RESUMEN
BACKGROUND: Weakness of facial, ocular and axial muscles is a common clinical presentation in congenital myopathies caused by pathogenic variants in genes encoding triad proteins. Abnormalities in triad structure and function resulting in disturbed excitation-contraction coupling and Ca2+ homeostasis can contribute to disease pathology. METHODS: We analysed exome and genome sequencing data from four unrelated individuals with congenital myopathy characterised by facial, ocular and bulbar involvement. We collected deep phenotypic data from the affected individuals. We analysed the RNA-sequencing (RNA-seq) data of F3-II.1 and performed gene expression outlier analysis in 129 samples. RESULTS: The four probands had a remarkably similar clinical presentation with prominent facial, ocular and bulbar features. Disease onset was in the neonatal period with hypotonia, poor feeding, cleft palate and talipes. Muscle weakness was generalised but prominent in the lower limbs with facial weakness also present. All patients had myopathic facies, bilateral ptosis, ophthalmoplegia and fatigability. Muscle biopsy on light microscopy showed type 1 myofiber predominance and ultrastructural analysis revealed slightly reduced triads, and structurally abnormal sarcoplasmic reticulum.DNA sequencing identified four unique homozygous loss-of-function variants in JPH1, encoding junctophilin-1 in the four families; one stop-gain (c.354C>A;p.Tyr118*) and three frameshift (c.373delG;p.Asp125Thrfs*30, c.1738delC;p.Leu580Trpfs*16 and c.1510delG;p. Glu504Serfs*3) variants. Muscle RNA-seq showed strong downregulation of JPH1 in the F3 proband. CONCLUSIONS: Junctophilin-1 is critical for the formation of skeletal muscle triad junctions by connecting the sarcoplasmic reticulum and T-tubules. Our findings suggest that loss of JPH1 results in a congenital myopathy with prominent facial, bulbar and ocular involvement.
Asunto(s)
Linaje , Humanos , Masculino , Femenino , Miotonía Congénita/genética , Miotonía Congénita/patología , Mutación con Pérdida de Función/genética , Fenotipo , Niño , Secuenciación del Exoma , Preescolar , LactanteRESUMEN
BACKGROUND: Congenital myopathies are a clinical, histopathological and genetic heterogeneous group of inherited muscle disorders that are defined on peculiar architectural abnormalities in the muscle fibres. Although there have been at least 33 different genetic causes of the disease, a significant percentage of congenital myopathies remain genetically unresolved. The present study aimed to report a novel TUBA4A variant in two unrelated Chinese patients with sporadic congenital myopathy. METHODS: A comprehensive strategy combining laser capture microdissection, proteomics and whole-exome sequencing was performed to identify the candidate genes. In addition, the available clinical data, myopathological changes, the findings of electrophysiological examinations and thigh muscle MRIs were also reviewed. A cellular model was established to assess the pathogenicity of the TUBA4A variant. RESULTS: We identified a recurrent novel heterozygous de novo c.679C>T (p.L227F) variant in the TUBA4A (NM_006000), encoding tubulin alpha-4A, in two unrelated patients with clinicopathologically diagnosed sporadic congenital myopathy. The prominent myopathological changes in both patients were muscle fibres with focal myofibrillar disorganisation and rimmed vacuoles. Immunofluorescence showed ubiquitin-positive TUBA4A protein aggregates in the muscle fibres with rimmed vacuoles. Overexpression of the L227F mutant TUBA4A resulted in cytoplasmic aggregates which colocalised with ubiquitin in cellular model. CONCLUSION: Our findings expanded the phenotypic and genetic manifestations of TUBA4A as well as tubulinopathies, and added a new type of congenital myopathy to be taken into consideration in the differential diagnosis.
Asunto(s)
Miopatías Estructurales Congénitas , Tubulina (Proteína) , Adulto , Femenino , Humanos , Masculino , Secuenciación del Exoma , Músculo Esquelético/patología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Mutación , Miofibrillas/patología , Miofibrillas/genética , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Miotonía Congénita/genética , Miotonía Congénita/patología , Linaje , Tubulina (Proteína)/genéticaRESUMEN
The function of the chloride channel ClC-1 is crucial for the control of muscle excitability. Thus, reduction of ClC-1 functions by CLCN1 mutations leads to myotonia congenita. Many different animal models have contributed to understanding the myotonia pathophysiology. However, these models do not allow in vivo screening of potentially therapeutic drugs, as the zebrafish model does. In this work, we identified and characterized the two zebrafish orthologues (clc-1a and clc-1b) of the ClC-1 channel. Both channels are mostly expressed in the skeletal muscle as revealed by RT-PCR, western blot, and electrophysiological recordings of myotubes, and clc-1a is predominantly expressed in adult stages. Characterization in Xenopus oocytes shows that the zebrafish channels display similar anion selectivity and voltage dependence to their human counterparts. However, they show reduced sensitivity to the inhibitor 9-anthracenecarboxylic acid (9-AC), and acidic pH inverts the voltage dependence of activation. Reduction of clc-1a/b expression hampers spontaneous and mechanically stimulated movement, which could be reverted by expression of human ClC-1 but not by some ClC-1 containing myotonia mutations. Treatment of clc-1-depleted zebrafish with mexiletine, a typical drug used in human myotonia, improves the motor behaviour. Our work extends the repertoire of ClC channels to evolutionary structure-function studies and proposes the zebrafish clcn1 crispant model as a simple tool to find novel therapies for myotonia. KEY POINTS: We have identified two orthologues of ClC-1 in zebrafish (clc-1a and clc-1b) which are mostly expressed in skeletal muscle at different developmental stages. Functional characterization of the activity of these channels reveals many similitudes with their mammalian counterparts, although they are less sensitive to 9-AC and acidic pH inverts their voltage dependence of gating. Reduction of clc-1a/b expression hampers spontaneous and mechanically stimulated movement which could be reverted by expression of human ClC-1. Myotonia-like symptoms caused by clc-1a/b depletion can be reverted by mexiletine, suggesting that this model could be used to find novel therapies for myotonia.
Asunto(s)
Canales de Cloruro , Pez Cebra , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Canales de Cloruro/fisiología , Animales , Humanos , Modelos Animales de Enfermedad , Miotonía/genética , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Xenopus laevis , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Miotonía Congénita/genética , AntracenosRESUMEN
Patients with myotonia congenita suffer from slowed relaxation of muscle (myotonia), due to hyperexcitability caused by loss-of-function mutations in the ClC-1 chloride channel. A recent study suggested that block of large-conductance voltage- and Ca2+- activated K+ channels (BK) may be effective as therapy. The mechanism underlying efficacy was suggested to be lessening of the depolarizing effect of build-up of K+ in t-tubules of muscle during repetitive firing. BK channels are widely expressed in the nervous system and have been shown to play a central role in regulation of excitability, but their contribution to muscle excitability has not been determined. We performed intracellular recordings as well as force measurements in both wild type and BK-/- mouse extensor digitorum longus muscles. Action potential width was increased in BK-/- muscle due to slowing of repolarization, consistent with the possibility K+ build-up in t-tubules is lessened by block of BK channels in myotonic muscle. However, there was no difference in the severity of myotonia triggered by block of muscle Cl- channels with 9-anthracenecarboxylic acid (9AC) in wild type and BK-/- muscle fibers. Further study revealed no difference in the interspike membrane potential during repetitive firing suggesting there was no reduction in K+ build-up in t-tubules of BK-/- muscle. Force recordings following block of muscle Cl- channels demonstrated little reduction in myotonia in BK-/- muscle. In contrast, the current standard of care, mexiletine, significantly reduced myotonia. Our data suggest BK channels regulate muscle excitability, but are not an attractive target for therapy of myotonia.
Asunto(s)
Potenciales de Acción , Canales de Potasio de Gran Conductancia Activados por el Calcio , Músculo Esquelético , Animales , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Miotonía/fisiopatología , Miotonía/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Miotonía Congénita/genética , Miotonía Congénita/fisiopatología , Miotonía Congénita/metabolismoRESUMEN
INTRODUCTION/AIMS: Myotonia congenita (MC) is the most common hereditary channelopathy in humans. Characterized by muscle stiffness, MC may be transmitted as either an autosomal dominant (Thomsen) or a recessive (Becker) disorder. MC is caused by variants in the voltage-gated chloride channel 1 (CLCN1) gene, important for the normal repolarization of the muscle action potential. More than 250 disease-causing variants in the CLCN1 gene have been reported. This study provides an MC genotype-phenotype spectrum in a large cohort of Greek patients and focuses on novel variants and disease epidemiology, including additional insights for the variant CLCN1:c.501C > G. METHODS: Sanger sequencing for the entire coding region of the CLCN1 gene was performed. Targeted segregation analysis of likely candidate variants in additional family members was performed. Variant classification was based on American College of Medical Genetics (ACMG) guidelines. RESULTS: Sixty-one patients from 47 unrelated families were identified, consisting of 51 probands with Becker MC (84%) and 10 with Thomsen MC (16%). Among the different variants detected, 11 were novel and 16 were previously reported. The three most prevalent variants were c.501C > G, c.2680C > T, and c.1649C > G. Additionally, c.501C > G was detected in seven Becker cases in-cis with the c.1649C > G. DISCUSSION: The large number of patients in whom a diagnosis was established allowed the characterization of genotype-phenotype correlations with respect to both previously reported and novel findings. For the c.501C > G (p.Phe167Leu) variant a likely nonpathogenic property is suggested, as it only seems to act as an aggravating modifying factor in cases in which a pathogenic variant triggers phenotypic expression.
Asunto(s)
Canales de Cloruro , Genotipo , Miotonía Congénita , Humanos , Miotonía Congénita/genética , Canales de Cloruro/genética , Femenino , Masculino , Grecia/epidemiología , Adulto , Persona de Mediana Edad , Estudios de Cohortes , Adulto Joven , Adolescente , Niño , Anciano , Mutación , Preescolar , Estudios de Asociación Genética , FenotipoRESUMEN
BACKGROUND AND PURPOSE: Myotonia congenita (MC) is a muscle channelopathy in which pathogenic variants in a key sarcolemmal chloride channel Gene (CLCN1) cause myotonia. This study used muscle magnetic resonance imaging (MRI) to quantify contractile properties and fat replacement of muscles in a Danish cohort of MC patients. METHODS: Individuals with the Thomsen (dominant) and Becker (recessive) variants of MC were studied. Isometric muscle strength, whole-body MRI, and clinical data were collected. The degree of muscle fat replacement of thigh, calf, and forearm muscles was quantitively calculated on Dixon MRI as fat fractions (FFs). Contractility was evaluated as the muscle strength per contractile muscle cross-sectional area (PT/CCSA). Muscle contractility was compared with clinical data. RESULTS: Intramuscular FF was increased and contractility reduced in calf and in forearm muscles compared with controls (FF = 7.0-14.3% vs. 5.3-9.6%, PT/CCSA = 1.1-4.9 Nm/cm2 vs. 1.9-5.8 Nm/cm2 [p < 0.05]). Becker individuals also showed increased intramuscular FF and reduced contractility of thigh muscles (FF = 11.9% vs. 9.2%, PT/CCSA = 1.9 Nm/cm2 vs. 3.2 Nm/cm2 [p < 0.05]). Individual muscle analysis showed that increased FF was limited to seven of 18 examined muscles (p < 0.05). There was a weak correlation between reduced contractility and severity of symptoms. CONCLUSIONS: Individuals with MC have increased fat replacement and reduced contractile properties of muscles. Nonetheless, changes were small and likely did not impact clinically on their myotonic symptoms.
Asunto(s)
Miotonía Congénita , Humanos , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética , Miotonía Congénita/patología , Mutación , Músculo Esquelético/patología , Fuerza Muscular , Imagen por Resonancia MagnéticaRESUMEN
BACKGROUND: Myotonia Congenita (MC) is a rare disease classified into two major forms; Thomsen and Becker disease caused by mutations in the CLCN1 gene, which affects muscle excitability and encodes voltage-gated chloride channels (CLC-1). While, there are no data regarding the clinical and molecular characterization of myotonia in Egyptian patients. METHODS: Herein, we report seven Egyptian MC patients from six unrelated families. Following the clinical diagnosis, whole-exome sequencing (WES) was performed for genetic diagnosis. Various in silico prediction tools were utilized to interpret variant pathogenicity. The candidate variants were then validated using Sanger sequencing technique. RESULTS: In total, seven cases were recruited. The ages at the examination were ranged from eight months to nineteen years. Clinical manifestations included warm-up phenomenon, hand grip, and percussion myotonia. Electromyography was performed in all patients and revealed myotonic discharges. Molecular genetic analysis revealed five different variants. Of them, we identified two novel variants in the CLCN1 gene ( c.1583G > C; p.Gly528Ala and c.2203_2216del;p.Thr735ValfsTer57) and three known variants in the CLCN1 and SCN4A gene. According to in silico tools, the identified novel variants were predicted to have deleterious effects. CONCLUSIONS: As the first study to apply WES among Egyptian MC patients, our findings reported two novel heterozygous variants that expand the CLCN1 mutational spectrum for MC diagnosis. These results further confirm that genetic testing is essential for early diagnosis of MC, which affects follow-up treatment and prognostic assessment in clinical practice.
Asunto(s)
Canales de Cloruro , Secuenciación del Exoma , Mutación , Miotonía Congénita , Humanos , Miotonía Congénita/genética , Miotonía Congénita/diagnóstico , Secuenciación del Exoma/métodos , Canales de Cloruro/genética , Femenino , Masculino , Egipto , Niño , Adolescente , Mutación/genética , Preescolar , Adulto Joven , Lactante , Canal de Sodio Activado por Voltaje NAV1.4/genética , Adulto , Linaje , ElectromiografíaRESUMEN
Accurate determination of the pathogenicity of missense genetic variants of uncertain significance is a huge challenge for implementing genetic data in clinical practice. In silico predictive tools are used to score variants' pathogenicity. However, their value in clinical settings is often unclear, as they have not usually been validated against robust functional assays. We compared nine widely used in silico predictive tools, including more recently developed tools (EVE and REVEL) with detailed cell-based electrophysiology, for 126 CLCN1 variants discovered in patients with the skeletal muscle channelopathy myotonia congenita. We found poor accuracy for most tools. The highest accuracy was obtained with MutationTaster (84.58%) and REVEL (82.54%). Both of these scores showed poor specificity, although specificity was better using EVE. Combining methods based on concordance improved performance overall but still lacked specificity. Our calculated statistics for the predictive tools were different to reported values for other genes in the literature, suggesting that the utility of the tools varies between genes. Overall, current predictive tools for this chloride channel are not reliable for clinical use, and tools with better specificity are urgently required. Improving the accuracy of predictive tools is a wider issue and a huge challenge for effective clinical implementation of genetic data.
Asunto(s)
Canalopatías , Miotonía Congénita , Humanos , Canalopatías/genética , Músculo Esquelético , Canales de Cloruro/genética , Miotonía Congénita/genética , MutaciónRESUMEN
Pathogenic variants in the ryanodine receptor 1 (RYR1) gene are causative for a wide spectrum of muscular phenotypes, ranging from malignant hyperthermia over mild, non-progressive to severe congenital myopathy. Both autosomal dominant and recessive inheritance can occur, with the more severe forms usually showing recessive inheritance. However, genotype-phenotype correlations are complicated due to the large size of the gene and heterogeneous phenotypes. We present a 6-year-old patient with severe congenital myopathy, carrying a heterozygous pathogenic RYR1 variant inherited from the healthy mother. Through whole genome sequencing we identified a second, deep intronic RYR1 variant that has recently been described in another patient with severe congenital myopathy and shown to affect splicing. Segregation analyses confirmed the variants to be compound heterozygous. We compared our patient's phenotype to that of the patient from the literature as well as five additional patients with compound heterozygous RYR1 variants from our center. The main overlapping features comprised congenital onset, predominant muscular hypotonia, and normal creatine kinase (CK) levels, while overall clinical expression varied substantially. Interestingly, both patients carrying the new intronic splice variant showed a very severe disease course. More widespread use of genome sequencing will open the way for better genotype-phenotype correlations.
Asunto(s)
Heterocigoto , Canal Liberador de Calcio Receptor de Rianodina , Niño , Femenino , Humanos , Masculino , Genes Recesivos , Estudios de Asociación Genética , Enfermedades Musculares/genética , Mutación , Miotonía Congénita/genética , Linaje , Fenotipo , Canal Liberador de Calcio Receptor de Rianodina/genéticaRESUMEN
Brody disease (BD) is an "ultra-rare" human genetic disorder of skeletal muscle function due to defects in the atp2a1 gene causing deficiency of the SERCA protein, isoform1. The main clinical signs are exercise-induced stiffness and delayed muscular relaxation after physical exercises, even mild ones. No mouse model nor specific therapies exist for Brody myopathy, which is therefore considered an orphan disease. Bovine congenital pseudomyotonia (PMT) is a muscular disorder characterized by an impairment of muscle relaxation and is the only mammalian model of human BD. The pathogenetic mechanism underlying bovine PMT has been recently clarified. These findings prompted us to purpose a potential pharmacological approach addressing a specific population of BD patients who exhibit reduced expression but still exhibit activity of the SERCA1 pump. Preclinical research involving in vivo studies is essential and necessary before clinical trials can be pursued and SERCA protein shows a high degree of conservation among species. So far, the only animal models available to study BD in vivo are a group of zebrafish mutant lines known as accordion zebrafish (acc). In this paper, we focused on a comprehensive characterization of the "acctq206" zebrafish variant. Our aim was to use this mutant line as an experimental animal model for testing the novel therapeutic approach for BD.
Asunto(s)
Modelos Animales de Enfermedad , Mutación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Pez Cebra , Animales , Pez Cebra/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Miotonía Congénita/genética , Miotonía Congénita/tratamiento farmacológico , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
BACKGROUND: Neutral lipid storage disease with myopathy (NLSD-M) is an autosomal recessive disease that manifests itself around the 3rd to 4th decade with chronic myopathy predominantly proximal in the shoulder girdle. Clinical myotonia is uncommon. We will report a rare case of association of pathogenic variants on PNPLA2 and CLCN1 genes with a mixed phenotype of NLSD-M and a subclinical form of Thomsen's congenital myotonia. CASE PRESENTATION: We describe a patient with chronic proximal myopathy, subtle clinical myotonia and electrical myotonia on electromyography (EMG). Serum laboratory analysis disclosure hyperCKemia (CK 1280 mg/dL). A blood smear analysis showed Jordan's anomaly, a hallmark of NLSD-M. A genetic panel was collected using next-generation sequencing (NGS) technique, which identified two pathogenic variants on genes supporting two different diagnosis: NLSD-M and Thomsen congenital myotonia, whose association has not been previously described. CONCLUSIONS: Although uncommon, it is important to remember the possibility of association of pathogenic variants to explain a specific neuromuscular disease phenotype. The use of a range of complementary methods, including myopathy genetic panels, may be essential to diagnostic definition in such cases.
Asunto(s)
Enfermedades Musculares , Miotonía Congénita , Miotonía , Humanos , Aciltransferasas/genética , Canales de Cloruro/genética , Lipasa/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación/genética , Miotonía/genética , Miotonía Congénita/diagnóstico , Miotonía Congénita/genéticaRESUMEN
High-throughput DNA sequencing is increasingly employed to diagnose single gene neurological and neuromuscular disorders. Large volumes of data present new challenges in data interpretation and its useful translation into clinical and genetic counselling for families. Even when a plausible gene is identified with confidence, interpretation of the clinical significance and inheritance pattern of variants can be challenging. We report our approach to evaluating variants in the skeletal muscle chloride channel ClC-1 identified in 223 probands with myotonia congenita as an example of these challenges. Sequencing of CLCN1, the gene that encodes CLC-1, is central to the diagnosis of myotonia congenita. However, interpreting the pathogenicity and inheritance pattern of novel variants is notoriously difficult as both dominant and recessive mutations are reported throughout the channel sequence, ClC-1 structure-function is poorly understood and significant intra- and interfamilial variability in phenotype is reported. Heterologous expression systems to study functional consequences of CIC-1 variants are widely reported to aid the assessment of pathogenicity and inheritance pattern. However, heterogeneity of reported analyses does not allow for the systematic correlation of available functional and genetic data. We report the systematic evaluation of 95 CIC-1 variants in 223 probands, the largest reported patient cohort, in which we apply standardized functional analyses and correlate this with clinical assessment and inheritance pattern. Such correlation is important to determine whether functional data improves the accuracy of variant interpretation and likely mode of inheritance. Our data provide an evidence-based approach that functional characterization of ClC-1 variants improves clinical interpretation of their pathogenicity and inheritance pattern, and serve as reference for 34 previously unreported and 28 previously uncharacterized CLCN1 variants. In addition, we identify novel pathogenic mechanisms and find that variants that alter voltage dependence of activation cluster in the first half of the transmembrane domains and variants that yield no currents cluster in the second half of the transmembrane domain. None of the variants in the intracellular domains were associated with dominant functional features or dominant inheritance pattern of myotonia congenita. Our data help provide an initial estimate of the anticipated inheritance pattern based on the location of a novel variant and shows that systematic functional characterization can significantly refine the assessment of risk of an associated inheritance pattern and consequently the clinical and genetic counselling.
Asunto(s)
Miotonía Congénita , Miotonía , Canales de Cloruro/genética , Humanos , Mutación/genética , Miotonía/genética , Miotonía Congénita/genética , FenotipoRESUMEN
Mutations in the RYR1 gene are the most common cause of human congenital myopathies, and patients with recessive mutations are severely affected and often display ptosis and/or ophthalmoplegia. In order to gain insight into the mechanism leading to extraocular muscle (EOM) involvement, we investigated the biochemical, structural and physiological properties of eye muscles from mouse models we created knocked-in for Ryr1 mutations. Ex vivo force production in EOMs from compound heterozygous RyR1p.Q1970fsX16+p.A4329D mutant mice was significantly reduced compared with that observed in wild-type, single heterozygous mutant carriers or homozygous RyR1p.A4329D mice. The decrease in muscle force was also accompanied by approximately a 40% reduction in RyR1 protein content, a decrease in electrically evoked calcium transients, disorganization of the muscle ultrastructure and a decrease in the number of calcium release units. Unexpectedly, the superfast and ocular-muscle-specific myosin heavy chain-EO isoform was almost undetectable in RyR1p.Q1970fsX16+p.A4329D mutant mice. The results of this study show for the first time that the EOM phenotype caused by the RyR1p.Q1970fsX16+p.A4329D compound heterozygous Ryr1 mutations is complex and due to a combination of modifications including a direct effect on the macromolecular complex involved in calcium release and indirect effects on the expression of myosin heavy chain isoforms.
Asunto(s)
Debilidad Muscular/genética , Cadenas Pesadas de Miosina/genética , Miotonía Congénita/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Modelos Animales de Enfermedad , Heterocigoto , Humanos , Ratones , Debilidad Muscular/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación/genética , Miotonía Congénita/patología , Músculos Oculomotores/metabolismo , Músculos Oculomotores/patología , FenotipoRESUMEN
INTRODUCTION/AIMS: Consistency of differences between non-dystrophic myotonias over time measured by standardized clinical/patient-reported outcomes is lacking. Evaluation of longitudinal data could establish clinically relevant endpoints for future research. METHODS: Data from prospective observational study of 95 definite/clinically suspected non-dystrophic myotonia participants (six sites in the United States, United Kingdom, and Canada) between March 2006 and March 2009 were analyzed. Outcomes included: standardized symptom interview/exam, Short Form-36, Individualized Neuromuscular Quality of Life (INQoL), electrophysiological short/prolonged exercise tests, manual muscle testing, quantitative grip strength, modified get-up-and-go test. Patterns were assigned as described by Fournier et al. Comparisons were restricted to confirmed sodium channelopathies (SCN4A, baseline, year 1, year 2: n = 34, 19, 13), chloride channelopathies (CLCN1, n = 32, 26, 18), and myotonic dystrophy type 2 (DM2, n = 9, 6, 2). RESULTS: Muscle stiffness was the most frequent symptom over time (54.7%-64.7%). Eyelid myotonia and paradoxical handgrip/eyelid myotonia were more frequent in SCN4A. Grip strength and combined manual muscle testing remained stable. Modified get-up-and-go showed less warm up in SCN4A but remained stable. Median post short exercise decrement was stable, except for SCN4A (baseline to year 2 decrement difference 16.6% [Q1, Q3: 9.5, 39.2]). Fournier patterns type 2 (CLCN1) and 1 (SCN4A) were most specific; 40.4% of participants had a change in pattern over time. INQoL showed higher impact for SCN4A and DM2 with scores stable over time. DISCUSSION: Symptom frequency and clinical outcome assessments were stable with defined variability in myotonia measures supporting trial designs like cross over or combined n-of-1 as important for rare disorders.
Asunto(s)
Canalopatías , Miotonía Congénita , Miotonía , Distrofia Miotónica , Canales de Cloruro/genética , Fuerza de la Mano , Humanos , Mutación , Miotonía/diagnóstico , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Medición de Resultados Informados por el Paciente , Calidad de VidaRESUMEN
Myotonia congenita was first described as an entity in 1876 by Julius Thomsen. Shortly later in the same year it was criticized by Adolph Seeligmüller who extended the clinical findings. Charles Bell, Moritz Benedict and Ernst von Leyden had already partly described the symptoms of the disease before 1876, but did not recognize this as a new entity. A comparison of the publications of Thomsen and Seeligmüller in 1876 and of Seeligmüller's textbook published in 1887, as well as the today's genetically proven disease shows that Seeligmüller correctly criticized two aspects of Thomsen's publication: (i) Thomsen suspected the pathogenesis to be in "one half of the brain's activity, the will" with "seat in the cerebrospinal system" and (ii) he made the assumption of a coordination disorder in the sense of an ataxia [1]. Due to a better understanding of the pathogenesis enabled by Seeligmüller's postulate of a "more difficult mobile muscle substance" [2] without excluding an inborn affection of the lateral cords of the spinal cord, it would have been entirely justified to recognize Seeligmüller's contribution to the conceptual history of Myotonia congenita by including his name in the eponym [3].
Asunto(s)
Miotonía Congénita , Humanos , Masculino , Músculos , Miotonía Congénita/diagnóstico , Miotonía Congénita/genéticaRESUMEN
Myotonia congenita Thomsen is a rare genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1). Although this channelopathy may cause disabling muscle symptoms, patient's daily routine can be almost inconspicuous. Nevertheless, during illness or acute diseases this neuromuscular disease may worsen and get clinically apparent up to severe rhabdomyolysis. Within this case report we describe and discuss the treatment of a patient with Myotonia congenita Thomsen treated at our hospital's intensive care unit. Rhabdomyolysis with acute renal failure and necessity of dialysis during the ICU stay was attributed to the initial reason for emergency hospitalization - an aortic dissection. Nevertheless, in this case the patient's myotonia caused rhabdomyolysis and initially led us on a wrong path. Diagnosis of the real cause of rhabdomyolysis is often difficult, although an early and adequate therapy may prevent complications. This case report demonstrates the importance of a thorough anamnesis with all aspects of the patient's history.
Asunto(s)
Lagartos , Miotonía Congénita , Rabdomiólisis , Animales , Canales de Cloruro/genética , Humanos , Unidades de Cuidados Intensivos , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética , Rabdomiólisis/diagnóstico , Rabdomiólisis/etiología , Rabdomiólisis/terapiaRESUMEN
INTRODUCTION: In myotonia congenita (MC), activation with exercise or cooling can induce transient changes in compound motor action potential (CMAP) parameters, thus providing a guide to genetic analysis. MATERIAL AND METHODS: We performed the short exercise test (SET) and the short exercise test with cooling (SETC) in 30 patients with genetically confirmed Becker disease (BMC) to estimate their utility in the diagnosis of BMC. RESULTS: Although we observed a significant decrease in CMAP amplitude immediately after maximal voluntary effort in both tests in the whole BMC group, in men this decline was significantly smaller than in women, especially in SET. Clinical implications/future directions: In men with a clinical suspicion of BMC, a small decrease in CMAP amplitude in SET together with a typical decline in SETC does not exclude the diagnosis of BMC. Our results show a sex-specific difference in chloride channel function in BMC, which needs further investigation.
Asunto(s)
Miotonía Congénita , Femenino , Humanos , Masculino , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética , Caracteres Sexuales , Electromiografía , Potenciales de Acción/fisiología , MutaciónRESUMEN
OBJECTIVE: Myotonia is caused by involuntary firing of skeletal muscle action potentials and causes debilitating stiffness. Current treatments are insufficiently efficacious and associated with side effects. Myotonia can be triggered by voluntary movement (electrically induced myotonia) or percussion (mechanically induced myotonia). Whether distinct molecular mechanisms underlie these triggers is unknown. Our goal was to identify ion channels involved in mechanically induced myotonia and to evaluate block of the channels involved as a novel approach to therapy. METHODS: We developed a novel system to enable study of mechanically induced myotonia using both genetic and pharmacologic mouse models of myotonia congenita. We extended ex vivo studies of excitability to in vivo studies of muscle stiffness. RESULTS: As previous work suggests activation of transient receptor potential vanilloid 4 (TRPV4) channels by mechanical stimuli in muscle, we examined the role of this cation channel. Mechanically induced myotonia was markedly suppressed in TRPV4-null muscles and in muscles treated with TRPV4 small molecule antagonists. The suppression of mechanically induced myotonia occurred without altering intrinsic muscle excitability, such that myotonia triggered by firing of action potentials (electrically induced myotonia) was unaffected. When injected intraperitoneally, TRPV4 antagonists lessened the severity of myotonia in vivo by approximately 80%. INTERPRETATION: These data demonstrate that there are distinct molecular mechanisms triggering electrically induced and mechanically induced myotonia. Our data indicates that activation of TRPV4 during muscle contraction plays an important role in triggering myotonia in vivo. Elimination of mechanically induced myotonia by TRPV4 inhibition offers a new approach to treating myotonia. ANN NEUROL 2020;88:297-308.
Asunto(s)
Contracción Isométrica/fisiología , Morfolinas/farmacología , Miotonía Congénita/genética , Miotonía Congénita/metabolismo , Pirroles/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/deficiencia , Animales , Antracenos/farmacología , Contracción Isométrica/efectos de los fármacos , Ratones , Ratones Noqueados , Morfolinas/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Miotonía Congénita/prevención & control , Pirroles/uso terapéuticoRESUMEN
Mutations in the sarcomeric protein titin, encoded by TTN, are emerging as a common cause of myopathies. The diagnosis of a TTN-related myopathy is, however, often not straightforward due to clinico-pathological overlap with other myopathies and the prevalence of TTN variants in control populations. Here, we present a combined clinico-pathological, genetic and biophysical approach to the diagnosis of TTN-related myopathies and the pathogenicity ascertainment of TTN missense variants. We identified 30 patients with a primary TTN-related congenital myopathy (CM) and two truncating variants, or one truncating and one missense TTN variant, or homozygous for one TTN missense variant. We found that TTN-related myopathies show considerable overlap with other myopathies but are strongly suggested by a combination of certain clinico-pathological features. Presentation was typically at birth with the clinical course characterized by variable progression of weakness, contractures, scoliosis and respiratory symptoms but sparing of extraocular muscles. Cardiac involvement depended on the variant position. Our biophysical analyses demonstrated that missense mutations associated with CMs are strongly destabilizing and exert their effect when expressed on a truncating background or in homozygosity. We hypothesise that destabilizing TTN missense mutations phenocopy truncating variants and are a key pathogenic feature of recessive titinopathies that might be amenable to therapeutic intervention.
Asunto(s)
Conectina/genética , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética , Miotonía Congénita/patología , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación Missense , Adulto JovenRESUMEN
Brody disease is an autosomal recessive myopathy characterized by exercise-induced muscle stiffness due to mutations in the ATP2A1 gene. Almost 50 years after the initial case presentation, only 18 patients have been reported and many questions regarding the clinical phenotype and results of ancillary investigations remain unanswered, likely leading to incomplete recognition and consequently under-diagnosis. Additionally, little is known about the natural history of the disorder, genotype-phenotype correlations, and the effects of symptomatic treatment. We studied the largest cohort of Brody disease patients to date (n = 40), consisting of 22 new patients (19 novel mutations) and all 18 previously published patients. This observational study shows that the main feature of Brody disease is an exercise-induced muscle stiffness of the limbs, and often of the eyelids. Onset begins in childhood and there was no or only mild progression of symptoms over time. Four patients had episodes resembling malignant hyperthermia. The key finding at physical examination was delayed relaxation after repetitive contractions. Additionally, no atrophy was seen, muscle strength was generally preserved, and some patients had a remarkable athletic build. Symptomatic treatment was mostly ineffective or produced unacceptable side effects. EMG showed silent contractures in approximately half of the patients and no myotonia. Creatine kinase was normal or mildly elevated, and muscle biopsy showed mild myopathic changes with selective type II atrophy. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity was reduced and western blot analysis showed decreased or absent SERCA1 protein. Based on this cohort, we conclude that Brody disease should be considered in cases of exercise-induced muscle stiffness. When physical examination shows delayed relaxation, and there are no myotonic discharges at electromyography, we recommend direct sequencing of the ATP2A1 gene or next generation sequencing with a myopathy panel. Aside from clinical features, SERCA activity measurement and SERCA1 western blot can assist in proving the pathogenicity of novel ATP2A1 mutations. Finally, patients with Brody disease may be at risk for malignant hyperthermia-like episodes, and therefore appropriate perioperative measures are recommended. This study will help improve understanding and recognition of Brody disease as a distinct myopathy in the broader field of calcium-related myopathies.