Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.669
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 25(8): 617-638, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38589640

RESUMEN

The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.


Asunto(s)
Fibrosis , Miofibroblastos , Cicatrización de Heridas , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Animales , Fibrosis/metabolismo , Cicatrización de Heridas/fisiología , Transducción de Señal , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Epigénesis Genética
2.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32621799

RESUMEN

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Asunto(s)
Cicatriz/metabolismo , Colágeno Tipo V/deficiencia , Colágeno Tipo V/metabolismo , Lesiones Cardíacas/metabolismo , Contracción Miocárdica/genética , Miofibroblastos/metabolismo , Animales , Cicatriz/genética , Cicatriz/fisiopatología , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Fibrosis/genética , Fibrosis/metabolismo , Regulación de la Expresión Génica/genética , Integrinas/antagonistas & inhibidores , Integrinas/genética , Integrinas/metabolismo , Isoproterenol/farmacología , Masculino , Mecanotransducción Celular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía de Fuerza Atómica/instrumentación , Microscopía Electrónica de Transmisión , Contracción Miocárdica/efectos de los fármacos , Miofibroblastos/citología , Miofibroblastos/patología , Miofibroblastos/ultraestructura , Análisis de Componente Principal , Proteómica , RNA-Seq , Análisis de la Célula Individual
3.
Annu Rev Cell Dev Biol ; 34: 333-355, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30028641

RESUMEN

Stellate cells are resident lipid-storing cells of the pancreas and liver that transdifferentiate to a myofibroblastic state in the context of tissue injury. Beyond having roles in tissue homeostasis, stellate cells are increasingly implicated in pathological fibrogenic and inflammatory programs that contribute to tissue fibrosis and that constitute a growth-permissive tumor microenvironment. Although the capacity of stellate cells for extracellular matrix production and remodeling has long been appreciated, recent research efforts have demonstrated diverse roles for stellate cells in regulation of epithelial cell fate, immune modulation, and tissue health. Our present understanding of stellate cell biology in health and disease is discussed here, as are emerging means to target these multifaceted cells for therapeutic benefit.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Inflamación/genética , Neoplasias/genética , Células Estrelladas Pancreáticas/metabolismo , Transdiferenciación Celular/genética , Células Estrelladas Hepáticas/patología , Humanos , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Neoplasias/patología , Páncreas/lesiones , Páncreas/metabolismo , Páncreas/patología , Células Estrelladas Pancreáticas/patología , Microambiente Tumoral/genética , Cicatrización de Heridas
4.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34407391

RESUMEN

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Asunto(s)
Quimiocina CCL1/metabolismo , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular/fisiología , Fibroblastos/patología , Humanos , Ratones , Miofibroblastos/patología , Fibrosis Pulmonar/patología , Transducción de Señal/fisiología
5.
Cell ; 157(5): 1104-16, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855947

RESUMEN

Downregulation of the miR-143/145 microRNA (miRNA) cluster has been repeatedly reported in colon cancer and other epithelial tumors. In addition, overexpression of these miRNAs inhibits tumorigenesis, leading to broad consensus that they function as cell-autonomous epithelial tumor suppressors. We generated mice with deletion of miR-143/145 to investigate the functions of these miRNAs in intestinal physiology and disease in vivo. Although intestinal development proceeded normally in the absence of these miRNAs, epithelial regeneration after injury was dramatically impaired. Surprisingly, we found that miR-143/145 are expressed and function exclusively within the mesenchymal compartment of intestine. Defective epithelial regeneration in miR-143/145-deficient mice resulted from the dysfunction of smooth muscle and myofibroblasts and was associated with derepression of the miR-143 target Igfbp5, which impaired IGF signaling after epithelial injury. These results provide important insights into the regulation of epithelial wound healing and argue against a cell-autonomous tumor suppressor role for miR-143/145 in colon cancer.


Asunto(s)
Mucosa Intestinal/fisiología , MicroARNs/metabolismo , Animales , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Sulfato de Dextran , Humanos , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Mucosa Intestinal/citología , Mesodermo/metabolismo , Ratones , MicroARNs/genética , Miofibroblastos/metabolismo , Comunicación Paracrina , Regeneración , Somatomedinas/metabolismo
6.
Nature ; 623(7988): 792-802, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968392

RESUMEN

Optimal tissue recovery and organismal survival are achieved by spatiotemporal tuning of tissue inflammation, contraction and scar formation1. Here we identify a multipotent fibroblast progenitor marked by CD201 expression in the fascia, the deepest connective tissue layer of the skin. Using skin injury models in mice, single-cell transcriptomics and genetic lineage tracing, ablation and gene deletion models, we demonstrate that CD201+ progenitors control the pace of wound healing by generating multiple specialized cell types, from proinflammatory fibroblasts to myofibroblasts, in a spatiotemporally tuned sequence. We identified retinoic acid and hypoxia signalling as the entry checkpoints into proinflammatory and myofibroblast states. Modulating CD201+ progenitor differentiation impaired the spatiotemporal appearances of fibroblasts and chronically delayed wound healing. The discovery of proinflammatory and myofibroblast progenitors and their differentiation pathways provide a new roadmap to understand and clinically treat impaired wound healing.


Asunto(s)
Receptor de Proteína C Endotelial , Fascia , Cicatrización de Heridas , Animales , Ratones , Diferenciación Celular , Hipoxia de la Célula , Linaje de la Célula , Modelos Animales de Enfermedad , Receptor de Proteína C Endotelial/metabolismo , Fascia/citología , Fascia/lesiones , Fascia/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Inflamación/metabolismo , Inflamación/patología , Miofibroblastos/citología , Miofibroblastos/metabolismo , Transducción de Señal , Análisis de Expresión Génica de una Sola Célula , Piel/citología , Piel/lesiones , Piel/metabolismo , Tretinoina/metabolismo
7.
Immunity ; 50(3): 645-654.e6, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30770250

RESUMEN

The epidermal growth factor receptor ligand Amphiregulin has a well-documented role in the restoration of tissue homeostasis after injury; however, the mechanism by which Amphiregulin contributes to wound repair remains unknown. Here we show that Amphiregulin functioned by releasing bioactive transforming growth factor beta (TGF-ß) from latent complexes via integrin-αV activation. Using acute injury models in two different tissues, we found that by inducing TGF-ß activation on mesenchymal stromal cells (pericytes), Amphiregulin induced their differentiation into myofibroblasts, thereby selectively contributing to the restoration of vascular barrier function within injured tissue. Furthermore, we identified macrophages as a critical source of Amphiregulin, revealing a direct effector mechanism by which these cells contribute to tissue restoration after acute injury. Combined, these observations expose a so far under-appreciated mechanism of how cells of the immune system selectively control the differentiation of tissue progenitor cells during tissue repair and inflammation.


Asunto(s)
Anfirregulina/metabolismo , Macrófagos/metabolismo , Pericitos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Diferenciación Celular/fisiología , Femenino , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo
8.
Nature ; 611(7934): 148-154, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36171287

RESUMEN

Recent single-cell studies of cancer in both mice and humans have identified the emergence of a myofibroblast population specifically marked by the highly restricted leucine-rich-repeat-containing protein 15 (LRRC15)1-3. However, the molecular signals that underlie the development of LRRC15+ cancer-associated fibroblasts (CAFs) and their direct impact on anti-tumour immunity are uncharacterized. Here in mouse models of pancreatic cancer, we provide in vivo genetic evidence that TGFß receptor type 2 signalling in healthy dermatopontin+ universal fibroblasts is essential for the development of cancer-associated LRRC15+ myofibroblasts. This axis also predominantly drives fibroblast lineage diversity in human cancers. Using newly developed Lrrc15-diphtheria toxin receptor knock-in mice to selectively deplete LRRC15+ CAFs, we show that depletion of this population markedly reduces the total tumour fibroblast content. Moreover, the CAF composition is recalibrated towards universal fibroblasts. This relieves direct suppression of tumour-infiltrating CD8+ T cells to enhance their effector function and augments tumour regression in response to anti-PDL1 immune checkpoint blockade. Collectively, these findings demonstrate that TGFß-dependent LRRC15+ CAFs dictate the tumour-fibroblast setpoint to promote tumour growth. These cells also directly suppress CD8+ T cell function and limit responsiveness to checkpoint blockade. Development of treatments that restore the homeostatic fibroblast setpoint by reducing the population of pro-disease LRRC15+ myofibroblasts may improve patient survival and response to immunotherapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Proteínas de la Membrana , Miofibroblastos , Neoplasias Pancreáticas , Células del Estroma , Animales , Humanos , Ratones , Fibroblastos Asociados al Cáncer/metabolismo , Linfocitos T CD8-positivos/inmunología , Proteínas de la Membrana/metabolismo , Miofibroblastos/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Receptores de Factores de Crecimiento Transformadores beta , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral , Antígeno B7-H1
9.
Nature ; 608(7921): 174-180, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35732739

RESUMEN

Heart failure encompasses a heterogeneous set of clinical features that converge on impaired cardiac contractile function1,2 and presents a growing public health concern. Previous work has highlighted changes in both transcription and protein expression in failing hearts3,4, but may overlook molecular changes in less prevalent cell types. Here we identify extensive molecular alterations in failing hearts at single-cell resolution by performing single-nucleus RNA sequencing of nearly 600,000 nuclei in left ventricle samples from 11 hearts with dilated cardiomyopathy and 15 hearts with hypertrophic cardiomyopathy as well as 16 non-failing hearts. The transcriptional profiles of dilated or hypertrophic cardiomyopathy hearts broadly converged at the tissue and cell-type level. Further, a subset of hearts from patients with cardiomyopathy harbour a unique population of activated fibroblasts that is almost entirely absent from non-failing samples. We performed a CRISPR-knockout screen in primary human cardiac fibroblasts to evaluate this fibrotic cell state transition; knockout of genes associated with fibroblast transition resulted in a reduction of myofibroblast cell-state transition upon TGFß1 stimulation for a subset of genes. Our results provide insights into the transcriptional diversity of the human heart in health and disease as well as new potential therapeutic targets and biomarkers for heart failure.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Núcleo Celular , Perfilación de la Expresión Génica , Insuficiencia Cardíaca , Análisis de la Célula Individual , Sistemas CRISPR-Cas , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Estudios de Casos y Controles , Núcleo Celular/genética , Células Cultivadas , Técnicas de Inactivación de Genes , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , RNA-Seq , Transcripción Genética , Factor de Crecimiento Transformador beta1
10.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602479

RESUMEN

Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFBs) and a stable but poorly described population of lipid-rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFBs). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single-cell RNA sequencing and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a MyoFB differentiation program that is distinct from other mesenchymal cell types and increases the known repertoire of mesenchymal cell types in the neonatal lung.


Asunto(s)
Animales Recién Nacidos , Diferenciación Celular , Pulmón , Miofibroblastos , Animales , Miofibroblastos/metabolismo , Miofibroblastos/citología , Ratones , Pulmón/citología , Pulmón/embriología , Pulmón/metabolismo , Linaje de la Célula , Organogénesis , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo
11.
Development ; 151(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38602485

RESUMEN

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Asunto(s)
Diferenciación Celular , Vía de Señalización Hippo , Morfogénesis , Miofibroblastos , Proteínas Serina-Treonina Quinasas , Alveolos Pulmonares , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Ratones , Miofibroblastos/metabolismo , Miofibroblastos/citología , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Morfogénesis/genética , Mesodermo/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Pulmón/metabolismo , Organogénesis/genética , Regulación del Desarrollo de la Expresión Génica
12.
Nature ; 589(7841): 281-286, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33176333

RESUMEN

Kidney fibrosis is the hallmark of chronic kidney disease progression; however, at present no antifibrotic therapies exist1-3. The origin, functional heterogeneity and regulation of scar-forming cells that occur during human kidney fibrosis remain poorly understood1,2,4. Here, using single-cell RNA sequencing, we profiled the transcriptomes of cells from the proximal and non-proximal tubules of healthy and fibrotic human kidneys to map the entire human kidney. This analysis enabled us to map all matrix-producing cells at high resolution, and to identify distinct subpopulations of pericytes and fibroblasts as the main cellular sources of scar-forming myofibroblasts during human kidney fibrosis. We used genetic fate-tracing, time-course single-cell RNA sequencing and ATAC-seq (assay for transposase-accessible chromatin using sequencing) experiments in mice, and spatial transcriptomics in human kidney fibrosis, to shed light on the cellular origins and differentiation of human kidney myofibroblasts and their precursors at high resolution. Finally, we used this strategy to detect potential therapeutic targets, and identified NKD2 as a myofibroblast-specific target in human kidney fibrosis.


Asunto(s)
Linaje de la Célula , Fibrosis/patología , Túbulos Renales/patología , Miofibroblastos/patología , Insuficiencia Renal Crónica/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Mesodermo/citología , Mesodermo/patología , Ratones , Miofibroblastos/metabolismo , Pericitos/citología , Pericitos/patología , RNA-Seq , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Análisis de la Célula Individual , Transcriptoma
13.
Hum Mol Genet ; 33(12): 1090-1104, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38538566

RESUMEN

RATIONALE: Pathogenic (P)/likely pathogenic (LP) SMAD3 variants cause Loeys-Dietz syndrome type 3 (LDS3), which is characterized by arterial aneurysms, dissections and tortuosity throughout the vascular system combined with osteoarthritis. OBJECTIVES: Investigate the impact of P/LP SMAD3 variants with functional tests on patient-derived fibroblasts and vascular smooth muscle cells (VSMCs), to optimize interpretation of SMAD3 variants. METHODS: A retrospective analysis on clinical data from individuals with a P/LP SMAD3 variant and functional analyses on SMAD3 patient-derived VSMCs and SMAD3 patient-derived fibroblasts, differentiated into myofibroblasts. RESULTS: Individuals with dominant negative (DN) SMAD3 variant in the MH2 domain exhibited more major events (66.7% vs. 44.0%, P = 0.054), occurring at a younger age compared to those with haploinsufficient (HI) variants. The age at first major event was 35.0 years [IQR 29.0-47.0] in individuals with DN variants in MH2, compared to 46.0 years [IQR 40.0-54.0] in those with HI variants (P = 0.065). Fibroblasts carrying DN SMAD3 variants displayed reduced differentiation potential, contrasting with increased differentiation potential in HI SMAD3 variant fibroblasts. HI SMAD3 variant VSMCs showed elevated SMA expression and altered expression of alternative MYH11 isoforms. DN SMAD3 variant myofibroblasts demonstrated reduced extracellular matrix formation compared to control cell lines. CONCLUSION: Distinguishing between P/LP HI and DN SMAD3 variants can be achieved by assessing differentiation potential, and SMA and MYH11 expression. The differences between DN and HI SMAD3 variant fibroblasts and VSMCs potentially contribute to the differences in disease manifestation. Notably, myofibroblast differentiation seems a suitable alternative in vitro test system compared to VSMCs.


Asunto(s)
Fibroblastos , Estudios de Asociación Genética , Síndrome de Loeys-Dietz , Músculo Liso Vascular , Proteína smad3 , Humanos , Proteína smad3/genética , Proteína smad3/metabolismo , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/patología , Masculino , Femenino , Fibroblastos/metabolismo , Adulto , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Diferenciación Celular/genética , Línea Celular , Miocitos del Músculo Liso/metabolismo , Estudios Retrospectivos , Fenotipo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Mutación
14.
Circ Res ; 135(3): 453-469, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38899461

RESUMEN

BACKGROUND: Cardiac fibroblast activation contributes to adverse remodeling, fibrosis, and dysfunction in the pressure-overloaded heart. Although early fibroblast TGF-ß (transforming growth factor-ß)/Smad (small mother against decapentaplegic)-3 activation protects the pressure-overloaded heart by preserving the matrix, sustained TGF-ß activation is deleterious, accentuating fibrosis and dysfunction. Thus, endogenous mechanisms that negatively regulate the TGF-ß response in fibroblasts may be required to protect from progressive fibrosis and adverse remodeling. We hypothesized that Smad7, an inhibitory Smad that restrains TGF-ß signaling, may be induced in the pressure-overloaded myocardium and may regulate fibrosis, remodeling, and dysfunction. METHODS: The effects of myofibroblast-specific Smad7 loss were studied in a mouse model of transverse aortic constriction, using echocardiography, histological analysis, and molecular analysis. Proteomic studies in S7KO (Smad7 knockout) and overexpressing cells were used to identify fibroblast-derived mediators modulated by Smad7. In vitro experiments using cultured cardiac fibroblasts, fibroblasts populating collagen lattices, and isolated macrophages were used to dissect the molecular signals responsible for the effects of Smad7. RESULTS: Following pressure overload, Smad7 was upregulated in cardiac myofibroblasts. TGF-ß and angiotensin II stimulated fibroblast Smad7 upregulation via Smad3, whereas GDF15 (growth differentiation factor 15) induced Smad7 through GFRAL (glial cell line-derived neurotrophic factor family receptor α-like). MFS7KO (myofibroblast-specific S7KO) mice had increased mortality, accentuated systolic dysfunction and dilative remodeling, and accelerated diastolic dysfunction in response to transverse aortic constriction. Increased dysfunction in MFS7KO hearts was associated with accentuated fibrosis and increased MMP (matrix metalloproteinase)-2 activity and collagen denaturation. Secretomic analysis showed that Smad7 loss accentuates secretion of structural collagens and matricellular proteins and markedly increases MMP2 secretion. In contrast, Smad7 overexpression reduced MMP2 levels. In fibroblasts populating collagen lattices, the effects of Smad7 on fibroblast-induced collagen denaturation and pad contraction were partly mediated via MMP2 downregulation. Surprisingly, MFS7KO mice also exhibited significant macrophage expansion caused by paracrine actions of Smad7 null fibroblasts that stimulate macrophage proliferation and fibrogenic activation. Macrophage activation involved the combined effects of the fibroblast-derived matricellular proteins CD5L (CD5 antigen-like), SPARC (secreted protein acidic and rich in cysteine), CTGF (connective tissue growth factor), ECM1 (extracellular matrix protein 1), and TGFBI (TGFB induced). CONCLUSIONS: The antifibrotic effects of Smad7 in the pressure-overloaded heart protect from dysfunction and involve not only reduction in collagen deposition but also suppression of MMP2-mediated matrix denaturation and paracrine effects that suppress macrophage activation through inhibition of matricellular proteins.


Asunto(s)
Fibrosis , Ratones Noqueados , Miofibroblastos , Proteína smad7 , Remodelación Ventricular , Animales , Proteína smad7/metabolismo , Proteína smad7/genética , Ratones , Miofibroblastos/metabolismo , Miofibroblastos/patología , Células Cultivadas , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta/metabolismo , Masculino , Fibroblastos/metabolismo , Fibroblastos/patología , Transducción de Señal , Miocardio/metabolismo , Miocardio/patología
15.
Circ Res ; 135(2): 280-297, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38847080

RESUMEN

BACKGROUND: Heart failure (HF) is one of the leading causes of mortality worldwide. Extracellular vesicles, including small extracellular vesicles or exosomes, and their molecular cargo are known to modulate cell-to-cell communication during multiple cardiac diseases. However, the role of systemic extracellular vesicle biogenesis inhibition in HF models is not well documented and remains unclear. METHODS: We investigated the role of circulating exosomes during cardiac dysfunction and remodeling in a mouse transverse aortic constriction (TAC) model of HF. Importantly, we investigate the efficacy of tipifarnib, a recently identified exosome biogenesis inhibitor that targets the critical proteins (Rab27a [Ras associated binding protein 27a], nSMase2 [neutral sphingomyelinase 2], and Alix [ALG-2-interacting protein X]) involved in exosome biogenesis for this mouse model of HF. In this study, 10-week-old male mice underwent TAC surgery were randomly assigned to groups with and without tipifarnib treatment (10 mg/kg 3 times/wk) and monitored for 8 weeks, and a comprehensive assessment was conducted through performed echocardiographic, histological, and biochemical studies. RESULTS: TAC significantly elevated circulating plasma exosomes and markedly increased cardiac left ventricular dysfunction, cardiac hypertrophy, and fibrosis. Furthermore, injection of plasma exosomes from TAC mice induced left ventricular dysfunction and cardiomyocyte hypertrophy in uninjured mice without TAC. On the contrary, treatment of tipifarnib in TAC mice reduced circulating exosomes to baseline and remarkably improved left ventricular functions, hypertrophy, and fibrosis. Tipifarnib treatment also drastically altered the miRNA profile of circulating post-TAC exosomes, including miR 331-5p, which was highly downregulated both in TAC circulating exosomes and in TAC cardiac tissue. Mechanistically, miR 331-5p is crucial for inhibiting the fibroblast-to-myofibroblast transition by targeting HOXC8, a critical regulator of fibrosis. Tipifarnib treatment in TAC mice upregulated the expression of miR 331-5p that acts as a potent repressor for one of the fibrotic mechanisms mediated by HOXC8. CONCLUSIONS: Our study underscores the pathological role of exosomes in HF and fibrosis in response to pressure overload. Tipifarnib-mediated inhibition of exosome biogenesis and cargo sorting may serve as a viable strategy to prevent progressive cardiac remodeling in HF.


Asunto(s)
Vesículas Extracelulares , Insuficiencia Cardíaca , Quinolonas , Animales , Masculino , Ratones , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Modelos Animales de Enfermedad , Vesículas Extracelulares/efectos de los fármacos , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/prevención & control , Quinolonas/farmacología , Quinolonas/uso terapéutico , Distribución Aleatoria , Regulación hacia Arriba/efectos de los fármacos , MicroARNs , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo
16.
EMBO Rep ; 25(10): 4570-4593, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39271773

RESUMEN

The accumulation of myofibroblasts within the intimal layer of inflamed blood vessels is a potentially catastrophic complication of vasculitis, which can lead to arterial stenosis and ischaemia. In this study, we have investigated how these luminal myofibroblasts develop during Kawasaki disease (KD), a paediatric vasculitis typically involving the coronary arteries. By performing lineage tracing studies in a murine model of KD, we reveal that luminal myofibroblasts develop independently of adventitial fibroblasts and endothelial cells, and instead derive from smooth muscle cells (SMCs). Notably, the emergence of SMC-derived luminal myofibroblasts-in both mice and patients with KD, Takayasu's arteritis and Giant Cell arteritis-coincided with activation of the mechanistic target of rapamycin (mTOR) signalling pathway. Moreover, SMC-specific deletion of mTOR signalling, or pharmacological inhibition, abrogated the emergence of luminal myofibroblasts. Thus, mTOR is an intrinsic and essential regulator of luminal myofibroblast formation that is activated in vasculitis patients and therapeutically tractable. These findings provide molecular insight into the pathogenesis of coronary artery stenosis and identify mTOR as a therapeutic target in vasculitis.


Asunto(s)
Miocitos del Músculo Liso , Miofibroblastos , Transducción de Señal , Serina-Treonina Quinasas TOR , Serina-Treonina Quinasas TOR/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Animales , Ratones , Humanos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Vasculitis/metabolismo , Vasculitis/patología , Vasculitis/genética , Síndrome Mucocutáneo Linfonodular/metabolismo , Síndrome Mucocutáneo Linfonodular/patología , Síndrome Mucocutáneo Linfonodular/genética , Modelos Animales de Enfermedad
17.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072048

RESUMEN

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Mecanotransducción Celular , Miofibroblastos , Proteína de Unión al Calcio S100A4 , Animales , Ratones , Transdiferenciación Celular , Fibrosis , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Proteína de Unión al Calcio S100A4/genética , Proteína de Unión al Calcio S100A4/metabolismo
18.
J Biol Chem ; 300(6): 107385, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759730

RESUMEN

Non-muscle myosin 2 (NM2) is known to play an important role in myofibroblast transdifferentiation, a hallmark of fibrotic disorders. In a recent JBC article, Southern et al. demonstrate that endogenous S100A4, a calcium- and NM2-binding protein acts as a mechanoeffector in this process. Since extracellular S100A4 is also involved in fibrogenesis by triggering the inflammatory response, this small protein appears to contribute to fibrosis via at least two distinct mechanisms.


Asunto(s)
Fibrosis , Proteína de Unión al Calcio S100A4 , Proteínas S100 , Humanos , Proteína de Unión al Calcio S100A4/metabolismo , Proteína de Unión al Calcio S100A4/genética , Fibrosis/metabolismo , Animales , Proteínas S100/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Transdiferenciación Celular , Ratones , Miosina Tipo II/metabolismo
19.
Am J Pathol ; 194(5): 656-672, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325552

RESUMEN

Idiopathic pulmonary fibrosis is a progressive interstitial lung disease for which there is no curative therapy available. Repetitive alveolar epithelial injury repair, myofibroblast accumulation, and excessive collagen deposition are key pathologic features of idiopathic pulmonary fibrosis, eventually leading to cellular hypoxia and respiratory failure. The precise mechanism driving this complex maladaptive process remains inadequately understood. WD repeat and suppressor of cytokine signaling box containing 1 (WSB1) is an E3 ubiquitin ligase, the expression of which is associated strongly with hypoxia, and forms a positive feedback loop with hypoxia-inducible factor 1α (HIF-1α) under anoxic condition. This study explored the expression, cellular distribution, and function of WSB1 in bleomycin (BLM)-induced mouse lung injury and fibrosis. WSB1 expression was highly induced by BLM injury and correlated with the progression of lung fibrosis. Significantly, conditional deletion of Wsb1 in adult mice ameliorated BLM-induced pulmonary fibrosis. Phenotypically, Wsb1-deficient mice showed reduced lipofibroblast to myofibroblast transition, but enhanced alveolar type 2 proliferation and differentiation into alveolar type 1 after BLM injury. Proteomic analysis of mouse lung tissues identified caveolin 2 as a potential downstream target of WSB1, contributing to BLM-induced epithelial injury repair and fibrosis. These findings unravel a vital role for WSB1 induction in lung injury repair, thus highlighting it as a potential therapeutic target for pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Lesión Pulmonar , Animales , Ratones , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Miofibroblastos/metabolismo , Lesión Pulmonar/patología , Proteómica , Pulmón/patología , Fibrosis , Hipoxia/patología , Fibrosis Pulmonar Idiopática/patología , Bleomicina/toxicidad , Regeneración , Péptidos y Proteínas de Señalización Intracelular
20.
Hepatology ; 80(3): 578-594, 2024 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271673

RESUMEN

BACKGROUND AND AIMS: Transforming growth factor-beta 1 (TGFß1) induces HSC activation into metastasis-promoting cancer-associated fibroblasts (CAFs), but how the process is fueled remains incompletely understood. We studied metabolic reprogramming induced by TGFß1 in HSCs. APPROACHES AND RESULTS: Activation of cultured primary human HSCs was assessed by the expression of myofibroblast markers. Glucose transporter 1 (Glut1) of murine HSC was disrupted by Cre recombinase/LoxP sequence derived from bacteriophage P1 recombination (Cre/LoxP). Plasma membrane (PM) Glut1 and glycolysis were studied by biotinylation assay and the Angilent Seahorse XFe96 Analyzer. S.c. HSC/tumor co-implantation and portal vein injection of MC38 colorectal cancer cells into HSC-specific Glut1 knockout mice were performed to determine in vivo relevance. Transcriptome was obtained by RNA sequencing of HSCs and spatialomics with MC38 liver metastases. TGFß1-induced CAF activation of HSCs was accompanied by elevation of PM Glut1, glucose uptake, and glycolysis. Targeting Glut1 or Src by short hairpin RNA, pharmacologic inhibition, or a Src SH3 domain deletion mutant abrogated TGFß1-stimulated PM accumulation of Glut1, glycolysis, and CAF activation. Mechanistically, binding of the Src SH3 domain to SH3 domain-binding protein 5 led to a Src/SH3 domain-binding protein 5/Rab11/Glut1 complex that activated Rab11-dependent Glut1 PM transport under TGFß1 stimulation. Deleting the Src SH3 domain or targeting Glut1 of HSCs by short hairpin RNA or Cre recombinase/LoxP sequence derived from bacteriophage P1 recombination suppressed CAF activation in mice and MC38 colorectal liver metastasis. Multi-omics revealed that Glut1 deficiency in HSCs/CAFs suppressed HSC expression of tumor-promoting factors and altered MC38 transcriptome, contributing to reduced MC38 liver metastases. CONCLUSION: The Src SH3 domain-facilitated metabolic reprogramming induced by TGFß1 represents a target to inhibit CAF activation and the pro-metastatic liver microenvironment.


Asunto(s)
Neoplasias Colorrectales , Glucólisis , Neoplasias Hepáticas , Miofibroblastos , Transcriptoma , Dominios Homologos src , Animales , Ratones , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Humanos , Miofibroblastos/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA