Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 909
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(14): e2317825121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38536756

RESUMEN

Trimethylamine-N-oxide (TMAO) and urea are metabolites that are used by some marine animals to maintain their cell volume in a saline environment. Urea is a well-known denaturant, and TMAO is a protective osmolyte that counteracts urea-induced protein denaturation. TMAO also has a general protein-protective effect, for example, it counters pressure-induced protein denaturation in deep-sea fish. These opposing effects on protein stability have been linked to the spatial relationship of TMAO, urea, and protein molecules. It is generally accepted that urea-induced denaturation proceeds through the accumulation of urea at the protein surface and their subsequent interaction. In contrast, it has been suggested that TMAO's protein-stabilizing effects stem from its exclusion from the protein surface, and its ability to deplete urea from protein surfaces; however, these spatial relationships are uncertain. We used neutron diffraction, coupled with structural refinement modeling, to study the spatial associations of TMAO and urea with the tripeptide derivative glycine-proline-glycinamide in aqueous urea, aqueous TMAO, and aqueous urea-TMAO (in the mole ratio 1:2 TMAO:urea). We found that TMAO depleted urea from the peptide's surface and that while TMAO was not excluded from the tripeptide's surface, strong atomic interactions between the peptide and TMAO were limited to hydrogen bond donating peptide groups. We found that the repartition of urea, by TMAO, was associated with preferential TMAO-urea bonding and enhanced urea-water hydrogen bonding, thereby anchoring urea in the bulk solution and depleting urea from the peptide surface.


Asunto(s)
Péptidos , Urea , Animales , Urea/química , Péptidos/química , Agua/química , Metilaminas/química , Proteínas de la Membrana
2.
Anal Chem ; 96(42): 16768-16776, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39394983

RESUMEN

Native mass spectrometry (MS) reveals the role of specific lipids in modulating membrane protein structure and function. Membrane proteins solubilized in detergents are often introduced into the mass spectrometer. However, detergents commonly used for structural studies, such as dodecylmaltoside, tend to generate highly charged ions, leading to protein unfolding, thereby diminishing their utility in characterizing protein-lipid interactions. Thus, there is a critical need to develop approaches to investigate protein-lipid interactions in different detergents. Here, we demonstrate how charge-reducing molecules, such as spermine and trimethylamine-N-oxide, enable the opportunity to characterize lipid binding to the bacterial water channel (AqpZ) and ammonia channel (AmtB) in complex with regulatory protein GlnK in different detergent environments. We find that protein-lipid interactions not only are protein-dependent but also can be influenced by the detergent and type of charge-reducing molecule. AqpZ-lipid interactions are enhanced in LDAO (n-dodecyl-N,N-dimethylamine-N-oxide), whereas the interaction of AmtB-GlnK with lipids is comparable among different detergents. A fluorescent lipid binding assay also shows detergent dependence for AqpZ-lipid interactions, consistent with results from native MS. Taken together, native MS will play a pivotal role in establishing optimal experimental parameters that will be invaluable for various applications, such as drug discovery as well as biochemical and structural investigations.


Asunto(s)
Detergentes , Proteínas de Escherichia coli , Espectrometría de Masas , Detergentes/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Acuaporinas/química , Acuaporinas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Metilaminas/química , Dimetilaminas/química , Proteínas de Transporte de Catión
3.
Bioorg Med Chem Lett ; 109: 129855, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908766

RESUMEN

The role of G-quadruplex (G4) in cellular processes can be investigated by the covalent modification of G4-DNA using alkylating reagents. Controllable alkylating reagents activated by external stimuli can react elegantly and selectively. Herein, we report a chemical activation system that can significantly boost the reaction rate of methylamine-protected vinyl-quinazolinone (VQ) derivative for the alkylation of G4-DNA. The two screened activators can transform low-reactive VQ-NHR' to highly reactive intermediates following the Michael addition mechanism. This approach expands the toolbox of activable G4 alkylating reagents.


Asunto(s)
G-Cuádruplex , Metilaminas , Quinazolinonas , Alquilación , G-Cuádruplex/efectos de los fármacos , Metilaminas/química , Metilaminas/farmacología , Metilaminas/síntesis química , Quinazolinonas/química , Quinazolinonas/farmacología , Quinazolinonas/síntesis química , Humanos , Estructura Molecular , ADN/química , Compuestos de Vinilo/química , Compuestos de Vinilo/farmacología
4.
J Chem Inf Model ; 64(1): 138-149, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37983534

RESUMEN

Osmolytes, small organic compounds, play a key role in modulating the protein stability in aqueous solutions, but the operating mechanism of the osmolyte remains inconclusive. Here, we attempt to clarify the mode of osmolyte action by quantitatively estimating the microheterogeneity of osmolyte-water mixtures with the aid of molecular dynamics simulation, graph theoretical analysis, and spatial distribution measurement in the four osmolyte solutions of trimethylamine-N-oxide (TMAO), tetramethylurea (TMU), dimethyl sulfoxide, and urea. TMAO, acting as a protecting osmolyte, tends to remain isolated with no formation of osmolyte aggregates while preferentially interacting with water, but there is a strong aggregation propensity in the denaturant TMU solution, characterized by favored hydrophobic interactions between TMU molecules. Taken together, the mechanism of osmolyte action on protein stability is proposed as a comprehensive one that encompasses the direct interactions between osmolytes and proteins and indirect interactions through the regulation of water properties in the osmolyte-water mixtures.


Asunto(s)
Metilaminas , Agua , Agua/química , Metilaminas/química , Simulación de Dinámica Molecular , Proteínas , Urea/química , Soluciones
5.
Phys Chem Chem Phys ; 26(14): 10546-10556, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506647

RESUMEN

The emergence of phase separation in both intracellular biomolecular condensates (membrane-less organelles) and in vitro aqueous two-phase systems (ATPS) relies on the formation of immiscible water-based phases/domains. The solvent properties and arrangement of hydrogen bonds within these domains have been shown to differ and can be modulated with the addition of various inorganic salts and osmolytes. The naturally occuring osmolyte, trimethylamine-N-oxide (TMAO), is well established as a biological condensate stabilizer whose presence results in enhanced phase separation of intracellular membrane-less compartments. Here, we show the unique effect of TMAO on the mechanism of phase separation in model PEG-600-Dextran-75 ATPS using dynamic and static light scattering in conjunction with ATR-FTIR and solvatochromic analysis. We observe that the presence of TMAO may enhance or destabilize phase separation depending on the concentration of phase forming components. Additionally, the behavior and density of mesoscopic polymer agglomerates, which arise prior to macroscopic phase separation, are altered by the presence and concentration of TMAO.


Asunto(s)
Dextranos , Polietilenglicoles , Polietilenglicoles/química , Dextranos/química , Separación de Fases , Polímeros/química , Agua/química , Metilaminas/química
6.
Biophys J ; 122(7): 1414-1422, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36916005

RESUMEN

Osmolytes are ubiquitous in the cell and play an important role in controlling protein stability under stress. The natural osmolyte trimethylamine N-oxide (TMAO) is used by marine animals to counteract the effect of pressure denaturation at large depths. The molecular mechanism of TMAO stabilization against pressure and urea denaturation has been extensively studied, but unlike the case of other osmolytes, the ability of TMAO to protect proteins from high temperature has not been quantified. To reveal the effect of TMAO on folded and unfolded protein ensembles and the hydration shell at different temperatures, we study a mutant of the well-characterized, fast-folding model protein B (PRB). We carried out, in total, >190 µs all-atom simulations of thermal folding/unfolding of PRB at multiple temperatures and concentrations of TMAO. The simulations show increased thermal stability of PRB in the presence of TMAO. Partly structured, compact ensembles are favored over the unfolded state. TMAO forms two shells near the protein: an outer shell away from the protein surface has altered H-bond lifetimes of water molecules and increases hydration of the protein to help stabilize it; a less-populated inner shell with an opposite TMAO orientation closer to the protein surface binds exclusively to basic side chains. The cooperative cosolute effect of the inner and outer shell TMAO has a small number of TMAO molecules "herding" water molecules into two hydration shells at or near the protein surface. The stabilizing effect of TMAO on our protein saturates at 1 M despite higher TMAO solubility, so there may be little evolutionary pressure for extremophiles to produce higher intracellular TMAO concentrations, if true in general.


Asunto(s)
Calor , Proteínas , Animales , Proteínas/química , Metilaminas/química , Agua/química , Urea
7.
J Am Chem Soc ; 144(6): 2535-2545, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35108000

RESUMEN

We report the measurement and analysis of sulfonium-π, thioether-π, and ammonium-π interactions in a ß-hairpin peptide model system, coupled with computational investigation and PDB analysis. These studies indicated that the sulfonium-π interaction is the strongest and that polarizability contributes to the stronger interaction with sulfonium relative to ammonium. Computational studies demonstrate that differences in solvation of the trimethylsulfonium versus the trimethylammonium group also contribute to the stronger sulfonium-π interaction. In comparing sulfonium-π versus sulfur-π interactions in proteins, analysis of SAM- and SAH-bound enzymes in the PDB suggests that aromatic residues are enriched in close proximity to the sulfur of both SAM and SAH, but the populations of aromatic interactions of the two cofactors are not significantly different, with the exception of the Me-π interactions in SAM, which are the most prevalent interaction in SAM but are not possible for SAH. This suggests that the weaker interaction energies due to loss of the cation-π interaction in going from SAM to SAH may contribute to turnover of the cofactor.


Asunto(s)
Compuestos de Amonio/metabolismo , Péptidos/metabolismo , Compuestos de Sulfonio/metabolismo , Compuestos de Amonio/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Metilaminas/química , Metilaminas/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Estructura Molecular , Péptidos/química , Unión Proteica , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Electricidad Estática , Compuestos de Sulfonio/química , Termodinámica , Thermus thermophilus/enzimología
8.
Biochem Biophys Res Commun ; 594: 1-7, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35065293

RESUMEN

Evidence shows that trimethylamine (TMA)/trimethylamine-N-oxide (TMAO) is closely related to non-alcoholic fatty liver disease (NAFLD). The conversion of TMA to TMAO is mainly catalyzed by flavin-containing monooxygenases 3 (FMO3) and FMO1. In this study, we explored the role of TMA in the process of NAFLD. The human NAFLD liver puncture data set GSE89632 and rat TMAO gene chip GSE135856 was downloaded for gene differential expression analysis. Besides, oleic acid (OA) combined with palmitate were used to establish high-fat cell model. TMA, TMAO and FMO1-siRNA were used to stimulate L02 cells. Contents of free fatty acid (FFA), triglyceride (TG), TMAO, FMO1 and unfolded protein response (UPR) related proteins GRP78, XBP1, Derlin-1 were detected. Our results showed that FMO1 and PEG10 were important in the progression of NAFLD. Immunohistochemistry showed that FMO1 in NAFLD liver was increased. In addition, the contents of FFA, TG, FMO1 expression, and TMAO were significantly increased after OA + palmitate and TMA stimulation. However, after silencing FMO1 with siRNA, the expressions of these molecules were decreased. Besides, the protein levels of GRP78, XBP1, Derlin-1 were increased after TMAO treatment (all P < 0.05). In Conclusion, high fat and TMA could induce the expression of FMO1 and its metabolite TMAO. When FMO1 is silenced, the effects of high fat and TMA on TMAO are blocked. And the role of TMAO in NAFLD may be through the activation of UPR.


Asunto(s)
Microbioma Gastrointestinal , Metilaminas/química , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxigenasas/biosíntesis , Animales , Línea Celular , Chaperón BiP del Retículo Endoplásmico/biosíntesis , Silenciador del Gen , Humanos , Inmunohistoquímica , Inflamación , Masculino , Proteínas de la Membrana/biosíntesis , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína 1 de Unión a la X-Box/biosíntesis
9.
Rapid Commun Mass Spectrom ; 36(13): e9303, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35363400

RESUMEN

RATIONALE: N,N-Dimethyldodecylamine is produced from lauryl alcohol and dimethylamine. C12-C16 alkyldimethylamines are used as intermediates for the manufacture of amineoxides and quaternary amino compounds. In the present study a gas chromatography-mass spectrometry (GC/MS) method for the determination of C12-C16 alkyldimethylamines in blood was developed and validated. The reason for this study was the detection of the above compounds in the postmortem blood sample of a fatal suicide case. METHODS: Analysis of amines was performed using a gas chromatograph (Agilent Technologies 7890A) with an MS 5975C inrXL, EI/CI MSD with triple-axis detector in selected ion monitoring mode, after liquid-liquid extraction. Four different organic solvents (butyl acetate, ethyl acetate, n-hexane and n-heptane) were used for the optimization of the extraction procedure, resulting in ethyl acetate being the solvent of choice for the extraction procedure. A QuEChERS step was applied (20 mg of MgSO4 , 5 mg of NaCl) to 1 mL of blood and pH was adjusted at 12 (K2 CO3 buffer solution). After the addition of the extraction solvent, samples were vortexed, centrifuged and directly injected into the GC/MS system. RESULTS: In validation, the method was found to be selective and sensitive (limit of detection from 0.3 to 0.5 ng/mL, limit of quantitation from 10.0 to 20.0 ng/mL), whilst validation included recovery, stability, accuracy and precision (relative standard deviation). Validation results were found satisfactory: intra- and interday precision ranged from 0.4% to 2% and from 0.6% to 1.9% respectively, while intra- and interday accuracy ranged from 87% to 109% and from 86% to112.8%. C12-C16 alkyldimethylamines were detected in blood samples at a concentration of 8.39 µg/mL (C12), 3.01 µg/mL (C14) and 0.42 µg/mL (C16). CONCLUSIONS: A rapid, sensitive and reliable method was developed for the determination of C12-C16 alkyldimethylamines in postmortem blood, after optimization of the sample preparation procedure, and finally successfully applied to a real postmortem blood sample from a fatal case involving these compounds.


Asunto(s)
Carbono/química , Extracción Líquido-Líquido , Metilaminas/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Espectrometría de Masas , Solventes
10.
Phys Chem Chem Phys ; 24(30): 17966-17978, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35775876

RESUMEN

Because organisms living in the deep sea and in the sub-seafloor must be able to cope with hydrostatic pressures up to 1000 bar and more, their biomolecular processes, including ligand-binding reactions, must be adjusted to keep the associated volume changes low in order to function efficiently. Almost all organisms use organic cosolvents (osmolytes) to protect their cells from adverse environmental conditions. They counteract osmotic imbalance, stabilize the structure of proteins and maintain their function. We studied the binding properties of the prototypical ligand proflavine to two serum proteins with different binding pockets, BSA and HSA, in the presence of two prominent osmolytes, trimethylamine-N-oxide (TMAO) and glycine betaine (GB). TMAO and GB play an important role in the regulation and adaptation of life in deep-sea organisms. To this end, pressure dependent fluorescence spectroscopy was applied, supplemented by circular dichroism (CD) spectroscopy and computer modeling studies. The pressure-dependent measurements were also performed to investigate the intimate nature of the complex formation in relation to hydration and packing changes caused by the presence of the osmolytes. We show that TMAO and GB are able to modulate the ligand binding process in specific ways. Depending on the chemical make-up of the protein's binding pocket and thus the thermodynamic forces driving the binding process, there are osmolytes with specific interaction sites and binding strengths with water that are able to mediate efficient ligand binding even under external stress conditions. In the binding of proflavine to BSA and HSA, the addition of both compatible osmolytes leads to an increase in the binding constant upon pressurization, with TMAO being the most efficient, rendering the binding process also insensitive to pressurization even up to 2 kbar as the volume change remains close to zero. This effect can be corroborated by the effects the cosolvents impose on the strength and dynamics of hydration water as well as on the conformational dynamics of the protein.


Asunto(s)
Metilaminas , Proflavina , Betaína , Ligandos , Metilaminas/química , Proteínas , Termodinámica , Agua/química
11.
Phys Chem Chem Phys ; 24(35): 21216-21222, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36040138

RESUMEN

Trimethylamine N-oxide (TMAO) and urea are small organic biological molecules. While TMAO is known as a protective osmolyte that promotes the native form of biomolecules, urea is a denaturant. An understanding of the impact of TMAO and urea on water structure may aid in uncovering the molecular mechanisms that underlie this activity. Here we investigate binary solutions of TMAO-water, urea-water and ternary solutions of TMAO-urea-water using NMR spectroscopy at 300 K. An enhancement of the total hydrogen bonding in water was found upon the addition of TMAO and this effect was neutralised by a mole ratio of 1-part TMAO to 4-parts urea. Urea was found to have little effect on the strength of water's hydrogen bonding network and the dynamics of water molecules. Evidence was found for a weak interaction between TMAO and urea. Taken together, these results suggest that TMAO's function as a protective osmolyte, and its counteraction of urea, may be driven by the strength of its hydrogen bond interactions with water, and by a secondary reinforcement of water's own hydrogen bond network. They also suggest that the TMAO-urea complex forms through the donation of a hydrogen bond by urea.


Asunto(s)
Urea , Agua , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Metilaminas/química , Urea/química , Agua/química
12.
Phys Chem Chem Phys ; 24(45): 27930-27939, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36373217

RESUMEN

Osmolytes are well-known biocatalyst stabilisers as they promote the folded state of proteins, and a stabilised biocatalyst might also improve reaction kinetics. In this work, the influence of four osmolytes (betaine, glycerol, trehalose, and trimethylamine N-oxide) on the activity and stability of Candida bondinii formate dehydrogenase cbFDH was studied experimentally and theoretically. Scanning differential fluorimetric studies were performed to assess the thermal stability of cbFDH, while UV detection was used to reveal changes in cbFDH activity and reaction equilibrium at osmolyte concentrations between 0.25 and 1 mol kg-1. The thermodynamic model ePC-SAFT advanced allowed predicting the effects of osmolyte on the reaction equilibrium by accounting for interactions involving osmolyte, products, substrates, and water. The results show that osmolytes at low concentrations were beneficial for both, thermal stability and cbFDH activity, while keeping the equilibrium yield at high level. Molecular dynamics simulations were used to describe the solvation around the cbFDH surface and the volume exclusion effect, proofing the beneficial effect of the osmolytes on cbFDH activity, especially at low concentrations of trimethylamine N-oxide and betaine. Different mechanisms of stabilisation (dependent on the osmolyte) show the importance of studying solvent-protein dynamics towards the design of optimised biocatalytic processes.


Asunto(s)
Betaína , Formiato Deshidrogenasas , Formiato Deshidrogenasas/química , Betaína/química , Metilaminas/química , Termodinámica
13.
Phys Chem Chem Phys ; 24(11): 6941-6957, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35254354

RESUMEN

A detailed knowledge of hydrophobic association and solvation is crucial for understanding the con-formational stability of proteins and polymers in osmolyte solutions. Using molecular dynamics simulations, it is found that the hydrophobic association of neopentane molecules is greater in a mixed urea-TMAO-water solution in comparison to that in 8 M urea solution, 4 M TMAO solution and neat water. The neopentane association in urea solution is greater than that in TMAO solution or neat water. We find the association is even less in TMAO solution than pure water. From free energy calculations, it is revealed that the neopentane sized cavity creation in mixed urea-TMAO-water is most unfavorable and that causes the highest hydrophobic association. The cavity formation in urea solution is either more unfavorable or comparable to that in TMAO solution. Importantly, it is found that the population of neopentane-neopentane contact pair and the free energy contribution for the cavity formation step in TMAO solution are very sensitive towards the choice of TMAO force-fields. A careful construction of TMAO force-fields is important for studying the hydrophobic association. Interestingly it is observed that the total solute-solvent dispersion interaction energy contribution is always the most favorable in mixed urea-TMAO-water. The magnitude of this interaction energy is greater in urea solution relative to TMAO solution for two different force-fields of TMAO, whereas the lowest value is obtained in pure water. It is revealed that the extent of the overall hydrophobic association in osmolyte solutions is mainly governed by the cavity creation step and it nullifies the contribution coming from the solute-solvent interaction contribution.


Asunto(s)
Metilaminas , Pentanos , Urea , Interacciones Hidrofóbicas e Hidrofílicas , Metilaminas/química , Simulación de Dinámica Molecular , Pentanos/química , Soluciones , Urea/química , Agua/química
14.
Phys Chem Chem Phys ; 24(35): 21178-21187, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36039911

RESUMEN

We present a new water-dependent molecular mechanism for the widely-used protein stabilizing osmolyte, trimethylamine N-oxide (TMAO), whose mode of action has remained controversial. Classical interpretations, such as osmolyte exclusion from the vicinity of protein, cannot adequately explain the behavior of this osmolyte and were challenged by recent data showing the direct interactions of TMAO with proteins, mainly via hydrophobic binding. Solvent effect theories also fail to propose a straightforward mechanism. To explore the role of water and the hydrophobic association, we disabled osmolyte-protein hydrophobic interactions by replacing water with hexane and using lipase enzyme as an anhydrous-stable protein. Biocatalysis experiments showed that under this non-aqueous condition, TMAO does not act as a stabilizer, but strongly deactivates the enzyme. Molecular dynamics (MD) simulations reveal that TMAO accumulates near the enzyme and makes many hydrogen bonds with it, like denaturing osmolytes. Some TMAO molecules even reach the active site and interact strongly with the catalystic traid. In aqueous solvent, the enzyme functions well: the extent of TMAO interactions is reduced and can be divided into both polar and non-polar terms. Structural analysis shows that in water, some TMAO molecules bind to the enzyme surface like a surfactant. We show that these interactions limit water-protein hydrogen bonds and unfavorable water-hydrophobic surface contacts. Moreover, a more hydrophobic environment is formed in the solvation layer, which reduces water dynamics and subsequently, rigidifies the backbone in aqueous solution. We show that osmolyte amphiphilicity and protein surface heterogeneity can address the weaknesses of exclusion and solvent effect theories about the TMAO mechanism.


Asunto(s)
Metilaminas , Proteínas , Interacciones Hidrofóbicas e Hidrofílicas , Metilaminas/química , Proteínas/química , Solventes/química , Urea/química , Agua/química
15.
J Phys Chem A ; 126(32): 5375-5385, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35925760

RESUMEN

Glycolaldehyde (GAld) is a C2 water-soluble aldehyde produced during the atmospheric oxidation of isoprene and many other species and is commonly found in cloudwater. Previous work has established that glycolaldehyde evaporates more readily from drying aerosol droplets containing ammonium sulfate (AS) than does glyoxal, methylglyoxal, or hydroxyacetone, which implies that it does not oligomerize as quickly as these other species. Here, we report NMR measurements of glycolaldehyde's aqueous-phase reactions with AS, methylamine, and glycine. Reaction rate constants are smaller than those of respective glyoxal and methylglyoxal reactions in the pH range of 3-6. In follow-up cloud chamber experiments, deliquesced glycine and AS seed particles were found to take up glycolaldehyde and methylamine and form brown carbon. At very high relative humidity, these changes were more than 2 orders of magnitude faster than predicted by our bulk liquid NMR kinetics measurements, suggesting that reactions involving surface-active species at crowded air-water interfaces may play an important role. The high-resolution liquid chromatography-electrospray ionization-mass spectrometric analysis of filter extracts of unprocessed AS + GAld seed particles identified sugar-like C6 and C12 GAld oligomers, including proposed product 3-deoxyglucosone, with and without modification by reactions with ammonia to diimine and imidazole forms. Chamber exposure to methylamine gas, cloud processing, and simulated sunlight increased the incorporation of both ammonia and methylamine into oligomers. Many C4-C16 imidazole derivatives were detected in an extract of chamber-exposed aerosol along with a predominance of N-derivatized C6 and C12 glycolaldehyde oligomers, suggesting that GAld is capable of forming brown carbon SOA.


Asunto(s)
Aminas , Carbono , Acetaldehído/análogos & derivados , Aerosoles/química , Aminas/química , Amoníaco , Sulfato de Amonio/química , Glicina/química , Glioxal/química , Imidazoles , Metilaminas/química , Piruvaldehído/química , Agua/química
16.
J Chem Phys ; 156(18): 184501, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568566

RESUMEN

The effect of trimethylamine-N-oxide (TMAO) on hydrophobic solvation and hydrophobic interactions of methane has been studied with Molecular Dynamics simulations in the temperature range between 280 and 370 K at 1 bar ambient pressure. We observe a temperature transition in the effect of TMAO on the aqueous solubility of methane. At low temperature (280 K), methane is preferentially hydrated, causing TMAO to reduce its solubility in water, while above 320 K, methane preferentially interacts with TMAO, causing TMAO to promote its solubility in water. Based on a statistical-mechanical analysis of the excess chemical potential of methane, we find that the reversible work of creating a repulsive methane cavity opposes the solubility of methane in TMAO/water solution more than in pure water. Below 320 K, this solvent-excluded volume effect overcompensates the contribution of methane-TMAO van der Waals interactions, which promote the solvation of methane and are observed at all temperatures. These van der Waals interactions with the methyl groups of TMAO tip the balance above 320 K where the effect of TMAO on solvent-excluded volume is smaller. We furthermore find that the effective attraction between dissolved methane solutes increases with the increasing TMAO concentration. This observation correlates with a reduction in the methane solubility below 320 K but with an increase in methane solubility at higher temperatures.


Asunto(s)
Metilaminas , Agua , Interacciones Hidrofóbicas e Hidrofílicas , Metano/química , Metilaminas/química , Solventes/química , Temperatura , Agua/química
17.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35163792

RESUMEN

Interactions between a solvent and their co-solute molecules in solutions of peptides are crucial for their stability and structure. The K-peptide is a synthetic fragment of a larger hen egg white lysozyme protein that is believed to be able to aggregate into amyloid structures. In this study, a complex experimental and theoretical approach is applied to study systems comprising the peptide, water, and two co-solutes: trimethylamide N-oxide (TMAO) or dimethyl sulfoxide (DMSO). Information about their interactions in solutions and on the stability of the K-peptide was obtained by FTIR spectroscopy and differential scanning microcalorimetry. The IR spectra of various osmolyte-water-model-peptide complexes were simulated with the DFT method (B3LYP/6-311++G(d,p)). The FTIR results indicate that both solutes are neutral for the K-peptide in solution. Both co-solutes affect the peptide to different degrees, as seen in the shape of its amide I band, and have different influences on its thermal stability. DFT calculations helped simplify the experimental data for easier interpretation.


Asunto(s)
Dimetilsulfóxido/química , Metilaminas/química , Péptidos/química , Rastreo Diferencial de Calorimetría , Teoría Funcional de la Densidad , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
18.
J Biol Chem ; 295(25): 8460-8469, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358064

RESUMEN

Prions are lipidated proteins that interact with endogenous lipids and metal ions. They also assemble into multimers and propagate into the infectious scrapie form known as PrPSc The high-resolution structure of the infectious PrPSc state remains unknown, and its analysis largely relies on detergent-based preparations devoid of endogenous ligands. Here we designed polymers that allow isolation of endogenous membrane:protein assemblies in native nanodiscs without exposure to conventional detergents that destabilize protein structures and induce fibrillization. A set of styrene-maleic acid (SMA) polymers including a methylamine derivative facilitated gentle release of the infectious complexes for resolution of multimers, and a thiol-containing version promoted crystallization. Polymer extraction from brain homogenates from Syrian hamsters infected with Hyper prions and WT mice infected with Rocky Mountain Laboratories prions yielded infectious prion nanoparticles including oligomers and microfilaments bound to lipid vesicles. Lipid analysis revealed the brain phospholipids that associate with prion protofilaments, as well as those that are specifically enriched in prion assemblies captured by the methylamine-modified copolymer. A comparison of the infectivity of PrPSc attached to SMA lipid particles in mice and hamsters indicated that these amphipathic polymers offer a valuable tool for high-yield production of intact, detergent-free prions that retain in vivo activity. This native prion isolation method provides an avenue for producing relevant prion:lipid targets and potentially other proteins that form multimeric assemblies and fibrils on membranes.


Asunto(s)
Encéfalo/metabolismo , Lípidos/química , Maleatos/química , Nanoestructuras/química , Poliestirenos/química , Proteínas Priónicas/metabolismo , Animales , Cricetinae , Maleatos/síntesis química , Maleatos/metabolismo , Metilaminas/química , Ratones , Fosfolípidos/química , Fosfolípidos/metabolismo , Poliestirenos/síntesis química , Poliestirenos/metabolismo , Proteínas Priónicas/química , Proteínas Priónicas/aislamiento & purificación , Compuestos de Sulfhidrilo/química
19.
J Biol Inorg Chem ; 26(2-3): 367-374, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33713182

RESUMEN

Metabolism of food protein by gut microbes produce trimethylamine which on oxidation by hepatic flavin-containing monooxygenases is transformed to trimethylamine-N-oxide (TMAO). TMAO has recently been implicated as a biomarker for atherosclerosis. TMAO, as (CH3)3N+-O-), is ionic and so a hydrophilic molecule that is freely available in blood plasma. For the effective interaction with lipid-soluble molecules, TMAO should be phase transferred to the lipid site. We show that the free TMAO is effectively bonded to zinc protoporphyrin IX dimethyl ester [ZnPPDME] to yield [TMAOZnPPDME] using phase transfer reaction. The zinc protoporphyrin IX, [ZnPP], in general, available in blood may form [TMAOZnPP] complex. The nature of such interaction between TMAO and [ZnPP] has been structurally shown using a model complex, [TMAOZnTPP] (TPP = tetraphenylporphyrin). These complexes readily move from the polar plasma to the non-polar (lipid) site to act as the oxo-transfer agent to oxidize cholesterol causing atherosclerosis. Chromatographic and circular dichroism (CD) studies show that either TMAO or [ZnPP] alone cannot oxidize cholesterol. Free TMAO bonded with zinc-protoporphyrin IX, [ZnPP], in blood plasma as [TMAOZnPP] is transported to the lipid site and this is the reacting species to oxidize cholesterol causing atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Colesterol/metabolismo , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Metilaminas/química , Protoporfirinas/química , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Oxidación-Reducción/efectos de los fármacos
20.
J Biol Inorg Chem ; 26(1): 13-28, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33131003

RESUMEN

The molybdopterin enzyme family catalyzes a variety of substrates and plays a critical role in the cycling of carbon, nitrogen, arsenic, and selenium. The dimethyl sulfoxide reductase (DMSOR) subfamily is the most diverse family of molybdopterin enzymes and the members of this family catalyze a myriad of reactions that are important in microbial life processes. Enzymes in the DMSOR family can transform multiple substrates; however, quantitative information about the substrate preference is sparse, and, more importantly, the reasons for the substrate selectivity are not clear. Molybdenum coordination has long been proposed to impact the catalytic activity of the enzyme. Specifically, the molybdenum-coordinating residue may tune substrate preference. As such, molybdopterin enzyme periplasmic nitrate reductase (Nap) is utilized as a vehicle to understand the substrate preference and delineate the kinetic underpinning of the differences imposed by exchanging the molybdenum ligands. To this end, NapA from Campylobacter jejuni has been heterologously overexpressed, and a series of variants, where the molybdenum coordinating cysteine has been replaced with another amino acid, has been produced. The kinetic properties of these variants are discussed and compared with those of the native enzyme, providing quantitative information to understand the function of the molybdenum-coordinating residue.


Asunto(s)
Dimetilsulfóxido/química , Metilaminas/química , Nitrato-Reductasa/química , Nitratos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Campylobacter jejuni/enzimología , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Molibdeno/química , Mutagénesis Sitio-Dirigida , Mutación , Nitrato-Reductasa/genética , Oxidación-Reducción , Periplasma/enzimología , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA