factor beta 1 (TGFß1) in the immune response of brain microvascular endothelial cells elicited by meningitic E. coli. RESULT: In this work, we showed that exogenous TGFß1 and induced noncanonical Hedgehog (HH) signaling suppressed the endothelial immune response to meningitic E. coli infection via upregulation of intracellular miR-155. Consequently, the increased miR-155 suppressed ERK1/2 activation by negatively regulating KRAS, thereby decreasing IL-6, MIP-2, and E-selectin expression. In addition, the exogenous HH signaling agonist SAG demonstrated promising protection against meningitic E. coli-induced neuroinflammation. CONCLUSION: Our work revealed the effect of TGFß1 antagonism on E. coli-induced BBB immune response and suggested that activation of HH signaling may be a potential protective strategy for future bacterial meningitis therapy. Video Abstract.


Asunto(s)
Meningitis Bacterianas , Meningitis por Escherichia coli , MicroARNs , Humanos , Escherichia coli/genética , Proteínas Hedgehog/metabolismo , Células Endoteliales/metabolismo , Meningitis por Escherichia coli/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica/microbiología , Meningitis Bacterianas/metabolismo , Inmunidad , MicroARNs/metabolismo
3.
BMC Pediatr ; 24(1): 339, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755556

RESUMEN

BACKGROUND: Neonatal Escherichia coli (E coli) meningitis results in significant morbidity and mortality. We present a case of a premature infant with extensive central nervous system (CNS) injury from recurrent E coli infection and the non-traditional methods necessary to identify and clear the infection. CASE PRESENTATION: The infant was transferred to our institution's pediatric intensive care unit (PICU) after recurrence of E coli CNS infection requiring neurosurgical intervention. He had been treated for early onset sepsis (EOS) with ampicillin and gentamicin for 10 days followed by rapid development of ampicillin-resistant E coli septic shock and meningitis after discontinuation of antibiotics. Sterility of the CNS was not confirmed at the end of 21 days of cefepime therapy and was subsequently followed by recurrent ampicillin-resistant E coli septic shock and CNS infection. Despite 6 weeks of appropriate therapy with sterility of CSF by traditional methods, he suffered from intractable seizures with worsening hydrocephalus. Transferred to our institution, he underwent endoscopic 3rd ventriculostomy with cyst fenestration revealing purulent fluid and significant pleocytosis. An additional 3 weeks of systemic and intraventricular antibiotics with cefepime and tobramycin were given but a significant CNS neutrophil-predominant pleocytosis persisted (average of ∼ 21,000 cells/mm3). Repeated gram stains, cultures, polymerase chain reaction (PCR) testing, and metagenomic next generation sequencing (NGS) testing of CSF were negative for pathogens but acridine orange stain (AO) revealed numerous intact rod-shaped bacteria. After the addition of ciprofloxacin, sterility and resolution of CSF pleocytosis was finally achieved. CONCLUSION: Neonatal E coli meningitis is a well-known entity but unlike other bacterial infections, it has not proven amenable to shorter, more narrow-spectrum antibiotic courses or limiting invasive procedures such as lumbar punctures. Further, microbiologic techniques to determine CSF sterility suffer from poorly understood limitations leading to premature discontinuation of antibiotics risking further neurologic damage in vulnerable hosts.


Asunto(s)
Antibacterianos , Meningitis por Escherichia coli , Humanos , Recién Nacido , Antibacterianos/uso terapéutico , Recien Nacido Prematuro , Enfermedades del Prematuro/tratamiento farmacológico , Enfermedades del Prematuro/diagnóstico , Enfermedades del Prematuro/microbiología , Meningitis por Escherichia coli/tratamiento farmacológico
4.
FASEB J ; 36(3): e22197, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35147989

RESUMEN

Neonatal meningitis-associated Escherichia coli (NMEC) is among the leading causes of bacterial meningitis and sepsis in newborn infants. Several virulence factors have been identified as common among NMEC, and have been shown to play an important role in the development of bacteremia and/or meningitis. However, there is significant variability in virulence factor expression between NMEC isolates, and relatively little research has been done to assess the impact of variable virulence factor expression on immune cell activation and the outcome of infection. Here, we investigated the role of NMEC strain-dependent P2X receptor (P2XR) signaling on the outcome of infection in neonatal mice. We found that alpha-hemolysin (HlyA)-expressing NMEC (HlyA+ ) induced robust P2XR-dependent macrophage cell death in vitro, while HlyA- NMEC did not. P2XR-dependent cell death was inflammasome independent, suggesting an uncoupling of P2XR and inflammasome activation in the context of NMEC infection. In vivo inhibition of P2XRs was associated with increased mortality in neonatal mice infected with HlyA+ NMEC, but had no effect on the survival of neonatal mice infected with HlyA- NMEC. Furthermore, we found that P2XR-dependent protection against HlyA+ NMEC in vivo required macrophages, but not neutrophils or NLRP3. Taken together, these data suggest that HlyA+ NMEC activates P2XRs which in turn confers macrophage-dependent protection against infection in neonates. In addition, our findings indicate that strain-dependent virulence factor expression should be taken into account when studying the immune response to NMEC.


Asunto(s)
Proteínas de Escherichia coli/toxicidad , Proteínas Hemolisinas/toxicidad , Inflamasomas/metabolismo , Meningitis por Escherichia coli/metabolismo , Sepsis Neonatal/metabolismo , Receptores Purinérgicos P2X/metabolismo , Animales , Células Cultivadas , Escherichia coli K12 , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Macrófagos/metabolismo , Meningitis por Escherichia coli/microbiología , Ratones , Ratones Endogámicos C57BL , Sepsis Neonatal/microbiología , Receptores Purinérgicos P2X/genética
5.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37373064

RESUMEN

Bacterial meningitis is a devastating disease occurring worldwide, with up to half of survivors left with permanent neurological sequelae. Neonatal meningitis-causing Escherichia coli (NMEC) is the most common Gram-negative bacillary organism that causes meningitis, particularly during the neonatal period. Here, RNA-seq transcriptional profiles of microglia in response to NMEC infection show that microglia are activated to produce inflammatory factors. In addition, we found that the secretion of inflammatory factors is a double-edged sword that promotes polymorphonuclear neutrophil (PMN) recruitment to the brain to clear the pathogens but, at the same time, induces neuronal damage, which may be related to the neurological sequelae. New neuroprotective therapeutic strategies must be developed for the treatment of acute bacterial meningitis. We found that transforming growth factor-ß (TGF-ß) may be a strong candidate in the treatment of acute bacterial meningitis, as it shows a therapeutic effect on bacterial-meningitis-induced brain damage. Prevention of disease and early initiation of the appropriate treatment in patients with suspected or proven bacterial meningitis are the key factors in reducing morbidity and mortality. Novel antibiotic and adjuvant treatment strategies must be developed, and the main goal for new therapies will be dampening the inflammatory response. Based on this view, our findings may help develop novel strategies for bacterial meningitis treatment.


Asunto(s)
Infecciones por Escherichia coli , Meningitis Bacterianas , Meningitis por Escherichia coli , Recién Nacido , Humanos , Microglía , Meningitis por Escherichia coli/microbiología , Meningitis Bacterianas/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli
6.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36613745

RESUMEN

Avian meningitis Escherichia coli (E. coli) can cause acute bacterial meningitis which threatens poultry health, causes great economic losses in the poultry industry, and has recently been speculated as a potential zoonotic pathogen. Melatonin can counteract bacterial meningitis-induced disruption of the blood-brain barrier (BBB), neuroinflammation, and reduce mortality. There are increasing data showing that melatonin's beneficial effects on bacterial meningitis are associated with intestinal microbiota. In this study, our data showed that melatonin alleviated neurological symptoms, enhanced survival rate, protected the integrity of the BBB, reduced the bacterial load in various tissues and blood, and inhibited inflammation and neutrophil infiltration of brain tissue in an APEC TW-XM-meningitis mice model. The results of 16S rRNA showed that melatonin pretreatment significantly maintained the composition of intestinal microbiota in APEC-meningitis mice. The abundance and diversity of intestinal microbiota were disturbed in APEC TW-XM-meningitis mice, with a decreased ratio of Firmicutes to Bacteroides and an increased the abundance of Proteobacteria. Melatonin pretreatment could significantly improve the composition and abundance of harmful bacteria and alleviate the decreased abundance of beneficial bacteria. Importantly, melatonin failed to affect the meningitis neurologic symptoms caused by APEC TW-XM infection in antibiotic-pretreated mice. In conclusion, the results suggest that melatonin can effectively prevent meningitis induced by APEC TW-XM infection in mice, depending on the intestinal microbiota. This finding is helpful to further explore the specific target mechanism of melatonin-mediated intestinal microbiota in the prevention of and protection against Escherichia coli meningitis.


Asunto(s)
Infecciones por Escherichia coli , Microbioma Gastrointestinal , Melatonina , Meningitis Bacterianas , Meningitis por Escherichia coli , Enfermedades de las Aves de Corral , Animales , Ratones , Meningitis por Escherichia coli/tratamiento farmacológico , Escherichia coli/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Melatonina/farmacología , Melatonina/uso terapéutico , ARN Ribosómico 16S/genética , Meningitis Bacterianas/tratamiento farmacológico , Enfermedades de las Aves de Corral/microbiología , Pollos/genética
7.
Microbiology (Reading) ; 167(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34623236

RESUMEN

Appropriate interpretation of environmental signals facilitates niche specificity in pathogenic bacteria. However, the responses of niche-specific pathogens to common host signals are poorly understood. d-Serine (d-ser) is a toxic metabolite present in highly variable concentrations at different colonization sites within the human host that we previously found is capable of inducing changes in gene expression. In this study, we made the striking observation that the global transcriptional response of three Escherichia coli pathotypes - enterohaemorrhagic E. coli (EHEC), uropathogenic E. coli (UPEC) and neonatal meningitis-associated E. coli (NMEC) - to d-ser was highly distinct. In fact, we identified no single differentially expressed gene common to all three strains. We observed the induction of ribosome-associated genes in extraintestinal pathogens UPEC and NMEC only, and the induction of purine metabolism genes in gut-restricted EHEC, and UPEC indicating distinct transcriptional responses to a common signal. UPEC and NMEC encode dsdCXA - a genetic locus required for detoxification and hence normal growth in the presence of d-ser. Specific transcriptional responses were induced in strains accumulating d-ser (WT EHEC and UPEC/NMEC mutants lacking the d-ser-responsive transcriptional activator DsdC), corroborating the notion that d-ser is an unfavourable metabolite if not metabolized. Importantly, many of the UPEC-associated transcriptome alterations correlate with published data on the urinary transcriptome, supporting the hypothesis that d-ser sensing forms a key part of urinary niche adaptation in this pathotype. Collectively, our results demonstrate distinct pleiotropic responses to a common metabolite in diverse E. coli pathotypes, with important implications for niche selectivity.


Asunto(s)
Escherichia coli/genética , Serina/metabolismo , Transcriptoma , Escherichia coli/crecimiento & desarrollo , Escherichia coli/aislamiento & purificación , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Meningitis por Escherichia coli/microbiología , Especificidad de la Especie , Infecciones Urinarias/microbiología
8.
J Neuroinflammation ; 18(1): 114, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33985523

RESUMEN

BACKGROUND: Escherichia coli is the most common Gram-negative bacterium causing meningitis, and E. coli meningitis is associated with high mortality and morbidity throughout the world. Our previous study showed that E. coli can colonize the brain and cause neuroinflammation. Increasing evidence supports the involvement of miRNAs as key regulators of neuroinflammation. However, it is not clear whether these molecules participate in the regulation of meningitic E. coli-mediated neuroinflammation. METHODS: The levels of miR-155 and miR-146a, as well as their precursors, in E. coli-infected astrocytes were measured using quantitative real-time PCR (qPCR). Overexpression and knockdown studies of miR-155 and miR-146a were performed to observe the effects on bacterial loads, cytokines, chemokines, and NF-κB signaling pathways. Bioinformatics methods were utilized to predict the target genes, and these target genes were validated using qPCR, Western blotting, and luciferase reporter system. In vivo knockdown of miR-155 and miR-146a was carried out to observe the effects on bacterial loads, inflammatory genes, astrocyte activation, microglia activation, and survival in a mouse model. RESULTS: The levels of miR-155, miR-146a, and their precursors were significantly increased in astrocytes during E. coli infection. miR-155 and miR-146a were induced by the NF-κB-p65 signaling pathway upon infection. Overexpressing and inhibiting miR-155 and miR-146a in astrocytes did not affect the bacterial loads. Further, the in vitro overexpression of miR-155 and miR-146a suppressed the E. coli-induced inflammatory response, whereas the inhibition of miR-155 and miR-146a enhanced it. Mechanistically, miR-155 inhibited TAB2, and miR-146a targeted IRAK1 and TRAF6; therefore, they functioned collaboratively to modulate TLR-mediated NF-κB signaling. In addition, both miR-155 and miR-146a could regulate the EGFR-NF-κB signaling pathway. Finally, the in vivo suppression of E. coli-induced miR-155 and miR-146a further promoted the production of inflammatory cytokines, aggravated astrocyte and microglia activation, and decreased mouse survival time, without affecting the bacterial loads in the blood and brain. CONCLUSIONS: E. coli infection induced miR-155 and miR-146a, which collectively regulated bacteria-triggered neuroinflammatory responses through negative feedback regulation involving the TLR-mediated NF-κB and EGFR-NF-κB signaling pathways, thus protecting the central nervous system from further neuroinflammatory damage.


Asunto(s)
Inflamación/microbiología , Meningitis por Escherichia coli/inmunología , Meningitis por Escherichia coli/metabolismo , MicroARNs/inmunología , MicroARNs/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antagomirs , Astrocitos/inmunología , Astrocitos/microbiología , Línea Celular , Escherichia coli/inmunología , Inflamación/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1 , Ratones , FN-kappa B/metabolismo , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/metabolismo
9.
Microb Pathog ; 160: 105199, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34560248

RESUMEN

Neonatal bacterial meningitis is a life-threatening disease in newborns, and neonatal meningitis Escherichia coli (NMEC) is the second most frequent bacteria causing this disease worldwide. In order to further understand the characteristics of this pathogen, an E. coli isolate W224 N from newborns with meningitis was sequenced for detailed genetic characterization and the virulence was tested by a series of phenotypic experiments. W224 N has a circular chromosome and three plasmids. It belongs to ST95 and the serotype is O18:H7. Comparative genomic analysis showed that W224 N was closely related to E. coli neonatal meningitis isolates RS218 and NMEC O18. There are 11 genomic islands in W224 N and most of the GIs are specific to W224 N. W224 N has most of the virulence factors other neonatal meningitis isolates have. The virulence genes located both on the genome and plasmid. At the same time, we found a virulence factor cdiA only present in W224 N but absent in the other five genomes analyzed. In vitro experiment showed that W224 N has strong serum resistance ability, low biofilm formation ability and high flagellar motility. It also has a very strong toxicity to mice and amoeba. The whole genome as well as in vitro and in vivo experiments showed that W224 N is a high virulent strain. The results can help us better learn about the pathogenicity of neonatal meningitis E. coli.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli/genética , Genoma Bacteriano , Meningitis por Escherichia coli , Animales , Escherichia coli/patogenicidad , Proteínas de la Membrana , Meningitis por Escherichia coli/microbiología , Ratones , Virulencia , Factores de Virulencia/genética
10.
Cell Microbiol ; 22(10): e13231, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32447809

RESUMEN

Escherichia coli is the most common Gram-negative bacillary organism causing neonatal meningitis. Escherichia coli meningitis remains an important cause of mortality and morbidity, but the pathogenesis of E. coli penetration of the blood-brain barrier remains incompletely understood. Escherichia coli entry into the brain occurs in the meningeal and cortex capillaries, not in the choroid plexus, and exploits epidermal growth factor receptor (EGFR) and cysteinyl leukotrienes (CysLTs) for invasion of the blood-brain barrier. The present study examined whether EGFR and CysLTs are inter-related in their contribution to E. coli invasion of the blood-brain barrier and whether counteracting EGFR and CysLTs is a beneficial adjunct to antibiotic therapy of E. coli meningitis. We showed that (a) meningitis isolates of E. coli exploit EGFR and CysLTs for invasion of the blood-brain barrier, (b) the contribution of EGFR is upstream of that of CysLTs, and (c) counteracting EGFR and CysLTs as an adjunctive therapy improved the outcome (survival, neuronal injury and memory impairment) of animals with E. coli meningitis. These findings suggest that investigation of host factors contributing to E. coli invasion of the blood-brain barrier will help in enhancing the pathogenesis and development of new therapeutic targets for E. coli meningitis in the era of increasing resistance to conventional antibiotics.


Asunto(s)
Acetatos/uso terapéutico , Barrera Hematoencefálica/microbiología , Ciclopropanos/uso terapéutico , Cisteína/metabolismo , Receptores ErbB/metabolismo , Escherichia coli/patogenicidad , Gefitinib/uso terapéutico , Leucotrienos/metabolismo , Meningitis por Escherichia coli/microbiología , Quinolinas/uso terapéutico , Sulfuros/uso terapéutico , Animales , Antibacterianos/uso terapéutico , Barrera Hematoencefálica/fisiopatología , Encéfalo/irrigación sanguínea , Ceftriaxona/uso terapéutico , Células Cultivadas , Quimioterapia Combinada , Células Endoteliales , Receptores ErbB/antagonistas & inhibidores , Femenino , Humanos , Recién Nacido , Antagonistas de Leucotrieno/uso terapéutico , Masculino , Meningitis por Escherichia coli/tratamiento farmacológico , Ratones , Permeabilidad , Fosfolipasas A2 Citosólicas/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
11.
Acta Neurol Taiwan ; 30(4): 141-150, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34841499

RESUMEN

BACKGROUND: To examine the clinical characteristics and therapeutic outcome of Escherichia (E.) coli adult bacterial meningitis (ABM). METHODS: The demographic data, clinical and laboratory features and therapeutic outcome of 25 E. coli ABM patients were examined retrospectively. The clinical features of the reported E. coli ABM cases were also included for analysis. RESULTS: The 25 E. coli ABM patients included 12 women and 13 men, aged 33-78 years (mean= 59.9). Of these 25 patients, 13 had a postneurosurgical state as the underlying condition. As to the underlying medical conditions, diabetes mellitus was the most common, found in 9 of the 25 cases. Of the clinical manifestation, severe neurologic manifestations including altered consciousness (19), hydrocephalus (10), seizure (7) acute/subacute cerebral infarct (5), brain abscess (2), subdural empyema (1) and spinal abscess (1) were found, and the other clinical features included fever (21), septic shock (8), bacteremia (6) and hyponatremia (3). With treatment, the mortality rate was more than 44.0% and the presence of septic shock was a significant prognostic factor. With literature review, 29 community-acquired and 12 postneurosurgical E. coli ABM cases were enrolled, and severe neurologic manifestation and high mortality rate were also found. CONCLUSIONS: This preliminary overview of E. coli ABM revealed the underlying conditions, severe neurologic manifestation and high mortality rate. Further large-scale, prospective study is needed for a better delineation of this specific infectious syndrome of adult E. coli meningitis.


Asunto(s)
Meningitis Bacterianas , Meningitis por Escherichia coli , Adulto , Escherichia coli , Femenino , Humanos , Masculino , Meningitis Bacterianas/terapia , Meningitis por Escherichia coli/terapia , Estudios Retrospectivos , Resultado del Tratamiento
12.
J Neuroinflammation ; 17(1): 24, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31952519

RESUMEN

BACKGROUND: Individuals with impaired immunity are more susceptible to infections than immunocompetent subjects. No vaccines are currently available to induce protection against E. coli meningoencephalitis. This study evaluated the potential of poly(I:C) pre-treatment to induce trained immunity. Poly(I:C) was administered as a non-specific stimulus of innate immune responses to protect immunocompetent and neutropenic wild-type mice from a subsequent challenge by the intracranial injection of E. coli K1. METHODS: Three days prior to infection, mice received an intraperitoneal injection of poly(I:C) or vehicle. Kaplan-Meier survival curves were analyzed. In short-term experiments, bacterial titers and the inflammatory response were characterized in the blood, cerebellum, and spleen homogenates. NK cell subpopulations in the brain and spleen were analyzed by flow cytometry. Numbers of microglia and activation scores were evaluated by histopathology. RESULTS: Pre-treatment with 200 µg poly(I:C) increased survival time, reduced mortality, and enhanced bacterial clearance in the blood, cerebellum, and spleen at early infection in neutropenic mice. Poly(I:C)-mediated protection correlated with an augmented number of NK cells (CD45+NK1.1+CD3-) and Iba-1+ microglial cells and a higher production of IFN-γ in the brain. In the spleen, levels of CCL5/RANTES and IFN-γ were increased and sustained in surviving poly(I:C)-treated animals for 14 days after infection. In immunocompetent animals, survival time was not significantly prolonged in poly(I:C)-treated animals although poly(I:C) priming reduced brain bacterial concentrations compared with vehicle-injected animals at early infection. CONCLUSIONS: Pre-treatment with the viral TLR3 agonist poly(I:C) modulated innate immune responses and strengthened the resistance of neutropenic mice against E. coli K1 meningoencephalitis.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Huésped Inmunocomprometido/inmunología , Meningitis por Escherichia coli/inmunología , Poli I-C/farmacología , Animales , Inmunidad Innata/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutropenia/inmunología , Poli I-C/inmunología , Receptor Toll-Like 3/agonistas , Receptor Toll-Like 3/efectos de los fármacos
13.
J Comput Aided Mol Des ; 34(1): 11-25, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31792885

RESUMEN

Escherichia coli (E. coli) K1 is the most common Gram-negative bacteria cause of neonatal meningitis. The penetration of E. coli through the blood-brain barrier is a key step of the meningitis pathogenesis. A host receptor protein, Caspr1, interacts with the E. coli virulence factor IbeA and thus facilitates bacterial penetration through the blood-brain barrier. Based on this result, we have now predicted the binding pattern between Caspr1 and IbeA by an integrated computational protocol. Based on the predicted model, we have identified a putative molecular binding pocket in IbeA, that directly bind with Caspr1. This evidence indicates that the IbeA (229-343aa) region might play a key role in mediating the bacteria invasion. Virtual screening with the molecular model was conducted to search for potential inhibitors from 213,279 commercially available chemical compounds. From the top 50 identified compounds, 9 demonstrated a direct binding ability to the residues within the Caspr1 binding site on IbeA. By using human brain microvascular endothelial cells (hBMEC) with E. coli strain RS218, four molecules were characterized that significantly attenuated the bacteria invasions at concentrations devoid of cell toxicity. Our study provides useful structural information for understanding the pathogenesis of neonatal meningitis, and have identified drug-like compounds that could be used to develop effective anti-meningitis agents.


Asunto(s)
Antibacterianos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Proteínas de la Membrana/antagonistas & inhibidores , Meningitis por Escherichia coli/tratamiento farmacológico , Factores de Virulencia/antagonistas & inhibidores , Antibacterianos/química , Línea Celular , Diseño de Fármacos , Descubrimiento de Drogas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Factores de Virulencia/metabolismo
14.
J Infect Dis ; 219(3): 470-479, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30202861

RESUMEN

FimH-mediated bacterial invasion and polymorphonuclear neutrophil (PMN) transmigration across human brain microvascular endothelial cells (HBMECs) are required for the pathogenesis of Escherichia coli meningitis. However, the underlying mechanism remains unclear. This study demonstrated that the TnphoA mutant (22A33) and FimH-knockout mutant (ΔFimH) of E coli strain E44, which resulted in inactivation of FimH, were less invasive and less effective in promoting PMN transmigration than their wild-type strain. FimH protein induced PMN transmigration, whereas calmodulin inhibitor significantly blocked this effect. Moreover, immunofluorescence and co-immunoprecipitation analysis indicated that colocalized CD48 and α7 nAChR formed a complex on the surface of HBMECs that is associated with increased cofilin dephosphorylation, which could be remarkably enhanced by FimH+ E44. Our study concluded that FimH-induced E coli K1 invasion and PMN migration across HBMECs may be mediated by the CD48-α7nAChR complex in lipid rafts of HBMEC via Ca2+ signaling and cofilin dephosphorylation.


Asunto(s)
Adhesinas de Escherichia coli/metabolismo , Encéfalo/microbiología , Antígeno CD48/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Neutrófilos/microbiología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Adhesinas de Escherichia coli/genética , Calcio/metabolismo , Movimiento Celular , Escherichia coli/patogenicidad , Proteínas Fimbrias/genética , Técnicas de Silenciamiento del Gen , Humanos , Microdominios de Membrana , Meningitis por Escherichia coli/microbiología , Meningitis por Escherichia coli/patología , Transducción de Señal , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
15.
BMC Microbiol ; 19(1): 298, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31847813

RESUMEN

BACKGROUND: The neonatal meningitis E. coli (NMEC) strain S88 carries a ColV plasmid named pS88 which is involved in meningeal virulence. Transcriptional analysis of pS88 in human serum revealed a strong upregulation of an ORF of unknown function: shiF, which is adjacent to the operon encoding the siderophore aerobactin. The aim of this work is to investigate the role of shiF in aerobactin production in strain S88. RESULTS: Study of the prevalence of shiF and aerobactin operon in a collection of 100 extra-intestinal pathogenic E. coli strains (ExPEC) and 50 whole genome-sequenced E. coli strains revealed the colocalization of these two genes for 98% of the aerobactin positive strains. We used Datsenko and Wanner's method to delete shiF in two S88 mutants. A cross-feeding assay showed that these mutants were able to excrete aerobactin meaning that shiF is dispensable for aerobactin excretion. Our growth assays revealed that the shiF-deleted mutants grew significantly slower than the wild-type strain S88 in iron-depleted medium with a decrease of maximum growth rates of 23 and 28% (p < 0.05). Using Liquid Chromatography-Mass Spectrometry, we identified and quantified siderophores in the supernatants of S88 and its shiF deleted mutants after growth in iron-depleted medium and found that these mutants secreted significantly less aerobactin than S88 (- 52% and - 49%, p < 0.001). CONCLUSIONS: ShiF is physically and functionally linked to aerobactin. It provides an advantage to E. coli S88 under iron-limiting conditions by increasing aerobactin secretion and may thus act as an auxiliary virulence factor.


Asunto(s)
Proteínas Bacterianas/genética , Escherichia coli Patógena Extraintestinal/genética , Ácidos Hidroxámicos/metabolismo , Hierro/metabolismo , Sideróforos/metabolismo , Escherichia coli Patógena Extraintestinal/patogenicidad , Perfilación de la Expresión Génica , Humanos , Meningitis por Escherichia coli/sangre , Meningitis por Escherichia coli/microbiología , Operón , Plásmidos/genética , Virulencia , Factores de Virulencia/genética , Secuenciación Completa del Genoma
16.
BMC Microbiol ; 19(1): 17, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30654756

RESUMEN

BACKGROUND: To describe the temporal dynamics, molecular characterization, clinical and ex vivo virulence of emerging O1:K1 neonatal meningitis Escherichia coli (NMEC) strains of Sequence Type complex (STc) 95 in France. The national reference center collected NMEC strains and performed whole genome sequencing (WGS) of O1:K1 STc95 NMEC strains for phylogenetic and virulence genes content analysis. Data on the clinical and biological features of patients were also collected. Ex vivo virulence was assessed using the Dictyostelium discoideum amoeba model. RESULTS: Among 250 NMEC strains collected between 1998 and 2015, 38 belonged to O1:K1 STc95. This clonal complex was the most frequently collected after 2004, representing up to 25% of NMEC strains in France. Phylogenetic analysis demonstrated that most (74%) belonged to a cluster designated D-1, characterized by the adhesin FimH30. There is no clinical data to suggest that this cluster is more pathogenic than its counterparts, although it is highly predominant and harbors a large repertoire of extraintestinal virulence factors, including a pS88-like plasmid. Ex vivo virulence model showed that this cluster was generally less virulent than STc95 reference strains of O45S88:H7 and O18:H7 serotypes. However, the model showed differences between several subclones, although they harbor the same known virulence determinants. CONCLUSIONS: The emerging clonal group O1:K1 STc95 of NMEC strains is mainly composed of a cluster with many virulence factors but of only moderate virulence. Whether its emergence is due to its ability to colonize the gut thanks to FimH30 or pS88-like plasmid remains to be determined.


Asunto(s)
Escherichia coli/genética , Genoma Bacteriano/genética , Enfermedades del Recién Nacido/microbiología , Meningitis por Escherichia coli/microbiología , Secuenciación Completa del Genoma , Escherichia coli/clasificación , Escherichia coli/patogenicidad , Francia , Humanos , Recién Nacido , Modelos Genéticos , Filogenia , Virulencia/genética
17.
Tidsskr Nor Laegeforen ; 139(16)2019 11 05.
Artículo en Noruego | MEDLINE | ID: mdl-31686480

RESUMEN

Nowadays severe illness in neonates is fortunately rare in Norway. However, newborns present with non-specific symptoms, making diagnostics in this age group challenging, and neonatologists need to think broadly in order not to overlook serious illness. We present the case of a nine-day-old who was severely ill when she arrived at hospital. She was born in gestational week 37 after a normal pregnancy. The birth was complicated by shoulder dystocia, rupture of the umbilical cord and fracture of the clavicle. Thereafter she had a normal stay in the maternity ward for three days. At home she appeared healthy and gained weight until she returned to hospital after thirteen hours of poor feeding, irritability and fever. The symptoms turned out to be caused by bacterial meningitis. During the first week of hospitalisation she developed ventriculitis, brain abscesses and sinus vein thrombosis. It was later discovered that she had severely impaired hearing, and thereafter she developed hydrocephalus requiring surgical drainage. The mortality from neonatal bacterial meningitis has dropped from almost 50 % in the 1970s to less than 10 % today, but the morbidity has remained unchanged. It is crucial that clinicians are alert to this diagnosis, as delayed treatment can worsen the prognosis.


Asunto(s)
Meningitis por Escherichia coli , Absceso Encefálico/microbiología , Ventriculitis Cerebral/microbiología , Escherichia coli/aislamiento & purificación , Femenino , Fiebre/microbiología , Humanos , Hidrocefalia/microbiología , Recién Nacido , Imagen por Resonancia Magnética , Meningitis por Escherichia coli/complicaciones , Meningitis por Escherichia coli/diagnóstico , Meningitis por Escherichia coli/tratamiento farmacológico , Trombosis de los Senos Intracraneales/microbiología
18.
J Neuroinflammation ; 15(1): 291, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30340642

RESUMEN

BACKGROUND: Bacterial meningitis remains a big threat to the integrity of the central nervous system (CNS), despite the advancements in antimicrobial reagents. Escherichia coli is a bacterial pathogen that can disrupt the CNS function, especially in neonates. E. coli meningitis occurs after bacteria invade the brain microvascular endothelial cells (BMECs) that form a direct and essential barrier restricting the entry of circulating microbes and toxins to the brain. Previous studies have reported on several cellular proteins that function during meningitic E. coli infections; however, more comprehensive investigations to elucidate the potential targets involved in E. coli meningitis are essential to better understand this disease and discover new treatments for it. METHODS: The isobaric tags for relative and absolute quantification (iTRAQ) approach coupled with LC-MS/MS were applied to compare and characterize the different proteomic profiles of BMECs in response to meningitic or non-meningitic E. coli strains. KEGG and gene ontology annotations, ingenuity pathways analysis, and functional experiments were combined to identify the key host molecules involved in the meningitic E. coli-induced tight junction breakdown and neuroinflammatory responses. RESULTS: A total of 13 cellular proteins were found to be differentially expressed by meningitic E. coli strains PCN033 and RS218, including one that was also affected by HB101, a non-meningitic E. coli strain. Through bioinformatics analysis, we identified the macrophage migration inhibitory factor (MIF), granzyme A, NF-κB signaling, and mitogen-activated protein kinase (MAPK) pathways as being biologically involved in the meningitic E. coli-induced tight junction breakdown and neuroinflammation. Functionally, we showed that MIF facilitated meningitic E. coli-induced production of cytokines and chemokines and also helped to disrupt the blood-brain barrier by decreasing the expression of tight junction proteins like ZO-1, occludin. Moreover, we demonstrated the significant activation of NF-κB and MAPK signaling in BMECs in response to meningitic E. coli strains, which dominantly determined the generation of the proinflammatory cytokines including IL-6, IL-8, TNF-α, and IL-1ß. CONCLUSIONS: Our work identified 12 host cellular targets that are affected by meningitic E. coli strains and revealed MIF to be an important contributor to meningitic E. coli-induced cytokine production and tight junction disruption, and also the NF-κB and MAPK signaling pathways that are mainly involved in the infection-induced cytokines production. Characterization of these distinct proteins and pathways in BMECs will facilitate further elucidation of meningitis-causing mechanisms in humans and animals, thereby enabling the development of novel preventative and therapeutic strategies against infection with meningitic E. coli.


Asunto(s)
Encéfalo/citología , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Regulación Bacteriana de la Expresión Génica/fisiología , Proteómica/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Biología Computacional , Citocinas/genética , Citocinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Humanos , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/farmacología , Factores Inhibidores de la Migración de Macrófagos/química , Factores Inhibidores de la Migración de Macrófagos/farmacología , Meningitis por Escherichia coli/metabolismo , Meningitis por Escherichia coli/patología , FN-kappa B/metabolismo , Transducción de Señal/fisiología
19.
PLoS Pathog ; 12(10): e1005926, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27711202

RESUMEN

Central nervous system (CNS) infection continues to be an important cause of mortality and morbidity, necessitating new approaches for investigating its pathogenesis, prevention and therapy. Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, which develops following penetration of the blood-brain barrier (BBB). By chemical library screening, we identified epidermal growth factor receptor (EGFR) as a contributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in penetration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and participated in EGFR activation through S1P receptor as well as through S1P-mediated up-regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion of the BBB. We further found that both S1P and EGFR activations occurred in response to the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB, and counteracting such targets provide a novel approach for controlling E. coli meningitis in the era of increasing resistance to conventional antibiotics.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Receptores ErbB/metabolismo , Lisofosfolípidos/metabolismo , Meningitis por Escherichia coli/metabolismo , Esfingosina/análogos & derivados , Animales , Barrera Hematoencefálica/microbiología , Western Blotting , Células Cultivadas , Células Endoteliales/microbiología , Escherichia coli , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Esfingosina/metabolismo , Transfección
20.
Pediatr Res ; 84(5): 778-785, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30188499

RESUMEN

OBJECTIVE: Neonatal meningitis caused by Escherichia coli results in significant mortality and neurological disabilities, with few effective treatments. Recently, we demonstrated that human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC) transplantation attenuated E. coli-induced severe pneumonia, primarily by reducing inflammation and enhancing bacterial clearance. This study aimed to determine whether intraventricular transplantation of hUCB-MSCs attenuated the brain injury in E. coli meningitis in newborn rats. METHODS: Meningitis without concomitant bacteremia was induced by intraventricular injection of 5 × 102 colony forming units of K1 (-) E. coli in rats at postnatal day (P)11, and hUCB-MSCs (1 × 105) were transplanted intraventricularly 6 h after induction of meningitis. Antibiotics was started 24 h after modeling. RESULT: Meningitis modeling induced robust proliferation of E. coli in the cerebrospinal fluid and increased mortality in rat pups, and MSC transplantation significantly reduced this bacterial growth and the mortality rate. Impaired sensorimotor function in the meningitis rats was ameliorated by MSCs injection. MSCs transplantation also attenuated meningitis caused brain injury including cerebral ventricular dilatation, brain cell death, reactive gliosis, and inflammatory response. CONCLUSION: Intraventricular transplantation of hUCB-MSCs significantly improved survival and attenuated the brain injury via anti-inflammatory and antibacterial effects in experimental neonatal E. coli meningitis.


Asunto(s)
Lesiones Encefálicas/prevención & control , Meningitis por Escherichia coli/terapia , Trasplante de Células Madre Mesenquimatosas , Animales , Animales Recién Nacidos , Peso Corporal , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Recuento de Colonia Microbiana , Citocinas/metabolismo , Escherichia coli/aislamiento & purificación , Mediadores de Inflamación/metabolismo , Imagen por Resonancia Magnética , Meningitis por Escherichia coli/complicaciones , Meningitis por Escherichia coli/diagnóstico por imagen , Meningitis por Escherichia coli/metabolismo , Ratas , Ratas Sprague-Dawley , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA