RESUMEN
Methylmercury (MeHg) is a bioaccumulating neurotoxin mainly produced by anaerobic microorganisms, with methanogen being one of the important methylators. A critical aspect for understanding the mechanism for microbial mercury (Hg) methylation is the origin of the methyl group. However, the origin of methyl group in methanogen-mediated Hg methylation remains unclear. This study aims to identify the source of methyl group for MeHg synthesis in methanogens. Our study revealed that Hg methylation in Methanospirillum hungatei JF-1 is closely related to methanogenesis process, according to the results of proteomic study and substrate limitation study. Next, we proved that nearly all methyl group in MeHg derives from the Wolfe cycle in this species, rather than the previously demonstrated acetyl-coenzyme A pathway, based on the results of 13C labeling study. We then proposed the Wolfe cycle-dependent Hg methylation mechanism in this species. Further genome analyses and 13C labeling experiments indicated that the involvement of the Wolfe cycle in Hg methylation is probably a universal feature among Hg-methylating methanogens. These findings reveal a unique Hg methylation mechanism in methanogens. Our study broadens the carbon substrates and controlling factors for MeHg synthesis in the environment, which can inform the prediction of MeHg production potential and remediation strategies for MeHg contamination.
Asunto(s)
Mercurio , Metano , Methanospirillum , Compuestos de Metilmercurio , Metilación , Compuestos de Metilmercurio/metabolismo , Metano/metabolismo , Mercurio/metabolismo , Methanospirillum/metabolismo , Methanospirillum/genética , Proteómica/métodosRESUMEN
Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic genomes. However, the mechanisms by which HGT-derived genes persist and integrate into other pathways remain unclear. This topic is of significant interest because, over time, the stressors that initially favoured the fixation of HGT may diminish or disappear. Despite this, the foreign genes may continue to exist if they become part of a broader stress response or other pathways. The conventional model suggests that the acquisition of HGT equates to adaptation. However, this model may evolve into more complex interactions between gene products, a concept we refer to as the 'Integrated HGT Model' (IHM). To explore this concept further, we studied specialized HGT-derived genes that encode heavy metal detoxification functions. The recruitment of these genes into other pathways could provide clear examples of IHM. In our study, we exposed two anciently diverged species of polyextremophilic red algae from the Galdieria genus to arsenic and mercury stress in laboratory cultures. We then analysed the transcriptome data using differential and coexpression analysis. Our findings revealed that mercury detoxification follows a 'one gene-one function' model, resulting in an indivisible response. In contrast, the arsH gene in the arsenite response pathway demonstrated a complex pattern of duplication, divergence and potential neofunctionalization, consistent with the IHM. Our research sheds light on the fate and integration of ancient HGTs, providing a novel perspective on the ecology of extremophiles.
Asunto(s)
Arsénico , Extremófilos , Transferencia de Gen Horizontal , Rhodophyta , Rhodophyta/genética , Extremófilos/genética , Arsénico/metabolismo , Mercurio/metabolismo , Estrés Fisiológico/genética , Inactivación Metabólica/genética , Evolución MolecularRESUMEN
Methyl mercury, a toxic compound, is produced by anaerobic microbes and magnifies in aquatic food webs, affecting the health of animals and humans. The exploration of mercury methylators based on genomes is still limited, especially in the context of river ecosystems. To address this knowledge gap, we developed a genome catalogue of potential mercury-methylating microorganisms. This was based on the presence of hgcAB from the sediments of a river affected by two run-of-river hydroelectric dams, logging activities and a wildfire. Through the use of genome-resolved metagenomics, we discovered a unique and diverse group of mercury methylators. These were dominated by members of the metabolically versatile Bacteroidota and were particularly rich in microbes that ferment butyrate. By comparing the diversity and abundance of mercury methylators between sites subjected to different disturbances, we found that ongoing disturbances, such as the input of organic matter related to logging activities, were particularly conducive to the establishment of a mercury-methylating niche. Finally, to gain a deeper understanding of the environmental factors that shape the diversity of mercury methylators, we compared the mercury-methylating genome catalogue with the broader microbial community. The results suggest that mercury methylators respond to environmental conditions in a manner similar to the overall microbial community. Therefore, it is crucial to interpret the diversity and abundance of mercury methylators within their specific ecological context.
Asunto(s)
Archaea , Bacterias , Sedimentos Geológicos , Mercurio , Compuestos de Metilmercurio , Ríos , Sedimentos Geológicos/microbiología , Ríos/microbiología , Archaea/genética , Archaea/metabolismo , Archaea/clasificación , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Metagenómica , Humanos , Genoma Bacteriano , Genoma Arqueal , Ecosistema , MicrobiotaRESUMEN
Understanding the interactions between mercury and microalgae, especially the interactions between inorganic mercury (IHg) and extracellular polymeric substances (EPS, a protective barrier between cells and their external environment), is essential for elucidating mercury's toxicological mechanisms. Given the inherent cell heterogeneity, a novel analysis system of an online viscoelastic fluid focusing chip-time-resolved analysis inductively coupled plasma mass spectrometry has been developed to investigate the bioaccumulation of HgS nanoparticles and Hg2+ in single Microcystis aeruginosa (M. aeruginosa) cells, exploring the interaction mechanisms between HgS/Hg2+ accumulation in algal cells and EPS. The single-cell analysis results reveal minimal bioavailability of HgS within algal cells, with mercury's toxicity to M. aeruginosa being species-dependent. Notably, algal cells exhibited more heterogeneity in HgS uptake than in Hg2+ uptake. Under Hg2+/HgS stress, M. aeruginosa cells with EPS removed (EPS-R algal cells) showed an increased level of bioaccumulation of mercury compared to those with EPS (EPS-C algal cells), highlighting the critical role of EPS in mercury bioaccumulation. Overall, the designed viscoelastic fluid microfluidic focusing chip integrates focusing and cleaning functions, featuring easy fabrication, simple operation, low sample loss, and relatively high throughput. Under the optimal conditions, the sample throughput is 1195 min-1 and the cell recovery is 90%. Besides, this research offers novel insights into the interaction mechanisms between Hg2+/HgS and EPS in microalgal cells and unveils the specific toxic effects of Hg2+/HgS on M. aeruginosa at the single-cell level, contributing to a deeper understanding of mercury's ecological and toxicological impact in aquatic environments.
Asunto(s)
Mercurio , Microcystis , Análisis de la Célula Individual , Microcystis/metabolismo , Mercurio/análisis , Mercurio/metabolismo , Espectrometría de Masas , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Viscosidad , Dispositivos Laboratorio en un Chip , BioacumulaciónRESUMEN
BACKGROUND: Removal of heavy metals from water and soil is a pressing challenge in environmental engineering, and biosorption by microorganisms is considered as one of the most cost-effective methods. In this study, the metal-binding proteins MerR and ChrB derived from Cupriavidus metallidurans were separately expressed in Escherichia coli BL21 to construct adsorption strains. To improve the adsorption performance, surface display and codon optimization were carried out. RESULTS: In this study, we constructed 24 adsorption engineering strains for Hg2+ and Cr6+, utilizing different strategies. Among these engineering strains, the M'-002 and B-008 had the strongest heavy metal ion absorption ability. The M'-002 used the flexible linker and INPN to display the merRopt at the surface of the E. coli BL21, whose maximal adsorption capacity reached 658.40 µmol/g cell dry weight under concentrations of 300 µM Hg2+. And the B-008 overexpressed the chrB in the intracellular, its maximal capacity was 46.84 µmol/g cell dry weight under concentrations 500 µM Cr6+. While in the case of mixed ions solution (including Pb2+, Cd2+, Cr6+ and Hg2+), the total amount of ions adsorbed by M'-002 and B-008 showed an increase of up to 1.14- and 4.09-folds, compared to the capacities in the single ion solution. CONCLUSION: The construction and optimization of heavy metal adsorption strains were carried out in this work. A comparison of the adsorption behavior between single bacteria and mixed bacteria systems was investigated in both a single ion and a mixed ion environment. The Hg2+ absorption capacity is reached the highest reported to date with the engineered strain M'-002, which displayed the merRopt at the surface of chassis cell, indicating the strain's potential for its application in practical environments.
Asunto(s)
Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Iones/metabolismo , Mercurio/metabolismo , Metales Pesados/metabolismo , Contaminantes Químicos del Agua/metabolismoRESUMEN
BACKGROUND: Mercury (Hg) is highly toxic and has the potential to cause severe health problems for humans and foraging animals when transported into edible plant parts. Soil rhizobia that form symbiosis with legumes may possess mechanisms to prevent heavy metal translocation from roots to shoots in plants by exporting metals from nodules or compartmentalizing metal ions inside nodules. Horizontal gene transfer has potential to confer immediate de novo adaptations to stress. We used comparative genomics of high quality de novo assemblies to identify structural differences in the genomes of nitrogen-fixing rhizobia that were isolated from a mercury (Hg) mine site that show high variation in their tolerance to Hg. RESULTS: Our analyses identified multiple structurally conserved merA homologs in the genomes of Sinorhizobium medicae and Rhizobium leguminosarum but only the strains that possessed a Mer operon exhibited 10-fold increased tolerance to Hg. RNAseq analysis revealed nearly all genes in the Mer operon were significantly up-regulated in response to Hg stress in free-living conditions and in nodules. In both free-living and nodule environments, we found the Hg-tolerant strains with a Mer operon exhibited the fewest number of differentially expressed genes (DEGs) in the genome, indicating a rapid and efficient detoxification of Hg from the cells that reduced general stress responses to the Hg-treatment. Expression changes in S. medicae while in bacteroids showed that both rhizobia strain and host-plant tolerance affected the number of DEGs. Aside from Mer operon genes, nif genes which are involved in nitrogenase activity in S. medicae showed significant up-regulation in the most Hg-tolerant strain while inside the most Hg-accumulating host-plant. Transfer of a plasmid containing the Mer operon from the most tolerant strain to low-tolerant strains resulted in an immediate increase in Hg tolerance, indicating that the Mer operon is able to confer hyper tolerance to Hg. CONCLUSIONS: Mer operons have not been previously reported in nitrogen-fixing rhizobia. This study demonstrates a pivotal role of the Mer operon in effective mercury detoxification and hypertolerance in nitrogen-fixing rhizobia. This finding has major implications not only for soil bioremediation, but also host plants growing in mercury contaminated soils.
Asunto(s)
Transferencia de Gen Horizontal , Mercurio , Operón , Simbiosis , Transcriptoma , Mercurio/metabolismo , Mercurio/toxicidad , Bacterias Fijadoras de Nitrógeno/genética , Bacterias Fijadoras de Nitrógeno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Fijación del Nitrógeno , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Microbiología del SueloRESUMEN
Mercury (Hg) is one of the most potent toxic heavy metals that distresses livestock, humans, and ecological health. Owing to uncontrolled exposure to untreated tannery industrial effluents, metals such as Hg are increasing in nature and are, therefore, becoming a global concern. As a result, understanding the thriving microflora in that severe condition and their characteristics becomes immensely important. During the course of this study, two Hg-resistant bacteria were isolated from tannery wastewater effluents from leather factories in Kolkata, India, which were able to tolerate 2.211 × 10- 3 M (600 µg/ml) Hg. 16 S rDNA analysis revealed strong sequence homology with Citrobacter freundii, were named as BNC22A and BNC22C for this study. In addition they showed high tolerance to nickel (Ni) and Chromium (Cr) at 6.31 × 10- 3 M (1500 µg/ml) and 6.792 × 10- 3 M (2000 µg/ml) respectively. However, both the isolates were sensitive to arsenic (As) and cadmium (Cd). Furthermore, their antibiotic sensitivity profiles reveal a concerning trend towards resistance to multiple drugs. Overuse and misuse of antibiotics in healthcare systems and agriculture has been identified as two of the main reasons for the decline in efficacy of antibiotics. Though their ability to produce lipase makes them industrially potent organisms, their competence to resist several antibiotics and metals that are toxic makes this study immensely relevant. In addition, their ability to negate heavy metal toxicity makes them potential candidates for bioremediation. Finally, the green mung bean seed germination test showed a significant favourable effect of BNC22A and BNC22C against Hg-stimulated toxicity.
Asunto(s)
Antibacterianos , Citrobacter freundii , Farmacorresistencia Bacteriana Múltiple , Residuos Industriales , Mercurio , Pruebas de Sensibilidad Microbiana , Aguas Residuales , Citrobacter freundii/aislamiento & purificación , Citrobacter freundii/efectos de los fármacos , Citrobacter freundii/genética , India , Mercurio/metabolismo , Mercurio/farmacología , Aguas Residuales/microbiología , Antibacterianos/farmacología , Residuos Industriales/análisis , Curtiembre , ARN Ribosómico 16S/genética , Metales Pesados/toxicidad , Cadmio/farmacología , Arsénico/metabolismoRESUMEN
Firefly luciferases emit yellow-green light and are pH-sensitive, changing the bioluminescence color to red in the presence of heavy metals, acidic pH and high temperatures. These pH and metal-sensitivities have been recently harnessed for intracellular pH indication and toxic metal biosensing. However, whereas the structure of the pH sensor and the metal binding site, which consists mainly of two salt bridges that close the active site (E311/R337 and H310/E354), has been identified, the specific role of residue H310 in pH and metal sensing is still under debate. The Amydetes vivianii firefly luciferase has one of the lowest pH sensitivities among the group of pH-sensitive firefly luciferases, displaying high bioluminescent activity and special spectral selectivity for cadmium and mercury, which makes it a promising analytical reagent. Using site-directed mutagenesis, we have investigated in detail the role of residue H310 on pH and metal sensitivity in this luciferase. Negatively charged residues at position 310 increase the pH sensitivity and metal sensitivity; H310G considerably increases the size of the cavity, severely impacting the activity, H310R closes the cavity, and H310F considerably decreases both pH and metal sensitivities. However, no substitution completely abolished pH and metal sensitivities. The results indicate that the presence of negatively charged and basic side chains at position 310 is important for pH sensitivity and metals coordination, but not essential, indicating that the remaining side chains of E311 and E354 may still coordinate some metals in this site. Furthermore, a metal binding site search predicted that H310 mutations decrease the affinity mainly for Zn, Ni and Hg but less for Cd, and revealed the possible existence of additional binding sites for Zn, Ni and Hg.
Asunto(s)
Luciérnagas , Histidina , Luciferasas de Luciérnaga , Mutagénesis Sitio-Dirigida , Concentración de Iones de Hidrógeno , Animales , Luciferasas de Luciérnaga/metabolismo , Luciferasas de Luciérnaga/química , Luciferasas de Luciérnaga/genética , Luciérnagas/enzimología , Histidina/química , Histidina/metabolismo , Color , Metales Pesados/química , Metales Pesados/metabolismo , Mercurio/química , Mercurio/metabolismo , Cadmio/química , Cadmio/metabolismoRESUMEN
Algae are an entry point for mercury (Hg) into the food web. Bioconcentration of Hg by algae is crucial for its biogeochemical cycling and environmental risk. Herein, considering the cell heterogeneity, we investigated the bioconcentration of coexisting isotope-labeled inorganic (199IHg) and methyl Hg (201MeHg) by six typical freshwater and marine algae using dual-mass single-cell inductively coupled plasma mass spectrometry (scICP-MS). First, a universal pretreatment procedure for the scICP-MS analysis of algae was developed. Using the proposed method, the intra- and interspecies heterogeneities and the kinetics of Hg bioconcentration by algae were revealed at the single-cell level. The heterogeneity in the cellular Hg contents is largely related to cell size. The bioconcentration process reached a dynamic equilibrium involving influx/adsorption and efflux/desorption within hours. Algal density is a key factor affecting the distribution of Hg between algae and ambient water. Cellular Hg contents were negatively correlated with algal density, whereas the volume concentration factors almost remained constant. Accordingly, we developed a model based on single-cell analysis that well describes the density-driven effects of Hg bioconcentration by algae. From a novel single-cell perspective, the findings improve our understanding of algal bioconcentration governed by various biological and environmental factors.
Asunto(s)
Mercurio , Mercurio/metabolismo , Espectrometría de Masas , Compuestos de Metilmercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Cadena Alimentaria , Análisis de la Célula IndividualRESUMEN
Mercury nanoparticles are abundant in natural environments. Yet, understanding their contribution to global biogeochemical cycling of mercury remains elusive. Here, we show that microbial transformation of nanoparticulate divalent mercury can be an important source of elemental and methylmercury.Geobacter sulfurreducensPCA, a model bacterium predominant in anoxic environments (e.g., paddy soils), simultaneously reduces and methylates nanoparticulate Hg(II). Moreover, the relative prevalence of these two competing processes and the dominant transformation pathways differ markedly between nanoparticulate Hg(II) and its dissolved and bulk-sized counterparts. Notably, even when intracellular reduction of Hg(II) nanoparticles is constrained by cross-membrane transport (a rate-limiting step that also regulates methylation), the overall Hg(0) formation remains substantial due to extracellular electron transfer. With multiple lines of evidence based on microscopic and electrochemical analyses, gene knockout experiments, and theoretical calculations, we show that nanoparticulate Hg(II) is preferentially associated with c-type cytochromes on cell membranes and has a higher propensity for accepting electrons from the heme groups than adsorbed ionic Hg(II), which explains the surprisingly larger extent of reduction of nanoparticles than dissolved Hg(II) at relatively high mercury loadings. These findings have important implications for the assessment of global mercury budgets as well as the bioavailability of nanominerals and mineral nanoparticles.
Asunto(s)
Mercurio , Mercurio/metabolismo , Metilación , Transporte de Electrón , Oxidación-Reducción , Geobacter/metabolismo , Nanopartículas/química , Nanopartículas del Metal/químicaRESUMEN
Foliar assimilation of elemental mercury (Hg0) from the atmosphere plays a critical role in the global Hg biogeochemical cycle, leading to atmospheric Hg removal and soil Hg insertion. Recent studies have estimated global foliar Hg assimilation; however, large uncertainties remained due to coarse accounting of observed foliar Hg concentrations, posing a substantial challenge in constraining the global Hg budget. Here, we integrated a comprehensive observation database of foliar Hg concentrations and machine learning algorithms to predict the first spatial distribution of foliar Hg concentrations on a global scale, contributing to the first estimate of global Hg pools in foliage. The global average of foliar Hg concentrations was estimated to be 24.0 ng g-1 (7.5-56.5 ng g-1), and the global total in foliar Hg pools reached 4561.3 Mg (1455.2-9062.8 Mg). The spatial distribution showed the hotspots in tropical regions, including the Amazon, Central Africa, and Southeast Asia. A range of 2268.5-2727.0 Mg yr-1 was estimated for annual foliar Hg assimilation accounting for the perennial continuous assimilation by evergreen vegetation foliage. The first spatial maps of foliar Hg concentrations and Hg pools may aid in understanding the global biogeochemical cycling of Hg, especially in the context of climate change and global vegetation greening.
Asunto(s)
Aprendizaje Automático , Mercurio , Mercurio/metabolismo , Monitoreo del Ambiente , Hojas de la Planta/metabolismo , Hojas de la Planta/químicaRESUMEN
Accurate estimates of methylmercury (MeHg) exposure are valuable to actionably assess risk and protect wildlife and human health. MeHg trophic transfer is a critical driver of risk: MeHg is generally biomagnified by a factor of 8.3 ± 7.5 from one trophic level to the next, averaged across freshwater communities (mean ± standard deviation). This variability can produce disparate risks even where basal MeHg concentrations are similar. Taxonomy may be one driver of this variability: physiologically diverse groups, like vertebrates and invertebrates, may assimilate MeHg differently. To determine whether taxonomy affects trophic transfer efficiency, we conducted a meta-analysis characterizing predatory invertebrate MeHg biomagnification. Our analyses estimated that freshwater predatory invertebrates biomagnify MeHg by factors of 2.1 ± 0.2 to 4.3 ± 0.3, with a 98.9 ± 0.4% posterior probability that factors are below 5 (mean ± standard error). When vertebrates or primary producers were included, a site's trophic magnification factor was 18.6 ± 6.2 to 54.1 ± 7.7% higher than estimates for invertebrates alone. Biomagnification was inversely correlated to prey MeHg concentration and varied among systematic and functional groups. These data suggest that predatory invertebrates biomagnify MeHg less efficiently than vertebrates and that a community's diversity and structure determine its biomagnification efficiency. Incorporating organismal variation in trophic transfer estimates may improve the assessment, communication, and management of MeHg risk.
Asunto(s)
Cadena Alimentaria , Agua Dulce , Invertebrados , Mercurio , Compuestos de Metilmercurio , Invertebrados/metabolismo , Animales , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Exposición Dietética , Contaminantes Químicos del Agua/metabolismo , Conducta PredatoriaRESUMEN
The sulfidogenic process mediated by sulfate-reducing bacteria (SRB) is not ideal for treating mercury (Hg)-bearing wastewater due to the risk of methylmercury (MeHg) production. Addressing this challenge, our study demonstrated that, under S0-rich conditions and without organic additives, sulfidogenic communities dominated by sulfur-disproportionating bacteria (SDB) can effectively remove Hg(II) and prevent MeHg production. Using various inocula, we successfully established biological sulfidogenic systems driven separately by SDB and SRB. Batch experiments revealed that SDB cultures completely removed Hg(II) from the solution as HgS. Remarkably, no MeHg production was observed in the SDB cultures, while an average concentration of 0.32 µg/L of MeHg was detected in the SRB cultures. The absence of MeHg production in the SDB cultures could be mainly attributed to the cultivation conditions that reshaped the microbial community, resulting in a rapid decline of SRB-dominated Hg-methylating microorganisms. Consequently, the average abundance of the hgcA gene was 28 times lower than the levels before cultivation. Additionally, we found that the enriched Dissulfurimicrobium sp. bin121 can produce biogenic sulfide through sulfur disproportionation but lacks the hgcA gene, rendering it incapable of methylating Hg. Overall, we propose a novel biotechnology driven by SDB that can safely and sustainably treat Hg-bearing wastewater.
Asunto(s)
Mercurio , Azufre , Mercurio/metabolismo , Metilación , Azufre/metabolismo , Compuestos de Metilmercurio/metabolismo , Aguas Residuales/química , Bacterias/metabolismoRESUMEN
The ocean's mercury (Hg) content has tripled due to anthropogenic activities, and although the dark ocean (>200 m) has become an important Hg reservoir, concentrations of the toxic and bioaccumulative methylmercury (MeHg) are low and therefore very difficult to measure. As a consequence, the current understanding of the Hg cycle in the deep ocean is severely data-limited, and the factors controlling MeHg, as well as its transformation rates, remain largely unknown. By analyzing 52 globally distributed bathypelagic deep-ocean metagenomes and 26 new metatranscriptomes from the Malaspina Expedition, our study reveals the widespread distribution and expression of bacterial-coding genes merA and merB in the global bathypelagic ocean (â¼4000 m depth). These genes, associated with HgII reduction and MeHg demethylation, respectively, are particularly prevalent within the particle-attached fraction. Moreover, our results indicate that water mass age and the organic matter composition shaped the structure of the communities harboring merA and merB genes living in different particle size fractions, their abundance, and their expression levels. Members of the orders Corynebacteriales, Rhodobacterales, Alteromonadales, Oceanospirillales, Moraxellales, and Flavobacteriales were the main taxonomic players containing merA and merB genes in the deep ocean. These findings, together with our previous results of pure culture isolates of the deep bathypelagic ocean possessing the metabolic capacity to degrade MeHg, indicated that both methylmercury demethylation and HgII reduction likely occur in the global dark ocean, the largest biome in the biosphere.
Asunto(s)
Mercurio , Compuestos de Metilmercurio , Compuestos de Metilmercurio/metabolismo , Mercurio/metabolismo , Agua de Mar/microbiología , Océanos y Mares , Desmetilación , Contaminantes Químicos del Agua/metabolismo , Bacterias/metabolismoRESUMEN
The increasing frequency and severity of wildfires are among the most visible impacts of climate change. However, the effects of wildfires on mercury (Hg) transformations and bioaccumulation in stream ecosystems are poorly understood. We sampled soils, water, sediment, in-stream leaf litter, periphyton, and aquatic invertebrates in 36 burned (one-year post fire) and 21 reference headwater streams across the northwestern U.S. to evaluate the effects of wildfire occurrence and severity on total Hg (THg) and methylmercury (MeHg) transport and bioaccumulation. Suspended particulate THg and MeHg concentrations were 89 and 178% greater in burned watersheds compared to unburned watersheds and increased with burn severity, likely associated with increased soil erosion. Concentrations of filter-passing THg were similar in burned and unburned watersheds, but filter-passing MeHg was 51% greater in burned watersheds, and suspended particles in burned watersheds were enriched in MeHg but not THg, suggesting higher MeHg production in burned watersheds. Among invertebrates, MeHg in grazers, filter-feeders, and collectors was 33, 48, and 251% greater in burned watersheds, respectively, but did not differ in shredders or predators. Thus, increasing wildfire frequency and severity may yield increased MeHg production, mobilization, and bioaccumulation in headwaters and increased transport of particulate THg and MeHg to downstream environments.
Asunto(s)
Bioacumulación , Mercurio , Compuestos de Metilmercurio , Ríos , Contaminantes Químicos del Agua , Incendios Forestales , Mercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Compuestos de Metilmercurio/metabolismo , Ríos/química , Noroeste de Estados Unidos , Metilación , Animales , Invertebrados/metabolismo , Monitoreo del Ambiente , EcosistemaRESUMEN
The effect of changes in microbial community structure on the migration and release of toxic heavy metal (loid)s is often ignored in ecological restoration. Here, we investigated a multi-metal (mercury and thallium, Tl) mine waste slag. With particular focus on its strong acidity, poor nutrition, and high toxicity pollution characteristics, we added fish manure and carbonate to the slag as environmental-friendly amendments. On this basis, ryegrass, which is suitable for the remediation of metal waste dumps, was then planted for ecological restoration. We finally explored the influence of changes in microbial community structure on the release of Tl and As in the waste slag during vegetation reconstruction. The results show that the combination of fish manure and carbonate temporarily halted the release of Tl, but subsequently promoted the release of Tl and arsenic (As), which was closely related to changes in the microbial community structure in the waste slag after fish manure and carbonate addition. The main reason for these patterns was that in the early stage of the experiment, Bacillaceae inhibited the release of Tl by secreting extracellular polymeric substances; with increasing time, Actinobacteriota became the dominant bacterium, which promoted the migration and release of Tl by mycelial disintegration of minerals. In addition, the exogenously added organic matter acted as an electron transport medium for reducing microorganisms and thus helped to reduce nitrate or As (â ¤) in the substrate, which reduced the redox potential of the waste slag and promoted As release. At the same time, the phylum Firmicutes, including specific dissimilatory As-reducing bacteria that are capable of converting As into a more soluble form, further promoted the release of As. Our findings provide a theoretical basis for guiding the ecological restoration of relevant heavy-metal (loid) mine waste dumps.
Asunto(s)
Mercurio , Minería , Talio , Mercurio/análisis , Mercurio/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Metales Pesados/análisis , Microbiota/efectos de los fármacos , Residuos Industriales/análisis , Restauración y Remediación Ambiental/métodos , Microbiología del SueloRESUMEN
Litterfall is the main source of dry deposition of mercury (Hg) into the soil in forest ecosystems. The accumulation of Hg in soil and litter suggests the possibility of transfer to terrestrial invertebrates through environmental exposure or ingestion of plant tissues. We quantified total mercury (THg) concentrations in two soil layers (organic: 0-0.2 m; mineral: 0.8-1 m), litter, fresh leaves, and terrestrial invertebrates of the Araguaia River floodplain, aiming to evaluate the THg distribution among terrestrial compartments, bioaccumulation in invertebrates, and the factors influencing THg concentrations in soil and invertebrates. The mean THg concentrations were significantly different between the compartments evaluated, being higher in organic soil compared to mineral soil, and higher in litter compared to mineral soil and fresh leaves. Soil organic matter content was positively related to THg concentration in this compartment. The order Araneae showed significantly higher Hg concentrations among the most abundant invertebrate taxa. The higher Hg concentrations in Araneae were positively influenced by the concentrations determined in litter and individuals of the order Hymenoptera, confirming the process of biomagnification in the terrestrial trophic chain. In contrast, the THg concentrations in Coleoptera, Orthoptera and Hymenoptera were not significantly related to the concentrations determined in the soil, litter and fresh leaves. Our results showed the importance of organic matter for the immobilization of THg in the soil and indicated the process of biomagnification in the terrestrial food web, providing insights for future studies on the environmental distribution of Hg in floodplains.
Asunto(s)
Bioacumulación , Monitoreo del Ambiente , Invertebrados , Mercurio , Ríos , Mercurio/análisis , Mercurio/metabolismo , Brasil , Animales , Ríos/química , Invertebrados/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Pradera , Cadena Alimentaria , Ecosistema , Suelo/químicaRESUMEN
Exposure to mercury (Hg) may cause deleterious health effects in wildlife, including bats. Texas produces more Hg pollution than any other state in the United States, yet only one study has examined Hg accumulation in bats. This study measured the concentration of total Hg (THg) in fur (n = 411) collected from ten bat species across 32 sites in eastern and central Texas, USA. Fur THg concentrations were compared among species, and when samples sizes were large enough, between sex and life stage within a species, and the proximity to coal-fired power plants. For all sites combined and species with a sample size ≥8, mean THg concentrations (µg/g dry weight) were greatest in tri-colored bats (Perimyotis subflavus; 6.04), followed by evening bats (Nycticeius humeralis; 5.89), cave myotis (Myotis velifer; 2.11), northern yellow bats (Lasiurus intermedius; 1.85), Brazilian free-tailed bats (Tadarida brasiliensis; 1.03), and red bats (Lasiurus borealis/blossevillii; 0.974), and lowest in hoary bats (Lasiurus cinereus; 0.809). Within a species, fur THg concentrations did not significantly vary between sex for the five examined species (red bat, northern yellow bat, cave myotis, evening bat, Brazilian free-tailed bat) and only between life stage in evening bats. Site variations in fur THg concentrations were observed for evening bats, tri-colored bats, and Brazilian free-tailed bats. Evening bats sampled closer to point sources of Hg pollution had greater fur THg concentrations than individuals sampled further away. Sixteen percent of evening bats and 8.7% of tri-colored bats had a fur THg concentration exceeding the 10 µg/g toxicity threshold level, suggesting that THg exposure may pose a risk to the health of bats in Texas, particularly those residing in east Texas and on the upper Gulf coast. The results of this study can be incorporated into future management and recovery plans for bats in Texas.
Asunto(s)
Quirópteros , Monitoreo del Ambiente , Mercurio , Animales , Quirópteros/metabolismo , Texas , Mercurio/análisis , Mercurio/metabolismo , Femenino , Masculino , Contaminantes Ambientales/análisis , Contaminantes Ambientales/metabolismo , Especificidad de la Especie , Pelaje de Animal/químicaRESUMEN
Mercury is toxic to wildlife and humans, and forests are thought to be a globally important sink for gaseous elemental mercury (GEM) deposition from the atmosphere. Yet there are currently no annual GEM deposition measurements over rural forests. Here we present measurements of ecosystem-atmosphere GEM exchange using tower-based micrometeorological methods in a midlatitude hardwood forest. We measured an annual GEM deposition of 25.1 µg â m-2 (95% CI: 23.2 to 26.7 1 µg â m-2), which is five times larger than wet deposition of mercury from the atmosphere. Our observed annual GEM deposition accounts for 76% of total atmospheric mercury deposition and also is three times greater than litterfall mercury deposition, which has previously been used as a proxy measure for GEM deposition in forests. Plant GEM uptake is the dominant driver for ecosystem GEM deposition based on seasonal and diel dynamics that show the forest GEM sink to be largest during active vegetation growing periods and middays, analogous to photosynthetic carbon dioxide assimilation. Soils and litter on the forest floor are additional GEM sinks throughout the year. Our study suggests that mercury loading to this forest was underestimated by a factor of about two and that global forests may constitute a much larger global GEM sink than currently proposed. The larger than anticipated forest GEM sink may explain the high mercury loads observed in soils across rural forests, which impair water quality and aquatic biota via watershed Hg export.
Asunto(s)
Contaminantes Atmosféricos/metabolismo , Mercurio/metabolismo , Árboles/metabolismo , Contaminantes Atmosféricos/análisis , Altitud , Ecosistema , Monitoreo del Ambiente , Bosques , Mercurio/análisis , Suelo/química , Árboles/químicaRESUMEN
Bluefin tuna (BFT), highly prized among consumers, accumulate high levels of mercury (Hg) as neurotoxic methylmercury (MeHg). However, how Hg bioaccumulation varies among globally distributed BFT populations is not understood. Here, we show mercury accumulation rates (MARs) in BFT are highest in the Mediterranean Sea and decrease as North Pacific Ocean > Indian Ocean > North Atlantic Ocean. Moreover, MARs increase in proportion to the concentrations of MeHg in regional seawater and zooplankton, linking MeHg accumulation in BFT to MeHg bioavailability at the base of each subbasin's food web. Observed global patterns correspond to levels of Hg in each ocean subbasin; the Mediterranean, North Pacific, and Indian Oceans are subject to geogenic enrichment and anthropogenic contamination, while the North Atlantic Ocean is less so. MAR in BFT as a global pollution index reflects natural and human sources and global thermohaline circulation.