Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.431
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(7): e2201946119, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745797

RESUMEN

Plants will experience considerable changes in climate within their geographic ranges over the next several decades. They may respond by exhibiting niche flexibility and adapting to changing climates. Alternatively, plant taxa may exhibit climate fidelity, shifting their geographic distributions to track their preferred climates. Here, we examine the responses of plant taxa to changing climates over the past 18,000 y to evaluate the extent to which the 16 dominant plant taxa of North America have exhibited climate fidelity. We find that 75% of plant taxa consistently exhibit climate fidelity over the past 18,000 y, even during the times of most extreme climate change. Of the four taxa that do not consistently exhibit climate fidelity, three-elm (Ulmus), beech (Fagus), and ash (Fraxinus)-experience a long-term shift in their realized climatic niche between the early Holocene and present day. Plant taxa that migrate longer distances better maintain consistent climatic niches across transition periods during times of the most extreme climate change. Today, plant communities with the highest climate fidelity are found in regions with high topographic and microclimate heterogeneity that are expected to exhibit high climate resilience, allowing plants to shift distributions locally and adjust to some amount of climate change. However, once the climate change buffering of the region is exceeded, these plant communities will need to track climates across broader landscapes but be challenged to do so because of the low habitat connectivity of the regions.


Asunto(s)
Cambio Climático , Plantas , Ecosistema , América del Norte , Microclima
2.
BMC Plant Biol ; 24(1): 258, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594637

RESUMEN

BACKGROUND: Weed control is essential for agricultural floor management in vineyards and the inter-row mulching is an eco-friendly practice to inhibit weed growth via filtering out photosynthetically active radiation. Besides weed suppression, inter-row mulching can influence grapevine growth and the accumulation of metabolites in grape berries. However, the complex interaction of multiple factors in the field challenges the understanding of molecular mechanisms on the regulated metabolites. In the current study, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017) from anthesis to harvest. Metabolomics and transcriptomics analysis were conducted in two vintages, aiming to provide insights into metabolic and molecular responses of Cabernet Sauvignon grapes to M in a semi-arid climate. RESULTS: Upregulation of genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered heat stress, resulting in lower sugar-acid ratio at harvest. Key genes responsible for enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes, and norisoprenoids in M grapes were identified. In addition, several modules significantly correlated with the metabolic biomarkers through weighted correlation network analysis, and the potential key transcription factors regulating the above metabolites including VviGATA11, VviHSFA6B, and VviWRKY03 were also identified. CONCLUSION: This study provides a valuable overview of metabolic and transcriptomic responses of M grapes in semi-arid climates, which could facilitate understanding the complex regulatory network of metabolites in response to microclimate changes.


Asunto(s)
Vitis , Vino , Vitis/metabolismo , Transcriptoma , Antocianinas/metabolismo , Microclima , Granjas , Frutas , Vino/análisis
3.
New Phytol ; 242(4): 1739-1752, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581206

RESUMEN

The development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient-poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types. Mycorrhizal fungi colonized deglaciated areas very quickly (< 10 yr), with arbuscular mycorrhizal fungi tending to become more diverse through time compared to ectomycorrhizal fungi. Both alpha- and beta-diversity of arbuscular mycorrhizal fungi were significantly related to time since glacier retreat and plant communities, while microclimate and primary productivity were more important for ectomycorrhizal fungi. The richness and composition of mycorrhizal communities were also significantly explained by soil chemistry, highlighting the importance of microhabitat for community dynamics. The acceleration of ice melt and the modifications of microclimate forecasted by climate change scenarios are expected to impact the diversity of mycorrhizal partners. These changes could alter the interactions underlying biotic colonization and belowground-aboveground linkages, with multifaceted impacts on soil development and associated ecological processes.


Asunto(s)
Biodiversidad , Cubierta de Hielo , Micorrizas , Micorrizas/fisiología , Cubierta de Hielo/microbiología , Suelo/química , Microclima , Microbiología del Suelo
4.
Glob Chang Biol ; 30(2): e17196, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38404209

RESUMEN

Cliffs are remarkable environments that enable the existence of microclimates. These small, isolated sites, decoupled from the regional macroclimate, play a significant role in maintaining species biodiversity, particularly in topographically homogeneous landscapes. Our study investigated the microclimate of south-exposed forests situated at the edge of sandstone cliffs in the western part of the North Alpine Foreland Basin in Switzerland and its role in local forest community composition. Using direct measurements from data loggers, as well as vegetation analyses, it was possible to quantify the microclimate of the cliff-edge forests and compare it with that of the surrounding forests. Our results highlighted the significant xerothermic and more variable nature of the cliff-edge forest microclimate, with a mean soil temperature up to 3.72°C warmer in the summer, higher annual (+28%) and daily (+250%) amplitudes of soil temperature, which frequently expose vegetation to extreme temperatures, and an 83% higher soil drying rate. These differences have a distinct influence on forest communities: cliff-edge forests are significantly different from surrounding forests. The site particularities of cliff edges support the presence of locally rare species and forest types, particularly of Scots pine. Cliff edges must therefore be considered microrefugia with a high conservation value for both xerothermic species and flora adapted to more continental climates. Moreover, the microclimate of cliff-edge forests could resemble the future climate in many ways. We argue that these small areas, which are already experiencing the future climate, can be seen as natural laboratories to better answer the following question: what will our forests look like in a few decades with accelerated climate change?


Les falaises sont des milieux remarquables qui permettent l'existence de microclimats. Ces petites surfaces, aux conditions éloignées du climat régional, jouent un rôle important pour la biodiversité, en particulier dans les paysages topographiquement homogènes. Notre étude a porté sur le microclimat de forêts exposées au sud, situées au bord de falaises de molasse, sur le plateau suisse, et sur son rôle dans la composition de la communauté végétale locale. En utilisant des mesures directes provenant d'enregistreurs automatiques de données, ainsi que des analyses de la végétation, il a été possible de quantifier le microclimat des forêts de bord de falaise et de le comparer à celui des forêts environnantes. Nos résultats ont mis en évidence la nature significativement xérothermique et plus variable du microclimat des forêts de bord de falaise, avec une température moyenne du sol jusqu'à 3.72°C plus élevée en été, des amplitudes accrues annuelles (+28%) et journalières (+250%) de la température du sol, qui exposent fréquemment la végétation à des températures extrêmes, et un taux d'assèchement du sol 83% plus élevé. Ces différences ont une influence marquée sur les communautés forestières: les forêts de bord de falaise sont très différentes des forêts environnantes. Elles permettent la présence d'espèces et de types de forêts localement rares, notamment des pinèdes. Les bords de falaise doivent donc être considérés comme des microrefuges à haute valeur de conservation pour les espèces xérothermiques et la flore adaptée à des climats plus continentaux. En outre, le microclimat des forêts de bord de falaise pourrait ressembler au climat futur à bien des égards. Nous soutenons que ces petites zones, qui connaissent déjà le climat futur, peuvent être considérées comme des laboratoires naturels permettant de mieux répondre à la question suivante: à quoi ressembleront nos forêts dans quelques décennies, suite aux changements climatiques?


Asunto(s)
Cambio Climático , Árboles , Bosques , Biodiversidad , Microclima , Suelo
5.
Glob Chang Biol ; 30(3): e17214, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494864

RESUMEN

Changes in climate and biodiversity are widely recognized as primary global change drivers of ecosystem structure and functioning, also affecting ecosystem services provided to human populations. Increasing plant diversity not only enhances ecosystem functioning and stability but also mitigates climate change effects and buffers extreme weather conditions, yet the underlying mechanisms remain largely unclear. Recent studies have shown that plant diversity can mitigate climate change (e.g. reduce temperature fluctuations or drought through microclimatic effects) in different compartments of the focal ecosystem, which as such may contribute to the effect of plant diversity on ecosystem properties and functioning. However, these potential plant diversity-induced microclimate effects are not sufficiently understood. Here, we explored the consequences of climate modulation through microclimate modification by plant diversity for ecosystem functioning as a potential mechanism contributing to the widely documented biodiversity-ecosystem functioning (BEF) relationships, using a combination of theoretical and simulation approaches. We focused on a diverse set of response variables at various levels of integration ranging from ecosystem-level carbon exchange to soil enzyme activity, including population dynamics and the activity of specific organisms. Here, we demonstrated that a vegetation layer composed of many plant species has the potential to influence ecosystem functioning and stability through the modification of microclimatic conditions, thus mitigating the negative impacts of climate extremes on ecosystem functioning. Integrating microclimatic processes (e.g. temperature, humidity and light modulation) as a mechanism contributing to the BEF relationships is a promising avenue to improve our understanding of the effects of climate change on ecosystem functioning and to better predict future ecosystem structure, functioning and services. In addition, microclimate management and monitoring should be seen as a potential tool by practitioners to adapt ecosystems to climate change.


Asunto(s)
Ecosistema , Microclima , Humanos , Biodiversidad , Plantas , Suelo , Cambio Climático
6.
J Exp Biol ; 227(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958209

RESUMEN

As the world warms, it will be tempting to relate the biological responses of terrestrial animals to air temperature. But air temperature typically plays a lesser role in the heat exchange of those animals than does radiant heat. Under radiant load, animals can gain heat even when body surface temperature exceeds air temperature. However, animals can buffer the impacts of radiant heat exposure: burrows and other refuges may block solar radiant heat fully, but trees and agricultural shelters provide only partial relief. For animals that can do so effectively, evaporative cooling will be used to dissipate body heat. Evaporative cooling is dependent directly on the water vapour pressure difference between the body surface and immediate surroundings, but only indirectly on relative humidity. High relative humidity at high air temperature implies a high water vapour pressure, but evaporation into air with 100% relative humidity is not impossible. Evaporation is enhanced by wind, but the wind speed reported by meteorological services is not that experienced by animals; instead, the wind, air temperature, humidity and radiation experienced is that of the animal's microclimate. In this Commentary, we discuss how microclimate should be quantified to ensure accurate assessment of an animal's thermal environment. We propose that the microclimate metric of dry heat load to which the biological responses of animals should be related is black-globe temperature measured on or near the animal, and not air temperature. Finally, when analysing those responses, the metric of humidity should be water vapour pressure, not relative humidity.


Asunto(s)
Microclima , Animales , Calentamiento Global , Regulación de la Temperatura Corporal , Humedad , Temperatura
7.
Conserv Biol ; 38(4): e14246, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38445689

RESUMEN

Climate refugia, areas where climate is expected to remain relatively stable, can offer a near-term safe haven for species sensitive to warming temperatures and drought. Understanding the influence of temperature, moisture, and disturbance on sensitive species is critical during this time of rapid climate change. Coastal habitats can serve as important refugia. Many of these areas consist of working forestlands, and there is a growing recognition that conservation efforts worldwide must consider the habitat value of working lands, in addition to protected areas, to effectively manage large landscapes that support biodiversity. The sensitivity of forest bats to climate and habitat disturbance makes them a useful indicator taxon. We tested how microclimate and forest management influence habitat use for 13 species of insectivorous bats in a large climate refugium in a global biodiversity hotspot. We examined whether bat activity during the summer dry season is greater in forests where coastal fog provides moisture and more stable temperatures across both protected mature stands and those regularly logged. Acoustic monitoring was conducted at a landscape scale with 20 study sites, and generalized linear mixed models were used to examine the influence of habitat variables. Six species were positively associated with warmer nighttime temperature, and 5 species had a negative relationship with humidity or a positive relationship with climatic moisture deficit. Our results suggest that these mammals may have greater climate adaptive capacity than expected, and, for now, that habitat use may be more related to optimal foraging conditions than to avoidance of warming temperatures and drought. We also determined that 12 of the 13 regionally present bat species were regularly detected in commercial timberland stands. Because forest bats are highly mobile, forage over long distances, and frequently change roosts, the stewardship of working forests must be addressed to protect these species.


Influencia del microclima y el manejo forestal sobre especies de murciélagos ante el cambio global Resumen Los refugios climáticos, áreas en donde se espera que el clima permanezca relativamente estable, pueden ofrecer un santuario a corto plazo para las especies sensibles al aumento de temperaturas y la sequía. Es muy importante entender la influencia de la temperatura, la humedad y las perturbaciones sobre las especies sensibles durante estos tiempos de cambio climático repentino. Los hábitats costeros pueden funcionar como refugios importantes. Muchas de estas áreas consisten en bosques funcionales y cada vez hay más reconocimiento de que los esfuerzos mundiales de conservación deben considerar el valor del hábitat de los suelos funcionales, además de las áreas protegidas, para manejar de manera efectiva los extensos paisajes que mantienen a la biodiversidad. La sensibilidad de los murciélagos de los bosques ante las perturbaciones climáticas y de hábitat hace que sean un taxón indicador útil. Analizamos cómo los microclimas y el manejo forestal influyen sobre el uso de hábitat de 13 especies de murciélagos insectívoros en un refugio climático amplio dentro de un punto caliente de biodiversidad mundial. Examinamos si la actividad de los murciélagos durante la temporada seca de verano es mayor en los bosques en donde la niebla costera proporciona humedad y temperaturas más estables tanto en los árboles maduros como aquellos que son talados con regularidad. Realizamos el monitoreo acústico a escala de paisaje en 20 estudios de sitio y usamos modelos lineales mixtos generalizados para examinar la influencia de las variables del hábitat. Seis especies estuvieron asociadas positivamente con la temperatura nocturna más cálida y cinco especies tuvieron una relación negativa con la humedad o una relación positiva con el déficit climático de humedad. Nuestros resultados sugieren que estos mamíferos pueden tener una mayor capacidad de adaptación climática de lo que se pensaba y, por ahora, que el uso de hábitat puede estar más relacionado con las condiciones óptimas de forrajeo que con la evasión de las temperaturas elevadas y la sequía. También determinamos que 12 de las 13 especies con presencia regional fueron detectadas con regularidad en los puntos de tala comercial. Ya que los murciélagos del bosque tienden a moverse mucho, forrajear a lo largo de grandes distancias y con frecuencia cambiar de nido, debemos abordar la administración de los bosques funcionales para proteger a estas especies.


Asunto(s)
Quirópteros , Cambio Climático , Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Microclima , Animales , Quirópteros/fisiología , Conservación de los Recursos Naturales/métodos , Biodiversidad , Refugio de Fauna
8.
Environ Res ; 250: 118483, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373553

RESUMEN

Reports on Groundwater level variations and quality changes have been a critical issue, especially in arid regions. An attempt has been made in this study to determine the surface manifestations of groundwater variations through processing imageries for determining the changes in land use, Normalized Differential Building Index (NDBI), Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), along with Groundwater level (GWL) and Electrical conductivity (EC). Decadal variation between these parameters for 2013 and 2023 shows that the average water level had increased by 1.03amsl, while the EC values of groundwater decreased by 418 µS/cm. The decrease in EC values indicates freshwater recharge, promoting natural vegetation, thus reducing the LST values by 3.28 °C. In addition, urban landscaping and relatively lesser emissivity from built-up surfaces than the sandy desert have further reduced the LST. The interrelationship of the parameters indicates that an increase in LST correlates with an increase in NDBI and with less significant changes in NDVI. The lowering of the LST along the coastal regions was inferred to be due to the influence of Sea breeze, adjacent moisture from the ocean, shallow water level, and the shadow effect of the buildings. Further, the increase in water level was mainly attributed to the recent increase in rainfall and the extreme event in 2018. The higher EC in the lesser NDBI regions is attributed to the anthropogenic contamination from agriculture and landfill leachates. Though there was an increase in NDBI, the LST of the region was inferred to be reduced mainly due to the increase in water level and reduction of emission from desert sand by recent urban developments.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Agua Subterránea/análisis , Agua Subterránea/química , Monitoreo del Ambiente/métodos , Microclima , Clima Desértico , Temperatura , China , Conductividad Eléctrica
9.
Int J Biometeorol ; 68(7): 1315-1326, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705900

RESUMEN

Winter cold wave adaptation strategies in hot climates due to climate change didn't receive the deserved attention from previous studies. Therefore, this study comprehensively investigates the impact of various windbreak parameters on mitigating winter cold stress in hot steppe-arid climate. A microclimate model for a residential campus was built and validated through on-site measurement on a typical winter day to assess thirty-two scenarios for tree characteristics and spatial configuration windbreak parameters based on PET, wind speed, and Air Temperature (AT). Moreover, four configurations, that had best results on mitigating cold stress in winter, were tested during typical summer conditions to couple the assessment of cold and hot seasons. Additionally, environmental analysis for all scenarios was conducted. The results revealed that the most effective parameters for mitigating cold stress are tree distribution, Leaf Area Density (LAD), row number, spacing, and shape. Double rows of high LAD and medium height trees with small spacing yielded the best cold stress mitigation effect. Furthermore, the windbreak reduced the cold stress in the morning and night by 19.31% and 18.06%, respectively. It reduced AT and wind speed at night by 0.79 °C and 2.56 m/s, respectively. During summer, very hot PET area was reduced by 21.79% and 19.5% at 12:00 and 15:00, respectively.


Asunto(s)
Cambio Climático , Microclima , Modelos Teóricos , Estaciones del Año , Árboles , Viento , Frío
10.
Int J Biometeorol ; 68(4): 675-690, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180571

RESUMEN

This study aims to evaluate agreement among subjective thermal comfort, thermal sensation, thermal perception, and thermal tolerance indices, according to pedestrians in downtown Santa Maria, southern Brazil, which has a humid subtropical climate (Cfa). Between August 2015 and July 2016 (three periods), 1728 questionnaires were applied. Evaluation of the dependence of statistical variables was based on gender and age, at three periods of time: August 2015 (864 respondents), January 2016 (432 respondents), and July 2016 (432 respondents). Statistical evaluation was based on Pearson's chi-square test using RStudio software, and a significance level (α) of 5% for thermal comfort, thermal sensation, thermal preference, and thermal tolerance was used. Results indicated that age and gender affect the relationship between the variables. Thermal comfort and thermal tolerance presented the best correlation and coherence, regardless of age or gender. This study contributes to knowledge on the local microclimate and can contribute to urban planning to implement strategies that improve pedestrians' thermal comfort.


Asunto(s)
Peatones , Humanos , Clima , Microclima , Sensación Térmica , Percepción , Ciudades
11.
Int J Biometeorol ; 68(5): 949-963, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38374295

RESUMEN

In this initial study of a research project, this paper seeks to understand the thermal conditions in the cities of Lisbon and Munich, specifically focusing on Urban Heat Island intensity and on thermal comfort using the Universal Thermal Climate Index modeling data at the Local Climate Zone scale. Based on these datasets, Munich has exhibited more unfavourable thermal conditions than Lisbon. In terms of UHII, both cities have shown that low, medium, and high rise compact urban areas and bare rock or paved areas have the highest values, while sparsely built areas have the lowest. These results differ from the UTCI, which indicates that in Lisbon and Munich, these sparsely built areas as well as areas with low plants and vegetation are the most uncomfortable. In Munich, the population was exposed to very strong heat stress, while Lisbon experienced strong heat stress conditions. Conversely, low, medium, and high rise compact urban areas and densely wooded areas in Munich, and scattered trees areas and large low-rise urban areas in Lisbon, have demonstrated the lowest monthly mean and average maximum values. These results will be further explored in future studies in the city of Lisbon and cross-checked with data obtained from roving missions. This will enable a more detailed temporal and local analysis.


Asunto(s)
Ciudades , Cambio Climático , Microclima , Humanos , Alemania , Portugal , Modelos Teóricos , Sensación Térmica , Calor
12.
Int J Biometeorol ; 68(6): 1133-1142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38488866

RESUMEN

The Urban Heat Island (UHI) effect increases surface and air temperatures, affecting urban health and well-being. A well-known UHI mitigation measure is the increased roadside tree vegetation facilitating evapotranspiration and shade. In its implementation, the identification of thermally optimal street tree configurations and a quantitative assessment of how various street tree configurations impact the roadside thermal environment were deemed essential and were chosen as the main aims of the study. Twelve tropical urban canyons were categorized into three clusters representative of different street tree placement and configuration scenarios. A control cluster devoid of any roadside trees was also selected. The CFD-based 3-D microclimate model 'ENVI-met' was used to identify suitable roadside urban tree planting scenarios for better microclimate regulation. From a tree planting scenario analysis done as part of the study, the greening scenario of using a 'Continuous tree row (Densely foliated - high Leaf Area Density - LAD)' tree configuration was recognized with the highest ambient temperature reduction of 1.41 °C. The study outcomes reveal that tree configuration of high LAD street trees placed in closer spacing contributes towards the better cooling effect of roadside environments and thus improves thermal comfort for warmer tropical climates of higher humidity levels. The study's findings offer valuable insights for urban planning professionals and policymakers involved in designing future cities and urban developments. They emphasize the importance of strategic tree-planting designs and configurations to enhance thermal comfort and livability in urban areas. This highlights the need to avoid ad-hoc procedures and instead prioritize well-planned roadside tree configurations within urban canyons.


Asunto(s)
Ciudades , Microclima , Árboles , Clima Tropical , Árboles/crecimiento & desarrollo , Planificación de Ciudades , Modelos Teóricos , Temperatura
13.
Int J Biometeorol ; 68(7): 1437-1449, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38625431

RESUMEN

Camping has become a popular outdoor activity in China. However, the long and scorching summers in China's hot and humid regions pose challenges for campsites in maintaining thermal comfort. Therefore, we explored the impact of tree species and planting methods on the thermal comfort of urban campsites in hot and humid areas using the ENVI-met model to simulate the conditions of the study area. The reliability of the model was validated by comparing the simulated values of air temperature (Ta) and relative humidity (RH) with field measurements. We conducted an in-depth analysis of common trees in hot and humid areas and analyzed the effects of five tree species and four tree planting forms on the microclimate of campsites in such areas, using the physiological equivalent temperature (PET) as the evaluation index of thermal comfort. The results indicated that: (1) trees with larger crown widths were most effective in improving outdoor thermal comfort. The ability of trees to regulate microclimate was more influenced by crown width than by leaf area index (LAI), and (2) trees planted in patches provided the highest level of thermal comfort, whereas single trees provided the lowest. However, relying solely on tree planting made it difficult to significantly reduce outdoor heat stress. Therefore, other methods such as increasing ventilation or mist spray should be adopted to modify camping area. This study provides a reference for the planting design of outdoor campsites in hot and humid regions of China.


Asunto(s)
Calor , Humedad , Microclima , Árboles , China , Árboles/crecimiento & desarrollo , Acampada , Sensación Térmica , Modelos Teóricos , Temperatura
14.
J Therm Biol ; 119: 103779, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38159465

RESUMEN

Tree-induced cooling benefits are associated with various factors, such as canopy morphology, surface cover, and environmental configuration. However, limited studies have analyzed the sensitivity of tree-induced cooling effects to the combination of such factors. Most studies have focused on 1.5-m cooling performance, and few studies on the variability of the under-tree vertical cooling performance. Therefore, this study aims to investigate the vertical cooling performance of different combinations of trees and surface covers. The study was completed in Chongqing, China, with field experiments capturing vertical air temperature and wind speed at 0.5, 1.0, 1.5, 2.0 and 2.5 m under two typical combinations of "tree + grass" (ComA) and "tree + shrubs" (ComB), and capturing 1.5 m microclimatic environments of a control group with hard pavement without tree shade (REF). The results show that at an average ambient temperature of 33 °C, the maximum air-cooling temperatures for ComA and ComB were 2.46 °C and 1.78 °C, respectively. An increase in the ambient temperature corresponded to a decrease in the cooling effect difference between ComA and ComB. ComA had a maximum vertical temperature difference of 1.01 °C between H1.5m and H2.0m. Between H2.5m and H2.0m, the maximum vertical temperature difference for ComB was 1.64 °C. This study explored the changing patterns of under-tree vertical temperatures under different tree and surface cover combinations, conducive to clarifying the key elements affecting tree cooling performance. The results have implications for accurate thermal comfort assessments and provide a theoretical basis for fine-tuning the design of under-tree spaces.


Asunto(s)
Frío , Árboles , Temperatura , Microclima , Viento , Ciudades
15.
J Therm Biol ; 120: 103814, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38402729

RESUMEN

Urbanization alters natural landscapes and creates unique challenges for urban wildlife. Similarly, the Urban Heat Island (UHI) effect can produce significantly elevated temperatures in urban areas, and we have a relatively poor understanding of how this will impact urban biodiversity. In particular, most studies quantify the UHI using broad-scale climate data rather than assessing microclimate temperatures actually experienced by organisms. In addition, studies often fail to address spatial and temporal complexities of the UHI. Here we examine the thermal microclimate and UHI experienced in the web of Western black widow spiders (Latrodectus hesperus), a medically-important, superabundant urban pest species found in cities across the Western region of North America. We do this using replicate urban and desert populations across an entire year to account for seasonal variation in the UHI, both within and between habitats. Our findings reveal a strong nighttime, but no daytime, UHI effect, with urban spider webs being 2-5 °C warmer than desert webs at night. This UHI effect is most prominent during the spring and least prominent in winter, suggesting that the UHI need not be most pronounced when temperatures are most elevated. Urban web temperatures varied among urban sites in the daytime, whereas desert web temperatures varied among desert sites in the nighttime. Finally, web temperature was significantly positively correlated with a spider's boldness, but showed no relationship with voracity towards prey, web size, or body condition. Understanding the complexities of each organism's thermal challenges, the "functional microclimate", is crucial for predicting the impacts of urbanization and climate change on urban biodiversity and ecosystem functioning.


Asunto(s)
Artrópodos , Araña Viuda Negra , Animales , Temperatura , Calor , Ciudades , Microclima , Ecosistema
16.
J Environ Manage ; 351: 119762, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081083

RESUMEN

Cave heritage is often threatened by tourism or even scientific activities, which can lead to irreversible deterioration. We present a preventive conservation monitoring protocol to protect caves with rock art, focusing on La Garma Cave (Spain), a World Heritage Site with valuable archaeological materials and Palaeolithic paintings. This study assessed the suitability of the cave for tourist use through continuous microclimate and airborne particles monitoring, biofilm analysis, aerobiological monitoring and experimental visits. Our findings indicate several factors that make it inadvisable to adapt the cave for tourist use. Human presence and transit within the cave cause cumulative effects on the temperature of environmentally very stable and fragile sectors and significant resuspension of particles from the cave sediments. These environmental perturbations represent severe impacts as they affect the natural aerodynamic control of airborne particles and determine bacterial dispersal throughout the cave. This monitoring protocol provides part of the evidence to design strategies for sustainable cave management.


Asunto(s)
Cuevas , Pinturas , Humanos , Cuevas/microbiología , España , Microclima , Bacterias
17.
J Environ Manage ; 360: 121128, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38776661

RESUMEN

Vegetation regulates microclimate stability through biophysical mechanisms such as evaporation, transpiration and shading. Therefore, thermal conditions in tree-dominated habitats will frequently differ significantly from standardized free-air temperature measurements. The ability of forests to buffer temperatures nominates them as potential sanctuaries for tree species intolerant to the increasingly challenging thermal conditions established by climate change. Although many factors influencing thermal conditions beneath the vegetation cover have been ascertained, the role of three-dimensional vegetation structure in regulating the understory microclimate remains understudied. Recent advances in remote sensing technologies, such as terrestrial laser scanning, have allowed scientists to capture the three-dimensional structural heterogeneity of vegetation with a high level of accuracy. Here, we examined the relationships between vegetation structure parametrized from voxelized laser scanning point clouds, air and soil temperature ranges, as well as offsets between field-measured temperatures and gridded free-air temperature estimates in 17 sites in a tropical mountain ecosystem in Southeast Kenya. Structural diversity generally exerted a cooling effect on understory temperatures, but vertical diversity and stratification explained more variation in the understory air and soil temperature ranges (30%-40%) than canopy cover (27%), plant area index (24%) and average stand height (23%). We also observed that the combined effects of stratification, canopy cover and elevation explained more than half of the variation (53%) in understory air temperature ranges. Stratification's attenuating effect was consistent across different levels of elevation. Temperature offsets between field measurements and free-air estimates were predominantly controlled by elevation, but stratification and structural diversity were influential predictors of maximum and median temperature offsets. Moreover, stable understory temperatures were strongly associated with a large offset in daytime maximum temperatures, suggesting that structural diversity primarily contributes to thermal stability by cooling daytime maximum temperatures. Our findings shed light on the thermal influence of vertical vegetation structure and, in the context of tropical land-use change, suggest that decision-makers aiming to mitigate the thermal impacts of land conversion should prioritize management practices that preserve structural diversity by retaining uneven-aged trees and mixing plant species of varying sizes, e.g., silvopastoral, or agroforestry systems.


Asunto(s)
Cambio Climático , Ecosistema , Microclima , Clima Tropical , Árboles , Humanos , Temperatura , Bosques , Biodiversidad , Kenia
18.
J Tissue Viability ; 33(2): 305-311, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38553355

RESUMEN

OBJECTIVE: this study was undertaken to evaluate the efficacy of multilayer polyurethane foam with silicone (MPF) compared to transparent polyurethane film (TPF) dressings in the control of heel skin microclimate (temperature and moisture) of hospitalized patients undergoing elective surgeries. METHOD: the study took of a secondary analysis of a randomized self-controlled trial, involving patients undergoing elective surgical procedure of cardiac and gastrointestinal specialties in a university hospital in southern Brazil, from March 2019 to February 2020. Patients served as their own control, with their heels randomly allocated to either TPF (control) or MPF (intervention). Skin temperature was measured using a digital infrared thermometer; and moisture determined through capacitance, at the beginning and end of surgery. The study was registered in the Brazilian Registry of Clinical Trials: RBR-5GKNG5. RESULTS: significant difference in the microclimate variables were observed when the groups (intervention and control) and the timepoint of measurement (beginning and end of surgery) were compared. When assessing temperature, an increase (+3.3 °C) was observed with TPF and a decrease (-7.4 °C) was recorded with MPF. Regarding skin moisture, an increase in moisture (+14.6 AU) was recorded with TPF and a slight decrease (-0.3 AU) with MPF. CONCLUSIONS: The findings of this study suggest that MPF is more effective than TPF in controlling skin microclimate (temperature and moisture) in heels skin of hospitalized patients undergoing elective surgeries. However, this control should be better investigated in other studies.


Asunto(s)
Talón , Microclima , Humanos , Femenino , Masculino , Persona de Mediana Edad , Brasil , Anciano , Temperatura Cutánea/fisiología , Vendajes/normas , Vendajes/estadística & datos numéricos , Poliuretanos , Adulto
19.
Ecol Lett ; 26(12): 2043-2055, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37788337

RESUMEN

Species distributions are conventionally modelled using coarse-grained macroclimate data measured in open areas, potentially leading to biased predictions since most terrestrial species reside in the shade of trees. For forest plant species across Europe, we compared conventional macroclimate-based species distribution models (SDMs) with models corrected for forest microclimate buffering. We show that microclimate-based SDMs at high spatial resolution outperformed models using macroclimate and microclimate data at coarser resolution. Additionally, macroclimate-based models introduced a systematic bias in modelled species response curves, which could result in erroneous range shift predictions. Critically important for conservation science, these models were unable to identify warm and cold refugia at the range edges of species distributions. Our study emphasizes the crucial role of microclimate data when SDMs are used to gain insights into biodiversity conservation in the face of climate change, particularly given the growing policy and management focus on the conservation of refugia worldwide.


Asunto(s)
Bosques , Microclima , Árboles , Plantas , Biodiversidad , Cambio Climático , Ecosistema
20.
Environ Microbiol ; 25(8): 1377-1392, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36883264

RESUMEN

Understanding the drivers that affect soil bacterial and fungal communities is essential to understanding and mitigating the impacts of human activity on vulnerable ecosystems like those on the Galápagos Islands. The volcanic slopes of these Islands lead to steep elevation gradients that generate distinct microclimates across small spatial scales. Although much is known about the impacts of invasive plant species on the above-ground biodiversity of the Galápagos Islands, little is known about their resident soil microbial communities and the factors shaping them. Here, we investigate the bacterial and fungal soil communities associated with invasive and native plant species across three distinct microclimates on San Cristóbal Island (arid, transition zone and humid). At each site, we collected soil at three depths (rhizosphere, 5 cm and 15 cm) from multiple plants. Sampling location was the strongest driver of both bacterial and fungal communities, explaining 73% and 43% of variation in the bacterial and fungal community structure, respectively, with additional minor but significant impacts from soil depth and plant type (invasive vs. native). This study highlights the continued need to explore microbial communities across diverse environments and demonstrates how both abiotic and biotic factors impact soil microbial communities in the Galápagos archipelago.


Asunto(s)
Microbiota , Suelo , Humanos , Suelo/química , Microclima , Biodiversidad , Plantas , Especies Introducidas , Bacterias/genética , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA