Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.626
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(22): 5527-5540.e18, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34644527

RESUMEN

To secure phosphorus (P) from soil, most land plants use a direct phosphate uptake pathway via root hairs and epidermis and an indirect phosphate uptake pathway via mycorrhizal symbiosis. The interaction between these two pathways is unclear. Here, we mapped a network between transcription factors and mycorrhizal symbiosis-related genes using Y1H. Intriguingly, this gene regulatory network is governed by the conserved P-sensing pathway, centered on phosphate starvation response (PHR) transcription factors. PHRs are required for mycorrhizal symbiosis and regulate symbiosis-related genes via the P1BS motif. SPX-domain proteins suppress OsPHR2-mediated induction of symbiosis-related genes and inhibit mycorrhizal infection. In contrast, plants overexpressing OsPHR2 show improved mycorrhizal infection and are partially resistant to P-mediated inhibition of symbiosis. Functional analyses of network nodes revealed co-regulation of hormonal signaling and mycorrhizal symbiosis. This network deciphers extensive regulation of mycorrhizal symbiosis by endogenous and exogenous signals and highlights co-option of the P-sensing pathway for mycorrhizal symbiosis.


Asunto(s)
Redes Reguladoras de Genes , Micorrizas/genética , Micorrizas/fisiología , Fosfatos/deficiencia , Simbiosis/genética , Simbiosis/fisiología , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Oryza/genética , Oryza/microbiología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
2.
Nature ; 627(8003): 335-339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418873

RESUMEN

The latitudinal diversity gradient (LDG) dominates global patterns of diversity1,2, but the factors that underlie the LDG remain elusive. Here we use a unique global dataset3 to show that vascular plants on oceanic islands exhibit a weakened LDG and explore potential mechanisms for this effect. Our results show that traditional physical drivers of island biogeography4-namely area and isolation-contribute to the difference between island and mainland diversity at a given latitude (that is, the island species deficit), as smaller and more distant islands experience reduced colonization. However, plant species with mutualists are underrepresented on islands, and we find that this plant mutualism filter explains more variation in the island species deficit than abiotic factors. In particular, plant species that require animal pollinators or microbial mutualists such as arbuscular mycorrhizal fungi contribute disproportionately to the island species deficit near the Equator, with contributions decreasing with distance from the Equator. Plant mutualist filters on species richness are particularly strong at low absolute latitudes where mainland richness is highest, weakening the LDG of oceanic islands. These results provide empirical evidence that mutualisms, habitat heterogeneity and dispersal are key to the maintenance of high tropical plant diversity and mediate the biogeographic patterns of plant diversity on Earth.


Asunto(s)
Biodiversidad , Mapeo Geográfico , Islas , Plantas , Simbiosis , Animales , Conjuntos de Datos como Asunto , Micorrizas/fisiología , Plantas/microbiología , Polinización , Clima Tropical , Océanos y Mares , Filogeografía
3.
Annu Rev Cell Dev Biol ; 29: 593-617, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24099088

RESUMEN

The default mineral nutrient acquisition strategy of land plants is the symbiosis with arbuscular mycorrhiza (AM) fungi. Research into the cell and developmental biology of AM revealed fascinating insights into the plasticity of plant cell development and of interorganismic communication. It is driven by the prospect of increased exploitation of AM benefits for sustainable agriculture. The plant cell developmental program for intracellular accommodation of AM fungi is activated by a genetically defined signaling pathway involving calcium spiking in the nucleus as second messenger. Calcium spiking is triggered by chitooligosaccharides released by AM fungi that are probably perceived via LysM domain receptor kinases. Fungal infection and calcium spiking are spatiotemporally coordinated, and only cells committed to accommodating the fungus undergo high-frequency spiking. Delivery of mineral nutrients by AM fungi occurs at tree-shaped hyphal structures, the arbuscules, in plant cortical cells. Nutrients are taken up at a plant-derived periarbuscular membrane, which surrounds fungal hyphae and carries a specific transporter composition that is of direct importance for symbiotic efficiency. An elegant study has unveiled a new and unexpected mechanism for specific protein localization to the periarbuscular membrane, which relies on the timing of gene expression to synchronize protein biosynthesis with a redirection of secretion. The control of AM development by phytohormones is currently subject to active investigation and has led to the rediscovery of strigolactones. Nearly all tested phytohormones regulate AM development, and major insights into the mechanisms of this regulation are expected in the near future.


Asunto(s)
Micorrizas/fisiología , Plantas/microbiología , Micorrizas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Simbiosis
4.
Proc Natl Acad Sci U S A ; 121(23): e2308811121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805274

RESUMEN

Climate change will likely shift plant and microbial distributions, creating geographic mismatches between plant hosts and essential microbial symbionts (e.g., ectomycorrhizal fungi, EMF). The loss of historical interactions, or the gain of novel associations, can have important consequences for biodiversity, ecosystem processes, and plant migration potential, yet few analyses exist that measure where mycorrhizal symbioses could be lost or gained across landscapes. Here, we examine climate change impacts on tree-EMF codistributions at the continent scale. We built species distribution models for 400 EMF species and 50 tree species, integrating fungal sequencing data from North American forest ecosystems with tree species occurrence records and long-term forest inventory data. Our results show the following: 1) tree and EMF climate suitability to shift toward higher latitudes; 2) climate shifts increase the size of shared tree-EMF habitat overall, but 35% of tree-EMF pairs are at risk of declining habitat overlap; 3) climate mismatches between trees and EMF are projected to be greater at northern vs. southern boundaries; and 4) tree migration lag is correlated with lower richness of climatically suitable EMF partners. This work represents a concentrated effort to quantify the spatial extent and location of tree-EMF climate envelope mismatches. Our findings also support a biotic mechanism partially explaining the failure of northward tree species migrations with climate change: reduced diversity of co-occurring and climate-compatible EMF symbionts at higher latitudes. We highlight the conservation implications for identifying areas where tree and EMF responses to climate change may be highly divergent.


Asunto(s)
Cambio Climático , Micorrizas , Simbiosis , Árboles , Micorrizas/fisiología , Árboles/microbiología , América del Norte , Bosques , Biodiversidad , Ecosistema
5.
Proc Natl Acad Sci U S A ; 121(30): e2318982121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012828

RESUMEN

The mutualistic arbuscular mycorrhizal (AM) symbiosis arose in land plants more than 450 million years ago and is still widely found in all major land plant lineages. Despite its broad taxonomic distribution, little is known about the molecular components underpinning symbiosis outside of flowering plants. The ARBUSCULAR RECEPTOR-LIKE KINASE (ARK) is required for sustaining AM symbiosis in distantly related angiosperms. Here, we demonstrate that ARK has an equivalent role in symbiosis maintenance in the bryophyte Marchantia paleacea and is part of a broad AM genetic program conserved among land plants. In addition, our comparative transcriptome analysis identified evolutionarily conserved expression patterns for several genes in the core symbiotic program required for presymbiotic signaling, intracellular colonization, and nutrient exchange. This study provides insights into the molecular pathways that consistently associate with AM symbiosis across land plants and identifies an ancestral role for ARK in governing symbiotic balance.


Asunto(s)
Embryophyta , Regulación de la Expresión Génica de las Plantas , Micorrizas , Proteínas de Plantas , Simbiosis , Simbiosis/genética , Micorrizas/fisiología , Micorrizas/genética , Embryophyta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Marchantia/genética , Marchantia/microbiología , Filogenia
6.
Annu Rev Microbiol ; 75: 583-607, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34623896

RESUMEN

Chitin is a structural polymer in many eukaryotes. Many organisms can degrade chitin to defend against chitinous pathogens or use chitin oligomers as food. Beneficial microorganisms like nitrogen-fixing symbiotic rhizobia and mycorrhizal fungi produce chitin-based signal molecules called lipo-chitooligosaccharides (LCOs) and short chitin oligomers to initiate a symbiotic relationship with their compatible hosts and exchange nutrients. A recent study revealed that a broad range of fungi produce LCOs and chitooligosaccharides (COs), suggesting that these signaling molecules are not limited to beneficial microbes. The fungal LCOs also affect fungal growth and development, indicating that the roles of LCOs beyond symbiosis and LCO production may predate mycorrhizal symbiosis. This review describes the diverse structures of chitin; their perception by eukaryotes and prokaryotes; and their roles in symbiotic interactions, defense, and microbe-microbe interactions. We also discuss potential strategies of fungi to synthesize LCOs and their roles in fungi with different lifestyles.


Asunto(s)
Micorrizas , Simbiosis , Quitina/metabolismo , Micorrizas/metabolismo , Transducción de Señal
7.
Plant Cell ; 35(6): 2006-2026, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36808553

RESUMEN

Arbuscular mycorrhizal (AM) symbiosis is a widespread, ancient mutualistic association between plants and fungi, and facilitates nutrient uptake into plants. Cell surface receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) play pivotal roles in transmembrane signaling, while few RLCKs are known to function in AM symbiosis. Here, we show that 27 out of 40 AM-induced kinases (AMKs) are transcriptionally upregulated by key AM transcription factors in Lotus japonicus. Nine AMKs are only conserved in AM-host lineages, among which the SPARK-RLK-encoding gene KINASE3 (KIN3) and the RLCK paralogues AMK8 and AMK24 are required for AM symbiosis. KIN3 expression is directly regulated by the AP2 transcription factor CTTC MOTIF-BINDING TRANSCRIPTION FACTOR1 (CBX1), which regulates the reciprocal exchange of nutrients in AM symbiosis, via the AW-box motif in the KIN3 promoter. Loss of function mutations in KIN3, AMK8, or AMK24 result in reduced mycorrhizal colonization in L. japonicus. AMK8 and AMK24 physically interact with KIN3. KIN3 and AMK24 are active kinases and AMK24 directly phosphorylates KIN3 in vitro. Moreover, CRISPR-Cas9-mediated mutagenesis of OsRLCK171, the sole homolog of AMK8 and AMK24 in rice (Oryza sativa), leads to diminished mycorrhization with stunted arbuscules. Overall, our results reveal a crucial role of the CBX1-driven RLK/RLCK complex in the evolutionarily conserved signaling pathway enabling arbuscule formation.


Asunto(s)
Lotus , Micorrizas , Oryza , Humanos , Lotus/genética , Simbiosis/genética , Transporte Biológico , Investigadores , Proteínas de Plantas/genética , Raíces de Plantas , Regulación de la Expresión Génica de las Plantas/genética
8.
PLoS Biol ; 21(12): e3002434, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38150463

RESUMEN

Mutualistic interactions, such as plant-mycorrhizal or plant-pollinator interactions, are widespread in ecological communities and frequently exploited by cheaters, species that profit from interactions without providing benefits in return. Cheating usually negatively affects the fitness of the individuals that are cheated on, but the effects of cheating at the community level remains poorly understood. Here, we describe 2 different kinds of cheating in mutualistic networks and use a generalized Lotka-Volterra model to show that they have very different consequences for the persistence of the community. Conservative cheating, where a species cheats on its mutualistic partners to escape the cost of mutualistic interactions, negatively affects community persistence. In contrast, innovative cheating occurs with species with whom legitimate interactions are not possible, because of a physiological or morphological barrier. Innovative cheating can enhance community persistence under some conditions: when cheaters have few mutualistic partners, cheat at low or intermediate frequency and the cost associated with mutualism is not too high. Under these conditions, the negative effects of cheating on partner persistence are overcompensated at the community level by the positive feedback loops that arise in diverse mutualistic communities. Using an empirical dataset of plant-bird interactions (hummingbirds and flowerpiercers), we found that observed cheating patterns are highly consistent with theoretical cheating patterns found to increase community persistence. This result suggests that the cheating patterns observed in nature could contribute to promote species coexistence in mutualistic communities, instead of necessarily destabilizing them.


Asunto(s)
Micorrizas , Humanos , Simbiosis/fisiología , Plantas , Biota
9.
PLoS Biol ; 21(5): e3002127, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37200394

RESUMEN

Receptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans. Expression studies with cellular resolution show localised activation of the Epr3a promoter in cortical root cells containing arbuscules. Fungal infection and intracellular arbuscule formation are reduced in epr3a mutants. In vitro, the EPR3a ectodomain binds cell wall glucans in affinity gel electrophoresis assays. In microscale thermophoresis (MST) assays, rhizobial exopolysaccharide binding is detected with affinities comparable to those observed for EPR3, and both EPR3a and EPR3 bind a well-defined ß-1,3/ß-1,6 decasaccharide derived from exopolysaccharides of endophytic and pathogenic fungi. Both EPR3a and EPR3 function in the intracellular accommodation of microbes. However, contrasting expression patterns and divergent ligand affinities result in distinct functions in AM colonisation and rhizobial infection in Lotus japonicus. The presence of Epr3a and Epr3 genes in both eudicot and monocot plant genomes suggest a conserved function of these receptor kinases in glycan perception.


Asunto(s)
Lotus , Micorrizas , Rhizobium , Micorrizas/genética , Lotus/genética , Lotus/metabolismo , Lotus/microbiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Rhizobium/metabolismo , Raíces de Plantas/metabolismo , Mutación , Simbiosis/genética , Fosfotransferasas/metabolismo , Polisacáridos/metabolismo , Glucanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Proc Natl Acad Sci U S A ; 120(36): e2307519120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37643216

RESUMEN

Temperate forests are threatened by urbanization and fragmentation, with over 20% (118,300 km2) of U.S. forest land projected to be subsumed by urban land development. We leveraged a unique, well-characterized urban-to-rural and forest edge-to-interior gradient to identify the combined impact of these two land use changes-urbanization and forest edge creation-on the soil microbial community in native remnant forests. We found evidence of mutualism breakdown between trees and their fungal root mutualists [ectomycorrhizal (ECM) fungi] with urbanization, where ECM fungi colonized fewer tree roots and had less connectivity in soil microbiome networks in urban forests compared to rural forests. However, urbanization did not reduce the relative abundance of ECM fungi in forest soils; instead, forest edges alone led to strong reductions in ECM fungal abundance. At forest edges, ECM fungi were replaced by plant and animal pathogens, as well as copiotrophic, xenobiotic-degrading, and nitrogen-cycling bacteria, including nitrifiers and denitrifiers. Urbanization and forest edges interacted to generate new "suites" of microbes, with urban interior forests harboring highly homogenized microbiomes, while edge forest microbiomes were more heterogeneous and less stable, showing increased vulnerability to low soil moisture. When scaled to the regional level, we found that forest soils are projected to harbor high abundances of fungal pathogens and denitrifying bacteria, even in rural areas, due to the widespread existence of forest edges. Our results highlight the potential for soil microbiome dysfunction-including increased greenhouse gas production-in temperate forest regions that are subsumed by urban expansion, both now and in the future.


Asunto(s)
Micorrizas , Simbiosis , Animales , Urbanización , Bosques , Suelo
11.
Proc Natl Acad Sci U S A ; 120(27): e2301884120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37368927

RESUMEN

Arbuscular mycorrhizal fungi (AMF) can form a mutually beneficial symbiotic relationship with most land plants. They are known to secrete lysin motif (LysM) effectors into host root cells for successful colonization. Intriguingly, plants secrete similar types of LysM proteins; however, their role in plant-microbe interactions is unknown. Here, we show that Medicago truncatula deploys LysM extracellular (LysMe) proteins to facilitate symbiosis with AMF. Promoter analyses demonstrated that three M. truncatula LysMe genes MtLysMe1/2/3, are expressed in arbuscule-containing cells and those adjacent to intercellular hyphae. Localization studies showed that these proteins are targeted to the periarbuscular space between the periarbuscular membrane and the fungal cell wall of the branched arbuscule. M. truncatula mutants in which MtLysMe2 was knocked out via CRISPR/Cas9-targeted mutagenesis exhibited a significant reduction in AMF colonization and arbuscule formation, whereas genetically complemented transgenic plants restored wild-type level AMF colonization. In addition, knocking out the ortholog of MtLysMe2 in tomato resulted in a similar defect in AMF colonization. In vitro binding affinity precipitation assays suggested binding of MtLysMe1/2/3 with chitin and chitosan, while microscale thermophoresis (MST) assays revealed weak binding of these proteins with chitooligosaccharides. Moreover, application of purified MtLysMe proteins to root segments could suppress chitooctaose (CO8)-induced reactive oxygen species production and expression of reporter genes of the immune response without impairing chitotetraose (CO4)-triggered symbiotic responses. Taken together, our results reveal that plants, like their fungal partners, also secrete LysM proteins to facilitate symbiosis establishment.


Asunto(s)
Medicago truncatula , Micorrizas , Simbiosis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Micorrizas/fisiología , Hifa/metabolismo , Quitina/metabolismo , Medicago truncatula/microbiología , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
Proc Natl Acad Sci U S A ; 120(12): e2220079120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36913576

RESUMEN

Demand for agricultural land is a potent accelerating driver of global deforestation, presenting multiple interacting issues at different spatiotemporal scales. Here we show that inoculating the root system of tree planting stock with edible ectomycorrhizal fungi (EMF) can reduce the food-forestry land-use conflict, enabling appropriately managed forestry plantations to contribute to protein and calorie production and potentially increasing carbon sequestration. Although, when compared to other food groups, we show that EMF cultivation is inefficient in terms of land use with a needed area of ~668 m2 y kg-1 protein, the additional benefits are vast. Depending on the habitat type and tree age, greenhouse gas emissions may range from -858 to 526 kg CO2-eq kg-1 protein and the sequestration potential stands in stark contrast to nine other major food groups. Further, we calculate the missed food production opportunity of not incorporating EMF cultivation into current forestry activities, an approach that could enhance food security for millions of people. Given the additional biodiversity, conservational and rural socioeconomic potential, we call for action and development to realize the sustainable benefits of EMF cultivation.


Asunto(s)
Agricultura Forestal , Micorrizas , Humanos , Carbono , Cambio Climático , Conservación de los Recursos Naturales , Agricultura , Árboles , Productos Agrícolas , Secuestro de Carbono
13.
Proc Natl Acad Sci U S A ; 120(34): e2221619120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579148

RESUMEN

The interaction networks formed by ectomycorrhizal fungi (EMF) and their tree hosts, which are important to both forest recruitment and ecosystem carbon and nutrient retention, may be particularly susceptible to climate change at the boreal-temperate forest ecotone where environmental conditions are changing rapidly. Here, we quantified the compositional and functional trait responses of EMF communities and their interaction networks with two boreal (Pinus banksiana and Betula papyrifera) and two temperate (Pinus strobus and Quercus macrocarpa) hosts to a factorial combination of experimentally elevated temperatures and reduced rainfall in a long-term open-air field experiment. The study was conducted at the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment in Minnesota, USA, where infrared lamps and buried heating cables elevate temperatures (ambient, +3.1 °C) and rain-out shelters reduce growing season precipitation (ambient, ~30% reduction). EMF communities were characterized and interaction networks inferred from metabarcoding of fungal-colonized root tips. Warming and rainfall reduction significantly altered EMF community composition, leading to an increase in the relative abundance of EMF with contact-short distance exploration types. These compositional changes, which likely limited the capacity for mycelial connections between trees, corresponded with shifts from highly redundant EMF interaction networks under ambient conditions to less redundant (more specialized) networks. Further, the observed changes in EMF communities and interaction networks were correlated with changes in soil moisture and host photosynthesis. Collectively, these results indicate that the projected changes in climate will likely lead to significant shifts in the traits, structure, and integrity of EMF communities as well as their interaction networks in forest ecosystems at the boreal-temperate ecotone.


Asunto(s)
Micorrizas , Pinus , Ecosistema , Cambio Climático , Bosques , Árboles/fisiología , Pinus/microbiología
14.
Plant J ; 118(2): 304-323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38265362

RESUMEN

The model moss species Physcomitrium patens has long been used for studying divergence of land plants spanning from bryophytes to angiosperms. In addition to its phylogenetic relationships, the limited number of differential tissues, and comparable morphology to the earliest embryophytes provide a system to represent basic plant architecture. Based on plant-fungal interactions today, it is hypothesized these kingdoms have a long-standing relationship, predating plant terrestrialization. Mortierellaceae have origins diverging from other land fungi paralleling bryophyte divergence, are related to arbuscular mycorrhizal fungi but are free-living, observed to interact with plants, and can be found in moss microbiomes globally. Due to their parallel origins, we assess here how two Mortierellaceae species, Linnemannia elongata and Benniella erionia, interact with P. patens in coculture. We also assess how Mollicute-related or Burkholderia-related endobacterial symbionts (MRE or BRE) of these fungi impact plant response. Coculture interactions are investigated through high-throughput phenomics, microscopy, RNA-sequencing, differential expression profiling, gene ontology enrichment, and comparisons among 99 other P. patens transcriptomic studies. Here we present new high-throughput approaches for measuring P. patens growth, identify novel expression of over 800 genes that are not expressed on traditional agar media, identify subtle interactions between P. patens and Mortierellaceae, and observe changes to plant-fungal interactions dependent on whether MRE or BRE are present. Our study provides insights into how plants and fungal partners may have interacted based on their communications observed today as well as identifying L. elongata and B. erionia as modern fungal endophytes with P. patens.


Asunto(s)
Briófitas , Bryopsida , Micorrizas , Filogenia , Endófitos/metabolismo , Análisis Multinivel , Proteínas de Plantas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Briófitas/metabolismo , Micorrizas/metabolismo
15.
Plant Cell ; 34(5): 1573-1599, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35157080

RESUMEN

Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.


Asunto(s)
Fabaceae , Micorrizas , Rhizobium , Micorrizas/fisiología , Fijación del Nitrógeno , Fosfatos , Plantas/microbiología , Rhizobium/fisiología , Simbiosis/fisiología
16.
Plant Cell ; 34(10): 4066-4087, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35880836

RESUMEN

Most plant species can form symbioses with arbuscular mycorrhizal fungi (AMFs), which may enhance the host plant's acquisition of soil nutrients. In contrast to phosphorus nutrition, the molecular mechanism of mycorrhizal nitrogen (N) uptake remains largely unknown, and its physiological relevance is unclear. Here, we identified a gene encoding an AMF-inducible ammonium transporter, ZmAMT3;1, in maize (Zea mays) roots. ZmAMT3;1 was specifically expressed in arbuscule-containing cortical cells and the encoded protein was localized at the peri-arbuscular membrane. Functional analysis in yeast and Xenopus oocytes indicated that ZmAMT3;1 mediated high-affinity ammonium transport, with the substrate NH4+ being accessed, but likely translocating uncharged NH3. Phosphorylation of ZmAMT3;1 at the C-terminus suppressed transport activity. Using ZmAMT3;1-RNAi transgenic maize lines grown in compartmented pot experiments, we demonstrated that substantial quantities of N were transferred from AMF to plants, and 68%-74% of this capacity was conferred by ZmAMT3;1. Under field conditions, the ZmAMT3;1-dependent mycorrhizal N pathway contributed >30% of postsilking N uptake. Furthermore, AMFs downregulated ZmAMT1;1a and ZmAMT1;3 protein abundance and transport activities expressed in the root epidermis, suggesting a trade-off between mycorrhizal and direct root N-uptake pathways. Taken together, our results provide a comprehensive understanding of mycorrhiza-dependent N uptake in maize and present a promising approach to improve N-acquisition efficiency via plant-microbe interactions.


Asunto(s)
Compuestos de Amonio , Micorrizas , Compuestos de Amonio/metabolismo , Regulación de la Expresión Génica de las Plantas , Micorrizas/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Suelo , Zea mays/metabolismo
17.
Plant Cell ; 34(10): 4045-4065, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35863053

RESUMEN

Forming mutualistic symbioses with arbuscular mycorrhizae (AMs) improves the acquisition of mineral nutrients for most terrestrial plants. However, the formation of AM symbiosis usually occurs under phosphate (Pi)-deficient conditions. Here, we identify SlSPX1 (SYG1 (suppressor of yeast GPA1)/Pho81(phosphate 81)/XPR1 (xenotropic and polytropic retrovirus receptor 1) as the major repressor of the AM symbiosis in tomato (Solanum lycopersicum) under phosphate-replete conditions. Loss of SlSPX1 function promotes direct Pi uptake and enhances AM colonization under phosphate-replete conditions. We determine that SlSPX1 integrates Pi signaling and AM symbiosis by directly interacting with a set of arbuscule-induced SlPHR proteins (SlPHR1, SlPHR4, SlPHR10, SlPHR11, and SlPHR12). The association with SlSPX1 represses the ability of SlPHR proteins to activate AM marker genes required for the arbuscular mycorrhizal symbiosis. SlPHR proteins exhibit functional redundancy, and no defective AM symbiosis was detected in the single mutant of SlPHR proteins. However, silencing SlPHR4 in the Slphr1 mutant background led to reduced AM colonization. Therefore, our results support the conclusion that SlSPX1-SlPHRs form a Pi-sensing module to coordinate the AM symbiosis under different Pi-availability conditions.


Asunto(s)
Micorrizas , Solanum lycopersicum , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Minerales/metabolismo , Micorrizas/fisiología , Fosfatos/metabolismo , Raíces de Plantas/metabolismo , Simbiosis/fisiología
18.
Plant Cell ; 34(2): 759-783, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34791424

RESUMEN

Rice (Oryza sativa) was domesticated around 10,000 years ago and has developed into a staple for half of humanity. The crop evolved and is currently grown in stably wet and intermittently dry agro-ecosystems, but patterns of adaptation to differences in water availability remain poorly understood. While previous field studies have evaluated plant developmental adaptations to water deficit, adaptive variation in functional and hydraulic components, particularly in relation to gene expression, has received less attention. Here, we take an evolutionary systems biology approach to characterize adaptive drought resistance traits across roots and shoots. We find that rice harbors heritable variation in molecular, physiological, and morphological traits that is linked to higher fitness under drought. We identify modules of co-expressed genes that are associated with adaptive drought avoidance and tolerance mechanisms. These expression modules showed evidence of polygenic adaptation in rice subgroups harboring accessions that evolved in drought-prone agro-ecosystems. Fitness-linked expression patterns allowed us to identify the drought-adaptive nature of optimizing photosynthesis and interactions with arbuscular mycorrhizal fungi. Taken together, our study provides an unprecedented, integrative view of rice adaptation to water-limited field conditions.


Asunto(s)
Adaptación Fisiológica/fisiología , Sequías , Variación Genética , Oryza/fisiología , Productos Agrícolas/fisiología , Domesticación , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Micorrizas/fisiología , Fotosíntesis/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Selección Genética , Biología de Sistemas
19.
Nature ; 569(7756): 404-408, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31092941

RESUMEN

The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables-in particular, climatically controlled variation in the rate of decomposition-are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers-which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)-are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.


Asunto(s)
Clima , Bosques , Mapeo Geográfico , Micorrizas/fisiología , Simbiosis , Árboles/metabolismo , Árboles/microbiología , Fijación del Nitrógeno , Lluvia , Estaciones del Año
20.
Proc Natl Acad Sci U S A ; 119(13): e2200099119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35324326

RESUMEN

SignificanceOscillations in intracellular calcium concentration play an essential role in the regulation of multiple cellular processes. In plants capable of root endosymbiosis with nitrogen-fixing bacteria and/or arbuscular mycorrhizal fungi, nuclear localized calcium oscillations are essential to transduce the microbial signal. Although the ion channels required to generate the nuclear localized calcium oscillations have been identified, their mechanisms of regulation are unknown. Here, we combined proteomics and engineering approaches to demonstrate that the calcium-bound form of the calmodulin 2 (CaM2) associates with CYCLIC NUCLEOTIDE GATED CHANNEL 15 (CNGC15s), closing the channels and providing the negative feedback to sustain the oscillatory mechanism. We further unraveled that the engineered CaM2 accelerates early endosymbioses and enhanced root nodule symbiosis but not arbuscular mycorrhization.


Asunto(s)
Fabaceae , Micorrizas , Calcio , Señalización del Calcio/fisiología , Micorrizas/fisiología , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA