Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.152
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 585-613, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38424470

RESUMEN

Alzheimer disease (AD) is the most common neurodegenerative disease, and with no efficient curative treatment available, its medical, social, and economic burdens are expected to dramatically increase. AD is historically characterized by amyloid ß (Aß) plaques and tau neurofibrillary tangles, but over the last 25 years chronic immune activation has been identified as an important factor contributing to AD pathogenesis. In this article, we review recent and important advances in our understanding of the significance of immune activation in the development of AD. We describe how brain-resident macrophages, the microglia, are able to detect Aß species and be activated, as well as the consequences of activated microglia in AD pathogenesis. We discuss transcriptional changes of microglia in AD, their unique heterogeneity in humans, and emerging strategies to study human microglia. Finally, we expose, beyond Aß and microglia, the role of peripheral signals and different cell types in immune activation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Microglía , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Humanos , Animales , Microglía/inmunología , Microglía/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Macrófagos/inmunología , Macrófagos/metabolismo
2.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38490196

RESUMEN

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Asunto(s)
Encéfalo , Interferón Tipo I , Microglía , Animales , Ratones , Interferón Tipo I/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Pez Cebra , Encéfalo/citología , Encéfalo/crecimiento & desarrollo
3.
Cell ; 187(16): 4193-4212.e24, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38942014

RESUMEN

Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.


Asunto(s)
Envejecimiento , Encéfalo , Complemento C1q , Homeostasis , Microglía , Neuronas , Ribonucleoproteínas , Animales , Complemento C1q/metabolismo , Ratones , Microglía/metabolismo , Envejecimiento/metabolismo , Encéfalo/metabolismo , Ribonucleoproteínas/metabolismo , Neuronas/metabolismo , Ratones Endogámicos C57BL , Humanos
4.
Cell ; 187(2): 428-445.e20, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38086389

RESUMEN

A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear. We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-ß (Aß) plaque-depositing model. We injected AD-tau brain extract to investigate tau seeding and spreading in the presence or absence of amyloid. Similar to the case report, APOE3ch expression resulted in peripheral dyslipidemia and a marked reduction in plaque-associated tau pathology. Additionally, we observed decreased amyloid response and enhanced microglial response around plaques. We also demonstrate increased myeloid cell phagocytosis and degradation of tau aggregates linked to weaker APOE3ch binding to heparin sulfate proteoglycans. APOE3ch influences the microglial response to Aß plaques, which suppresses Aß-induced tau seeding and spreading. The results reveal new possibilities to target Aß-induced tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Apolipoproteína E3 , Proteínas tau , Animales , Humanos , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Informes de Casos como Asunto
5.
Cell ; 186(20): 4386-4403.e29, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774678

RESUMEN

Altered microglial states affect neuroinflammation, neurodegeneration, and disease but remain poorly understood. Here, we report 194,000 single-nucleus microglial transcriptomes and epigenomes across 443 human subjects and diverse Alzheimer's disease (AD) pathological phenotypes. We annotate 12 microglial transcriptional states, including AD-dysregulated homeostatic, inflammatory, and lipid-processing states. We identify 1,542 AD-differentially-expressed genes, including both microglia-state-specific and disease-stage-specific alterations. By integrating epigenomic, transcriptomic, and motif information, we infer upstream regulators of microglial cell states, gene-regulatory networks, enhancer-gene links, and transcription-factor-driven microglial state transitions. We demonstrate that ectopic expression of our predicted homeostatic-state activators induces homeostatic features in human iPSC-derived microglia-like cells, while inhibiting activators of inflammation can block inflammatory progression. Lastly, we pinpoint the expression of AD-risk genes in microglial states and differential expression of AD-risk genes and their regulators during AD progression. Overall, we provide insights underlying microglial states, including state-specific and AD-stage-specific microglial alterations at unprecedented resolution.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Regulación de la Expresión Génica , Inflamación/patología , Microglía/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Epigenoma
6.
Cell ; 185(22): 4043-4045, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36306731

RESUMEN

During neurodegenerative disease, resident CNS macrophages termed "microglia" assume a neuroprotective role and engulf toxic protein aggregates and cell debris. In this issue of Cell, two groups independently show how spleen tyrosine kinase (SYK) acts downstream of microglial surface receptors to propagate this neuroprotective program in vivo.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Humanos , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Macrófagos , Quinasa Syk/metabolismo
7.
Cell ; 185(13): 2213-2233.e25, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35750033

RESUMEN

The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Astrocitos/metabolismo , Colesterol/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Microglía/metabolismo
8.
Cell ; 185(22): 4153-4169.e19, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36306735

RESUMEN

Genetic studies have highlighted microglia as pivotal in orchestrating Alzheimer's disease (AD). Microglia that adhere to Aß plaques acquire a transcriptional signature, "disease-associated microglia" (DAM), which largely emanates from the TREM2-DAP12 receptor complex that transmits intracellular signals through the protein tyrosine kinase SYK. The human TREM2R47H variant associated with high AD risk fails to activate microglia via SYK. We found that SYK-deficient microglia cannot encase Aß plaques, accelerating brain pathology and behavioral deficits. SYK deficiency impaired the PI3K-AKT-GSK-3ß-mTOR pathway, incapacitating anabolic support required for attaining the DAM profile. However, SYK-deficient microglia proliferated and advanced to an Apoe-expressing prodromal stage of DAM; this pathway relied on the adapter DAP10, which also binds TREM2. Thus, microglial responses to Aß involve non-redundant SYK- and DAP10-pathways. Systemic administration of an antibody against CLEC7A, a receptor that directly activates SYK, rescued microglia activation in mice expressing the TREM2R47H allele, unveiling new options for AD immunotherapy.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Animales , Ratones , Humanos , Microglía/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/patología , Placa Amiloide/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Quinasa Syk/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
9.
Nat Immunol ; 25(10): 1928-1942, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39313544

RESUMEN

Microglia are innate immune cells in the brain. Transcription factor IRF8 (interferon regulatory factor 8) is highly expressed in microglia. However, its role in postnatal microglia development is unknown. We demonstrate that IRF8 binds stepwise to enhancer regions of postnatal microglia along with Sall1 and PU.1, reaching a maximum after day 14. IRF8 binding correlated with a stepwise increase in chromatin accessibility, which preceded the initiation of microglia-specific transcriptome. Constitutive and postnatal Irf8 deletion led to a loss of microglia identity and gain of disease-associated microglia (DAM)-like genes. Combined analysis of single-cell (sc)RNA sequencing and single-cell transposase-accessible chromatin with sequencing (scATAC-seq) revealed a correlation between chromatin accessibility and transcriptome at a single-cell level. IRF8 was also required for microglia-specific DNA methylation patterns. Last, in the 5xFAD model, constitutive and postnatal Irf8 deletion reduced the interaction of microglia with amyloidß plaques and the size of plaques, lessening neuronal loss. Together, IRF8 sets the epigenetic landscape, which is required for postnatal microglia gene expression.


Asunto(s)
Epigénesis Genética , Factores Reguladores del Interferón , Ratones Noqueados , Microglía , Transcriptoma , Microglía/metabolismo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Animales , Ratones , Metilación de ADN , Ratones Endogámicos C57BL , Cromatina/metabolismo , Cromatina/genética , Encéfalo/metabolismo , Análisis de la Célula Individual , Proteínas Proto-Oncogénicas , Transactivadores
10.
Nat Immunol ; 25(7): 1158-1171, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38902519

RESUMEN

Up to 25% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit postacute cognitive sequelae. Although millions of cases of coronavirus disease 2019 (COVID-19)-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1 (IL-1), a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of individuals with COVID-19. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 Beta variant leads to central nervous system infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1ß and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes postacute cognitive deficits. Vaccination with a low dose of adenoviral-vectored spike protein prevents hippocampal production of IL-1ß during breakthrough SARS-CoV-2 infection, loss of neurogenesis and subsequent memory deficits. Our study identifies IL-1ß as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new mouse model that is prevented by vaccination.


Asunto(s)
COVID-19 , Hipocampo , Interleucina-1beta , Trastornos de la Memoria , Ratones Endogámicos C57BL , Neurogénesis , SARS-CoV-2 , Animales , Interleucina-1beta/metabolismo , Interleucina-1beta/inmunología , Ratones , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Hipocampo/inmunología , Hipocampo/metabolismo , Trastornos de la Memoria/inmunología , Neurogénesis/inmunología , Vacunación , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas contra la COVID-19/inmunología , Masculino , Humanos , Microglía/inmunología , Microglía/metabolismo , Modelos Animales de Enfermedad , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética , Monocitos/inmunología , Monocitos/metabolismo , Femenino
11.
Cell ; 184(15): 4048-4063.e32, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34233165

RESUMEN

Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.


Asunto(s)
Microglía/metabolismo , Inhibición Neural/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Conducta Animal , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Parvalbúminas/metabolismo , Fenotipo , Receptores de GABA-B/metabolismo , Sinapsis/fisiología , Transcripción Genética
12.
Cell ; 184(20): 5089-5106.e21, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34555357

RESUMEN

Microglia are the CNS resident immune cells that react to misfolded proteins through pattern recognition receptor ligation and activation of inflammatory pathways. Here, we studied how microglia handle and cope with α-synuclein (α-syn) fibrils and their clearance. We found that microglia exposed to α-syn establish a cellular network through the formation of F-actin-dependent intercellular connections, which transfer α-syn from overloaded microglia to neighboring naive microglia where the α-syn cargo got rapidly and effectively degraded. Lowering the α-syn burden attenuated the inflammatory profile of microglia and improved their survival. This degradation strategy was compromised in cells carrying the LRRK2 G2019S mutation. We confirmed the intercellular transfer of α-syn assemblies in microglia using organotypic slice cultures, 2-photon microscopy, and neuropathology of patients. Together, these data identify a mechanism by which microglia create an "on-demand" functional network in order to improve pathogenic α-syn clearance.


Asunto(s)
Estructuras de la Membrana Celular/metabolismo , Microglía/metabolismo , Proteolisis , alfa-Sinucleína/metabolismo , Actinas/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Citoesqueleto/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Inflamación/genética , Inflamación/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Masculino , Ratones Endogámicos C57BL , Microglía/patología , Microglía/ultraestructura , Mitocondrias/metabolismo , Nanotubos , Agregado de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma/genética
13.
Cell ; 184(18): 4651-4668.e25, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34450028

RESUMEN

GRN mutations cause frontotemporal dementia (GRN-FTD) due to deficiency in progranulin (PGRN), a lysosomal and secreted protein with unclear function. Here, we found that Grn-/- mice exhibit a global deficiency in bis(monoacylglycero)phosphate (BMP), an endolysosomal phospholipid we identified as a pH-dependent PGRN interactor as well as a redox-sensitive enhancer of lysosomal proteolysis and lipolysis. Grn-/- brains also showed an age-dependent, secondary storage of glucocerebrosidase substrate glucosylsphingosine. We investigated a protein replacement strategy by engineering protein transport vehicle (PTV):PGRN-a recombinant protein linking PGRN to a modified Fc domain that binds human transferrin receptor for enhanced CNS biodistribution. PTV:PGRN rescued various Grn-/- phenotypes in primary murine macrophages and human iPSC-derived microglia, including oxidative stress, lysosomal dysfunction, and endomembrane damage. Peripherally delivered PTV:PGRN corrected levels of BMP, glucosylsphingosine, and disease pathology in Grn-/- CNS, including microgliosis, lipofuscinosis, and neuronal damage. PTV:PGRN thus represents a potential biotherapeutic for GRN-FTD.


Asunto(s)
Productos Biológicos/uso terapéutico , Encéfalo/metabolismo , Enfermedades por Almacenamiento Lisosomal/terapia , Progranulinas/uso terapéutico , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Endosomas/metabolismo , Femenino , Demencia Frontotemporal/sangre , Demencia Frontotemporal/líquido cefalorraquídeo , Gliosis/complicaciones , Gliosis/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación/patología , Metabolismo de los Lípidos , Lipofuscina/metabolismo , Lisosomas/metabolismo , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Degeneración Nerviosa/patología , Fenotipo , Progranulinas/deficiencia , Progranulinas/metabolismo , Receptores Inmunológicos/metabolismo , Receptores de Transferrina/metabolismo , Distribución Tisular
14.
Nat Immunol ; 24(7): 1173-1187, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37291385

RESUMEN

Blood protein extravasation through a disrupted blood-brain barrier and innate immune activation are hallmarks of neurological diseases and emerging therapeutic targets. However, how blood proteins polarize innate immune cells remains largely unknown. Here, we established an unbiased blood-innate immunity multiomic and genetic loss-of-function pipeline to define the transcriptome and global phosphoproteome of blood-induced innate immune polarization and its role in microglia neurotoxicity. Blood induced widespread microglial transcriptional changes, including changes involving oxidative stress and neurodegenerative genes. Comparative functional multiomics showed that blood proteins induce distinct receptor-mediated transcriptional programs in microglia and macrophages, such as redox, type I interferon and lymphocyte recruitment. Deletion of the blood coagulation factor fibrinogen largely reversed blood-induced microglia neurodegenerative signatures. Genetic elimination of the fibrinogen-binding motif to CD11b in Alzheimer's disease mice reduced microglial lipid metabolism and neurodegenerative signatures that were shared with autoimmune-driven neuroinflammation in multiple sclerosis mice. Our data provide an interactive resource for investigation of the immunology of blood proteins that could support therapeutic targeting of microglia activation by immune and vascular signals.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Ratones , Animales , Microglía/metabolismo , Multiómica , Barrera Hematoencefálica/metabolismo , Enfermedad de Alzheimer/genética , Fibrinógeno
15.
Nat Immunol ; 24(7): 1188-1199, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37322178

RESUMEN

Spalt-like transcription factor 1 (SALL1) is a critical regulator of organogenesis and microglia identity. Here we demonstrate that disruption of a conserved microglia-specific super-enhancer interacting with the Sall1 promoter results in complete and specific loss of Sall1 expression in microglia. By determining the genomic binding sites of SALL1 and leveraging Sall1 enhancer knockout mice, we provide evidence for functional interactions between SALL1 and SMAD4 required for microglia-specific gene expression. SMAD4 binds directly to the Sall1 super-enhancer and is required for Sall1 expression, consistent with an evolutionarily conserved requirement of the TGFß and SMAD homologs Dpp and Mad for cell-specific expression of Spalt in the Drosophila wing. Unexpectedly, SALL1 in turn promotes binding and function of SMAD4 at microglia-specific enhancers while simultaneously suppressing binding of SMAD4 to enhancers of genes that become inappropriately activated in enhancer knockout microglia, thereby enforcing microglia-specific functions of the TGFß-SMAD signaling axis.


Asunto(s)
Microglía , Factores de Transcripción , Animales , Ratones , Sitios de Unión , ADN , Ratones Noqueados , Microglía/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
16.
Nat Immunol ; 24(11): 1839-1853, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749326

RESUMEN

The APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The contribution of microglial APOE4 to AD pathogenesis is unknown, although APOE has the most enriched gene expression in neurodegenerative microglia (MGnD). Here, we show in mice and humans a negative role of microglial APOE4 in the induction of the MGnD response to neurodegeneration. Deletion of microglial APOE4 restores the MGnD phenotype associated with neuroprotection in P301S tau transgenic mice and decreases pathology in APP/PS1 mice. MGnD-astrocyte cross-talk associated with ß-amyloid (Aß) plaque encapsulation and clearance are mediated via LGALS3 signaling following microglial APOE4 deletion. In the brains of AD donors carrying the APOE4 allele, we found a sex-dependent reciprocal induction of AD risk factors associated with suppression of MGnD genes in females, including LGALS3, compared to individuals homozygous for the APOE3 allele. Mechanistically, APOE4-mediated induction of ITGB8-transforming growth factor-ß (TGFß) signaling impairs the MGnD response via upregulation of microglial homeostatic checkpoints, including Inpp5d, in mice. Deletion of Inpp5d in microglia restores MGnD-astrocyte cross-talk and facilitates plaque clearance in APP/PS1 mice. We identify the microglial APOE4-ITGB8-TGFß pathway as a negative regulator of microglial response to AD pathology, and restoring the MGnD phenotype via blocking ITGB8-TGFß signaling provides a promising therapeutic intervention for AD.


Asunto(s)
Enfermedad de Alzheimer , Femenino , Ratones , Humanos , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Microglía/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
17.
Nat Immunol ; 24(3): 545-557, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36658241

RESUMEN

The TREM2-DAP12 receptor complex sustains microglia functions. Heterozygous hypofunctional TREM2 variants impair microglia, accelerating late-onset Alzheimer's disease. Homozygous inactivating variants of TREM2 or TYROBP-encoding DAP12 cause Nasu-Hakola disease (NHD), an early-onset dementia characterized by cerebral atrophy, myelin loss and gliosis. Mechanisms underpinning NHD are unknown. Here, single-nucleus RNA-sequencing analysis of brain specimens from DAP12-deficient NHD individuals revealed a unique microglia signature indicating heightened RUNX1, STAT3 and transforming growth factor-ß signaling pathways that mediate repair responses to injuries. This profile correlated with a wound healing signature in astrocytes and impaired myelination in oligodendrocytes, while pericyte profiles indicated vascular abnormalities. Conversely, single-nuclei signatures in mice lacking DAP12 signaling reflected very mild microglial defects that did not recapitulate NHD. We envision that DAP12 signaling in microglia attenuates wound healing pathways that, if left unchecked, interfere with microglial physiological functions, causing pathology in human. The identification of a dysregulated NHD microglia signature sparks potential therapeutic strategies aimed at resetting microglia signaling pathways.


Asunto(s)
Demencia , Panencefalitis Esclerosante Subaguda , Animales , Humanos , Ratones , Encéfalo/metabolismo , Demencia/metabolismo , Demencia/patología , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Receptores Inmunológicos/metabolismo , Panencefalitis Esclerosante Subaguda/metabolismo , Panencefalitis Esclerosante Subaguda/patología
18.
Nat Immunol ; 24(11): 1854-1866, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857825

RESUMEN

Microglial involvement in Alzheimer's disease (AD) pathology has emerged as a risk-determining pathogenic event. While apolipoprotein E (APOE) is known to modify AD risk, it remains unclear how microglial apoE impacts brain cognition and AD pathology. Here, using conditional mouse models expressing apoE isoforms in microglia and central nervous system-associated macrophages (CAMs), we demonstrate a cell-autonomous effect of apoE3-mediated microglial activation and function, which are negated by apoE4. Expression of apoE3 in microglia/CAMs improves cognitive function, increases microglia surrounding amyloid plaque and reduces amyloid pathology and associated toxicity, whereas apoE4 expression either compromises or has no effects on these outcomes by impairing lipid metabolism. Single-cell transcriptomic profiling reveals increased antigen presentation and interferon pathways upon apoE3 expression. In contrast, apoE4 expression downregulates complement and lysosomal pathways, and promotes stress-related responses. Moreover, in the presence of mouse endogenous apoE, microglial apoE4 exacerbates amyloid pathology. Finally, we observed a reduction in Lgals3-positive responsive microglia surrounding amyloid plaque and an increased accumulation of lipid droplets in APOE4 human brains and induced pluripotent stem cell-derived microglia. Our findings establish critical isoform-dependent effects of microglia/CAM-expressed apoE in brain function and the development of amyloid pathology, providing new insight into how apoE4 vastly increases AD risk.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Microglía/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo , Homeostasis , Ratones Transgénicos
19.
Cell ; 182(5): 1156-1169.e12, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32795415

RESUMEN

Dysregulated microglia are intimately involved in neurodegeneration, including Alzheimer's disease (AD) pathogenesis, but the mechanisms controlling pathogenic microglial gene expression remain poorly understood. The transcription factor CCAAT/enhancer binding protein beta (c/EBPß) regulates pro-inflammatory genes in microglia and is upregulated in AD. We show expression of c/EBPß in microglia is regulated post-translationally by the ubiquitin ligase COP1 (also called RFWD2). In the absence of COP1, c/EBPß accumulates rapidly and drives a potent pro-inflammatory and neurodegeneration-related gene program, evidenced by increased neurotoxicity in microglia-neuronal co-cultures. Antibody blocking studies reveal that neurotoxicity is almost entirely attributable to complement. Remarkably, loss of a single allele of Cebpb prevented the pro-inflammatory phenotype. COP1-deficient microglia markedly accelerated tau-mediated neurodegeneration in a mouse model where activated microglia play a deleterious role. Thus, COP1 is an important suppressor of pathogenic c/EBPß-dependent gene expression programs in microglia.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Ligasas/metabolismo , Microglía/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/genética , Enfermedad de Alzheimer/metabolismo , Animales , Línea Celular , Técnicas de Cocultivo/métodos , Femenino , Expresión Génica/fisiología , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo
20.
Cell ; 181(7): 1643-1660.e17, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32470396

RESUMEN

Brain malignancies encompass a range of primary and metastatic cancers, including low-grade and high-grade gliomas and brain metastases (BrMs) originating from diverse extracranial tumors. Our understanding of the brain tumor microenvironment (TME) remains limited, and it is unknown whether it is sculpted differentially by primary versus metastatic disease. We therefore comprehensively analyzed the brain TME landscape via flow cytometry, RNA sequencing, protein arrays, culture assays, and spatial tissue characterization. This revealed disease-specific enrichment of immune cells with pronounced differences in proportional abundance of tissue-resident microglia, infiltrating monocyte-derived macrophages, neutrophils, and T cells. These integrated analyses also uncovered multifaceted immune cell activation within brain malignancies entailing converging transcriptional trajectories while maintaining disease- and cell-type-specific programs. Given the interest in developing TME-targeted therapies for brain malignancies, this comprehensive resource of the immune landscape offers insights into possible strategies to overcome tumor-supporting TME properties and instead harness the TME to fight cancer.


Asunto(s)
Neoplasias Encefálicas/inmunología , Glioma/patología , Microambiente Tumoral/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Neoplasias Encefálicas/patología , Femenino , Glioma/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Macrófagos/inmunología , Masculino , Microglía/metabolismo , Neutrófilos/metabolismo , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA