RESUMEN
In colorectal cancer patients, a high density of cytotoxic CD8+ T cells in tumors is associated with better prognosis. Using a Stat3 loss-of-function approach in two wnt/ß-catenin-dependent autochthonous models of sporadic intestinal tumorigenesis, we unravel a complex intracellular process in intestinal epithelial cells (IECs) that controls the induction of a CD8+ T cell based adaptive immune response. Elevated mitophagy in IECs causes iron(II)-accumulation in epithelial lysosomes, in turn, triggering lysosomal membrane permeabilization. Subsequent release of proteases into the cytoplasm augments MHC class I presentation and activation of CD8+ T cells via cross-dressing of dendritic cells. Thus, our findings highlight a so-far-unrecognized link between mitochondrial function, lysosomal integrity, and MHC class I presentation in IECs and suggest that therapies triggering mitophagy or inducing LMP in IECs may prove successful in shifting the balance toward anti-tumor immunity in colorectal cancer.
Asunto(s)
Inmunidad Adaptativa , Mitofagia , Inmunidad Adaptativa/efectos de los fármacos , Animales , Azoximetano/toxicidad , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Permeabilidad de la Membrana Celular , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Compuestos Ferrosos/metabolismo , Humanos , Interferón gamma/metabolismo , Interferón gamma/farmacología , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitofagia/efectos de los fármacos , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Tasa de SupervivenciaRESUMEN
The pathogenesis of Parkinson's disease (PD) has been associated with mitochondrial dysfunction. Given that the PINK1/Parkin pathway governs mitochondrial quality control by inducing mitophagy to remove damaged mitochondria, therapeutic approaches to activate PINK1/Parkin-mediated mitophagy have the potential in the treatment of PD. Here, we have identified a new small molecule, BL-918, as an inducer of mitophagy via activating the PINK1/Parkin pathway. BL-918 triggers PINK1 accumulation and Parkin mitochondrial translocation to initiate PINK1/Parkin-mediated mitophagy. We found that mitochondrial membrane potential and mitochondrial permeability transition pore were involved in BL-918-induced PINK1/Parkin pathway activation. Moreover, we showed that BL-918 mitigated PD progression in MPTP-induced PD mice in a PINK1-dependent manner. Our results unravel a new activator of the PINK1/Parkin signaling pathway and provide a potential strategy for the treatment of PD and other diseases with dysfunctional mitochondria.
Asunto(s)
Mitocondrias , Mitofagia , Enfermedad de Parkinson , Proteínas Quinasas , Transducción de Señal , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Animales , Ratones , Mitofagia/efectos de los fármacos , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/genética , Mitocondrias/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Masculino , Progresión de la Enfermedad , FenilacetatosRESUMEN
EXPRESSION OF CONCERN: I. Ramesh, J. C. Campos, P. Lee, Y. Song, G. Hernandez, J. Sin, K. C. Tucker, H. Saadaeijahromi, M. Gurney, J. C. B. Ferreira, and A. M. Andres, "Mitophagy Protects Against Statin-Mediated Skeletal Muscle Toxicity," The FASEB Journal 33, no. 11 (2019): 11857-11869, https://doi.org/10.1096/fj.201900807RR. This Expression of Concern is for the above article, published online on August 23, 2019, in Wiley Online Library (wileyonlinelibrary.com) and has been published by agreement between the journal Editor-in-Chief, Loren E. Wold; the Federation of American Societies for Experimental Biology; and Wiley Periodicals LLC. The Expression of Concern has been published due to concerns raised by a third party regarding a duplication between the COX-IV panel of Figure 3C and the COX-IV panel of Figure 5D. The authors have been informed about the concerns, but due to the time elapsed since publication, they could not provide the original raw data. Consequently, the journal team could not verify the validity of these figures describing different experimental conditions and could not exclude that these image duplications affect the overall conclusions of the article. Therefore, the journal has decided to issue an Expression of Concern to inform and alert the readers.
Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Mitofagia , Músculo Esquelético , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Animales , Mitofagia/efectos de los fármacos , Ratones , HumanosRESUMEN
Hypoxia-induced inflammation and apoptosis are important pathophysiological features of heat stroke-induced acute kidney injury (HS-AKI). Hypoxia-inducible factor (HIF) is a key protein that regulates cell adaptation to hypoxia. HIF-prolyl hydroxylase inhibitor (HIF-PHI) stabilizes HIF to increase cell adaptation to hypoxia. Herein, we reported that HIF-PHI pretreatment significantly improved renal function, enhanced thermotolerance, and increased the survival rate of mice in the context of HS. Moreover, HIF-PHI could alleviate HS-induced mitochondrial damage, inflammation, and apoptosis in renal tubular epithelial cells (RTECs) by enhancing mitophagy in vitro and in vivo. By contrast, mitophagy inhibitors Mdivi-1, 3-MA, and Baf-A1 reversed the renoprotective effects of HIF-PHI. Mechanistically, HIF-PHI protects RTECs from inflammation and apoptosis by enhancing Bcl-2 adenovirus E18 19-kDa-interacting protein 3 (BNIP3)-mediated mitophagy, while genetic ablation of BNIP3 attenuated HIF-PHI-induced mitophagy and abolished HIF-PHI-mediated renal protection. Thus, our results indicated that HIF-PHI protects renal function by upregulating BNIP3-mediated mitophagy to improve HS-induced inflammation and apoptosis of RTECs, suggesting HIF-PHI as a promising therapeutic agent to treat HS-AKI.
Asunto(s)
Lesión Renal Aguda , Golpe de Calor , Proteínas de la Membrana , Mitofagia , Inhibidores de Prolil-Hidroxilasa , Animales , Masculino , Ratones , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/etiología , Apoptosis/efectos de los fármacos , Golpe de Calor/complicaciones , Golpe de Calor/tratamiento farmacológico , Golpe de Calor/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitofagia/efectos de los fármacos , Inhibidores de Prolil-Hidroxilasa/farmacología , Inhibidores de Prolil-Hidroxilasa/uso terapéuticoRESUMEN
Zearalenone (ZEN) is a mycotoxin known for its estrogen-like effects, which can disrupt the normal physiological function of endometrial cells and potentially lead to abortion in female animals. However, the precise mechanism by which ZEN regulates endometrial function remains unclear. In this study, we found that the binding receptor estrogen receptors for ZEN is extensively expressed across various segments of the uterus and within endometrial cells, and a certain concentration of ZEN treatment reduced the proliferation capacity of goat endometrial epithelial cells (EECs) and endometrial stromal cells (ESCs). Meanwhile, cell cycle analysis revealed that ZEN treatment leaded to cell cycle arrest in goat EECs and ESCs. To explore the underlying mechanism, we investigated the mitochondrial quality control systems and observed that ZEN triggered excessive mitochondrial fission and disturbed the balance of mitochondrial fusion-fission dynamics, impaired mitochondrial biogenesis, increased mitochondrial unfolded protein response and mitophagy in goat EECs and ESCs. Additionally, ZEN treatment reduced the activities of mitochondrial respiratory chain complexes, heightened the production of hydrogen peroxide and reactive oxygen species, and caused cellular oxidative stress and mitochondrial dysfunction. These results suggest that ZEN has adverse effects on goat endometrium cells by disrupting the mitochondrial quality control system and affecting cell cycle and proliferation. Understanding the underlying molecular pathways involved in ZEN-induced mitochondrial dysfunction and its consequences on cell function will provide critical insights into the reproductive toxicity of ZEN and contribute to safeguarding the health and wellbeing of animals and humans exposed to this mycotoxin.
Asunto(s)
Proliferación Celular , Endometrio , Cabras , Mitocondrias , Zearalenona , Animales , Femenino , Endometrio/citología , Endometrio/metabolismo , Endometrio/efectos de los fármacos , Zearalenona/toxicidad , Zearalenona/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Cultivadas , Dinámicas Mitocondriales/efectos de los fármacos , Mitofagia/efectos de los fármacos , Células del Estroma/metabolismo , Células del Estroma/efectos de los fármacos , Células del Estroma/citologíaRESUMEN
Mitochondria play an integral role in cell death, autophagy, immunity, and inflammation. We previously showed that Nur77, an orphan nuclear receptor, induces apoptosis by targeting mitochondria. Here, we report that celastrol, a potent anti-inflammatory pentacyclic triterpene, binds Nur77 to inhibit inflammation and induce autophagy in a Nur77-dependent manner. Celastrol promotes Nur77 translocation from the nucleus to mitochondria, where it interacts with tumor necrosis factor receptor-associated factor 2 (TRAF2), a scaffold protein and E3 ubiquitin ligase important for inflammatory signaling. The interaction is mediated by an LxxLL motif in TRAF2 and results not only in the inhibition of TRAF2 ubiquitination but also in Lys63-linked Nur77 ubiquitination. Under inflammatory conditions, ubiquitinated Nur77 resides at mitochondria, rendering them sensitive to autophagy, an event involving Nur77 interaction with p62/SQSTM1. Together, our results identify Nur77 as a critical intracellular target for celastrol and unravel a mechanism of Nur77-dependent clearance of inflamed mitochondria to alleviate inflammation.
Asunto(s)
Antiinflamatorios/farmacología , Autofagia/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Mitocondrias Hepáticas/efectos de los fármacos , Mitofagia/efectos de los fármacos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Factor 2 Asociado a Receptor de TNF/metabolismo , Triterpenos/farmacología , Ubiquitinación/efectos de los fármacos , Transporte Activo de Núcleo Celular , Animales , Antiinflamatorios/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Modelos Animales de Enfermedad , Femenino , Genotipo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Ligandos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/deficiencia , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Triterpenos Pentacíclicos , Fenotipo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/efectos de los fármacos , Factor 2 Asociado a Receptor de TNF/genética , Transfección , Triterpenos/metabolismoRESUMEN
Male obesity is a pandemic health issue and can disrupt testicular steroidogenesis. Here, we explored the mechanism by which a high-fat diet (HFD) induced steroidogenic inhibition. As expected, HFD induced lipid droplet accumulation and reduced the expression of StAR, P450scc, and 3ß-HSD, three steroidogenic enzymes, in mouse testes. Palmitic acid (PA), a saturated fatty acid usually used to trigger lipotoxicity in vitro, induced greater accumulation of lipid droplets and the downregulation of steroidogenic enzymes in TM3 cells. Mechanistically, both HFD and PA disturbed mitochondrial fusion/fission dynamics and then induced mitochondrial dysfunction and mitophagy inhibition in mouse Leydig cells. Additionally, mitochondrial fusion promoter M1 attenuated PA-induced imbalance of mitochondrial dynamics, mitophagy inhibition, mitochondrial reactive oxygen species (ROS) production, and mitochondrial dysfunction in TM3 cells. Mitofusin 2 (Mfn2) knock-down further aggravated the PA-induced imbalance of mitochondrial dynamics, mitochondrial ROS production, and mitochondrial dysfunction in TM3 cells. Importantly, M1 rescued PA-induced downregulation of steroidogenic enzymes, whereas Mfn2 knock-down further aggravated PA-induced downregulation of steroidogenic enzymes in TM3 cells. Overall, our results provide laboratory evidence that mitochondrial dysfunction and mitophagy inhibition caused by dysregulation of mitochondrial fusion may be involved in HFD-induced steroidogenesis inhibition in mouse Leydig cells.
Asunto(s)
Dieta Alta en Grasa , Dinámicas Mitocondriales , Mitofagia , Animales , Mitofagia/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Dinámicas Mitocondriales/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/patología , Especies Reactivas de Oxígeno/metabolismo , Esteroides/biosíntesis , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ácido Palmítico/farmacología , Línea CelularRESUMEN
Despite extensive progress in the knowledge and understanding of cardiovascular diseases and significant advances in pharmacological treatments and procedural interventions, cardiovascular diseases (CVD) remain the leading cause of death globally. Mitochondrial dynamics refers to the repetitive cycle of fission and fusion of the mitochondrial network. Fission and fusion balance regulate mitochondrial shape and influence physiology, quality and homeostasis. Mitophagy is a process that eliminates aberrant mitochondria. Melatonin (Mel) is a pineal-synthesized hormone with a range of pharmacological properties. Numerous nonclinical trials have demonstrated that Mel provides cardioprotection against ischemia/reperfusion, cardiomyopathies, atherosclerosis and cardiotoxicity. Recently, interest has grown in how mitochondrial dynamics contribute to melatonin cardioprotective effects. This review assesses the literature on the protective effects of Mel against CVD via the regulation of mitochondrial dynamics and mitophagy in both in-vivo and in-vitro studies. The signalling pathways underlying its cardioprotective effects were reviewed. Mel modulated mitochondrial dynamics and mitophagy proteins by upregulation of mitofusin, inhibition of DRP1 and regulation of mitophagy-related proteins. The evidence supports a significant role of Mel in mitochondrial dynamics and mitophagy quality control in CVD.
Asunto(s)
Enfermedades Cardiovasculares , Melatonina , Dinámicas Mitocondriales , Mitofagia , Melatonina/farmacología , Mitofagia/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Humanos , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/prevención & control , Cardiotónicos/farmacología , Transducción de Señal/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacosRESUMEN
Cancer-related fatigue (CRF) significantly impacts the quality of life of cancer patients. This study investigates the therapeutic potential of Shenqi Fuzheng injection (SFI) in managing CRF, focusing on its mechanistic action in skeletal muscle. We utilized a CRF mouse model to examine the effects of SFI on physical endurance, monitoring activity levels, swimming times and rest periods. Proteomic analysis of the gastrocnemius muscle was performed using isobaric tags and liquid chromatography-tandem mass spectrometry to map the muscle proteome changes post-SFI treatment. Mitochondrial function in skeletal muscle was assessed via ATP bioluminescence assay. Furthermore, the regulatory role of the hypoxia inducible factor 1 subunit alpha (HIF-1α) signalling pathway in mediating SFI's effects was explored through western blotting. In CRF-induced C2C12 myoblasts, we evaluated cell viability (CCK-8 assay), apoptosis (flow cytometry) and mitophagy (electron microscopy). The study also employed pulldown, luciferase and chromatin immunoprecipitation assays to elucidate the molecular mechanisms underlying SFI's action, particularly focusing on the transcriptional regulation of PINK1 through HIF-1α binding at the PINK1 promoter region. Our findings reveal that SFI enhances physical mobility, reduces fatigue symptoms and exerts protective effects on skeletal muscles by mitigating mitochondrial damage and augmenting antioxidative responses. SFI promotes cell viability and induces mitophagy while decreasing apoptosis, primarily through the modulation of HIF-1α, PINK1 and p62 proteins. These results underscore SFI's efficacy in enhancing mitochondrial autophagy, thereby offering a promising approach for ameliorating CRF. The study not only provides insight into SFI's potential therapeutic mechanisms but also establishes a foundation for further exploration of SFI interventions in CRF management.
Asunto(s)
Medicamentos Herbarios Chinos , Fatiga , Subunidad alfa del Factor 1 Inducible por Hipoxia , Mitofagia , Músculo Esquelético , Neoplasias , Ubiquitinación , Animales , Mitofagia/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ubiquitinación/efectos de los fármacos , Neoplasias/metabolismo , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fatiga/tratamiento farmacológico , Fatiga/metabolismo , Fatiga/etiología , Masculino , Apoptosis/efectos de los fármacos , Humanos , Proteómica/métodos , Modelos Animales de Enfermedad , Línea CelularRESUMEN
Chronic intermittent hypoxia (CIH) is associated with an increased risk of cardiovascular diseases. Previously, we have shown that berberine (BBR) is a potential cardioprotective agent. However, its effect and mechanism on CIH-induced cardiomyopathy remain uncovered. This study was designed to determine the effects of BBR against CIH-induced cardiac damage and to explore the molecular mechanisms. Mice were exposed to 5 weeks of CIH with or without the treatment of BBR and adeno-associated virus 9 (AAV9) carrying SIRT6 or SIRT6-specific short hairpin RNA. The effect of BBR was evaluated by echocardiography, histological analysis and western blot analysis. CIH caused the inactivation of myocardial SIRT6 and AMPK-FOXO3a signalling. BBR dose-dependently ameliorated cardiac injury in CIH-induced mice, as evidenced by increased cardiac function and decreased fibrosis. Notably, SIRT6 overexpression mimicked these beneficial effects, whereas infection with recombinant AAV9 carrying SIRT6-specific short hairpin RNA abrogated them. Mechanistically, BBR reduced oxidative stress damage and preserved mitochondrial function via activating SIRT6-AMPK-FOXO3a signalling, enhancing mitochondrial biogenesis as well as PINK1-Parkin-mediated mitophagy. Taken together, these data demonstrate that SIRT6 activation protects against the pathogenesis of CIH-induced cardiac dysfunction. BBR attenuates CIH-induced myocardial injury by improving mitochondrial biogenesis and PINK1-Parkin-dependent mitophagy via the SIRT6-AMPK-FOXO3a signalling pathway.
Asunto(s)
Berberina , Proteína Forkhead Box O3 , Hipoxia , Transducción de Señal , Sirtuinas , Berberina/farmacología , Berberina/uso terapéutico , Animales , Sirtuinas/metabolismo , Sirtuinas/genética , Transducción de Señal/efectos de los fármacos , Hipoxia/metabolismo , Ratones , Masculino , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Modelos Animales de EnfermedadRESUMEN
Cisplatin (CDDP) is a commonly used chemotherapeutic for osteosarcoma (OS) patients, and drug resistance remains as a major hurdle to undermine the treatment outcome. Here, we investigated the potential involvement of FoxG1 and BNIP3 in CDDP resistance of OS cells. FoxG1 and BNIP3 expression levels were detected in the CDDP-sensitive and CDDP-resistant OS tumors and cell lines. Mitophagy was observed through transmission electron microscope analysis. The sensitivity to CDDP in OS cells upon FoxG1 overexpression was examined in cell and animal models. We found that FoxG1 and BNIP3 showed significant downregulation in the CDDP-resistant OS tumor samples and cell lines. CDDP-resistant OS tumor specimens and cells displayed impaired mitophagy. FoxG1 overexpression promoted BNIP3 expression, enhanced mitophagy in CDDP-resistant OS cells, and resensitized the resistant cells to CDDP treatment in vitro and in vivo. Our data highlighted the role of the FoxG1/BNIP3 axis in regulating mitophagy and dictating CDDP resistance in OS cells, suggesting targeting FoxG1/BNIP3-dependent mitophagy as a potential strategy to overcome CDDP resistance in OS.
Asunto(s)
Neoplasias Óseas , Cisplatino , Resistencia a Antineoplásicos , Factores de Transcripción Forkhead , Proteínas de la Membrana , Mitofagia , Proteínas del Tejido Nervioso , Osteosarcoma , Proteínas Proto-Oncogénicas , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/genética , Mitofagia/efectos de los fármacos , Cisplatino/farmacología , Humanos , Resistencia a Antineoplásicos/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Animales , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Línea Celular Tumoral , Ratones , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Femenino , Masculino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacosRESUMEN
BACKGROUND: In heart failure (HF), mitochondrial dysfunction and metabolic remodeling lead to a reduction in energy productivity and aggravate cardiomyocyte injury. Supplementation with α-ketoglutarate (AKG) alleviated myocardial hypertrophy and fibrosis in mice with HF and improved cardiac insufficiency. However, the myocardial protective mechanism of AKG remains unclear. We verified the hypothesis that AKG improves mitochondrial function by upregulating NAD+ levels and activating silent information regulator 2 homolog 1 (SIRT1) in cardiomyocytes. METHODS: In vivo, 2% AKG was added to the drinking water of mice undergoing transverse aortic constriction (TAC) surgery. Echocardiography and biopsy were performed to evaluate cardiac function and pathological changes. Myocardial metabolomics was analyzed by liquid chromatographyâmass spectrometry (LCâMS/MS) at 8 weeks after surgery. In vitro, the expression of SIRT1 or PINK1 proteins was inhibited by selective inhibitors and siRNA in cardiomyocytes stimulated with angiotensin II (AngII) and AKG. NAD+ levels were detected using an NAD test kit. Mitophagy and ferroptosis levels were evaluated by Western blotting, qPCR, JC-1 staining and lipid peroxidation analysis. RESULTS: AKG supplementation after TAC surgery could alleviate myocardial hypertrophy and fibrosis and improve cardiac function in mice. Metabolites of the malate-aspartate shuttle (MAS) were increased, but the TCA cycle and fatty acid metabolism pathway could be inhibited in the myocardium of TAC mice after AKG supplementation. Decreased NAD+ levels and SIRT1 protein expression were observed in heart of mice and AngII-treated cardiomyocytes. After AKG treatment, these changes were reversed, and increased mitophagy, inhibited ferroptosis, and alleviated damage in cardiomyocytes were observed. When the expression of SIRT1 was inhibited by a selective inhibitor and siRNA, the protective effect of AKG was suppressed. CONCLUSION: Supplementation with AKG can improve myocardial hypertrophy, fibrosis and chronic cardiac insufficiency caused by pressure overload. By increasing the level of NAD+, the SIRT-PINK1 and SIRT1-GPX4 signaling pathways are activated to promote mitophagy and inhibit ferroptosis in cardiomyocytes, which ultimately alleviates cardiomyocyte damage.
Asunto(s)
Estenosis de la Válvula Aórtica , Ferroptosis , Insuficiencia Cardíaca , Ácidos Cetoglutáricos , Mitofagia , Angiotensina II , Cromatografía Liquida , Ferroptosis/efectos de los fármacos , Fibrosis , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Hipertrofia , Ácidos Cetoglutáricos/farmacología , Ácidos Cetoglutáricos/uso terapéutico , Mitofagia/efectos de los fármacos , Miocitos Cardíacos , NAD , Proteínas Quinasas , ARN Interferente Pequeño , Sirtuina 1 , Espectrometría de Masas en Tándem , Animales , RatonesRESUMEN
BACKGROUND: 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS: A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS: In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION: OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.
Asunto(s)
Bleomicina , ADN Glicosilasas , Modelos Animales de Enfermedad , Macrófagos , Mitofagia , Proteínas Quinasas , Fibrosis Pulmonar , Animales , Mitofagia/efectos de los fármacos , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Ratones , Macrófagos/metabolismo , Proteínas Quinasas/metabolismo , Bleomicina/efectos adversos , Masculino , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Activación de Macrófagos , Humanos , QuinazolinonasRESUMEN
BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Exenatida , Receptor del Péptido 1 Similar al Glucagón , Mitofagia , Transducción de Señal , Calcificación Vascular , Animales , Mitofagia/efectos de los fármacos , Calcificación Vascular/etiología , Calcificación Vascular/metabolismo , Calcificación Vascular/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ratones , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Humanos , Exenatida/farmacología , Exenatida/uso terapéutico , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BLRESUMEN
Tectorigenin (TEC) as a plant extract has the advantage of low side effects on metabolic dysfunction-associated steatohepatitis (MASH) treatment. Our previous study have shown that tRNA-derived RNA fragments (tRFs) associated with autophagy and pyroptosis in MASH, but whether TEC can mitigate MASH through tRFs-mediated mitophagy is not fully understood. This study aims to investigate whether TEC relies on tRFs to adjust the crosstalk of hepatocyte mitophagy with pyroptosis in MASH. Immunofluorescence results of PINK1 and PRKN with MitoTracker Green-labeled mitochondria verified that TEC enhanced mitophagy. Additionally, TEC inhibited pyroptosis, as reflected by the level of GSDME, NLRP3, IL-1ß, and IL-18 decreased after TEC treatment, while the effect of pyroptosis inhibition by TEC was abrogated by Pink1 silencing. We found that the upregulation expression of tRF-3040b caused by MASH was suppressed by TEC. The promotion of mitophagy and the suppression of pyroptosis induced by TEC were abrogated by tRF-3040b mimics. TEC reduced lipid deposition, inflammation, and pyroptosis, and promoted mitophagy in mice, but tRF-3040b agomir inhibited these effects. In summary, our findings provided that TEC significantly reduced the expression of tRF-3040b to enhance mitophagy, thereby inhibiting pyroptosis in MASH. We elucidated a powerful theoretical basis and provided safe and effective potential drugs for MASH with the prevention and treatment.
Asunto(s)
Regulación hacia Abajo , Isoflavonas , Ratones Endogámicos C57BL , Mitofagia , Piroptosis , Piroptosis/efectos de los fármacos , Mitofagia/efectos de los fármacos , Animales , Ratones , Masculino , Isoflavonas/farmacología , Regulación hacia Abajo/efectos de los fármacos , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/tratamiento farmacológico , Hígado Graso/genética , HumanosRESUMEN
Quercetin, a naturally occurring flavonoid, has been investigated for its potential anti-cancer effects in various types of cancer, including hepatocellular carcinoma (HCC). However, its suppressing effect on reactive oxygen species (ROS) production might limited its anti-cancer effects. In this study, we aimed to explore the interplay among quercetin, mitochondrial dynamics and mitophagy and whether mitophagy-inhibition synergistically enhances the anti-tumor effects of quercetin. Huh7 and Hep3B cells were utilized for in vitro and in vivo studies. Results showed that quercetin treatment significantly increased the expression of mitochondrial fusion genes (MFN1 and MFN2) and decreased the expression of fission genes (DRP1 and FIS1) in Huh7 and Hep3B cells, leading to a more fused and elongated mitochondrial network. Quercetin upregulated the expression of key mitophagy regulators, PINK1 and PARK2, and enhanced the colocalization of mitochondria with lysosomes, indicating increased mitophagy. Knockdown of PINK1, PARK2, or SIRT1 attenuated quercetin-induced mitophagy and reduction of intracellular ROS levels. Quercetin treatment upregulates SIRT1 expression, which subsequently enhances PINK1 and PARK2 expression in Huh7 and Hep3B cells. In vivo experiments using Hep3B xenograft models revealed that the combination of quercetin with the mitophagy inhibitor hydroxychloroquine or SIRT1 knockdown significantly enhanced the anticancer effects of quercetin, as evidenced by reduced tumor size and weight, increased necrosis and apoptosis, and decreased proliferation in tumor tissues. These findings suggest that quercetin-induced mitochondrial fusion and Pink1/Parkin-dependent mitophagy may negatively influence its anti-cancer effects in HCC. Targeting mitophagy may enhance the therapeutic potential of quercetin in HCC treatment.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Mitofagia , Proteínas Quinasas , Quercetina , Ubiquitina-Proteína Ligasas , Quercetina/farmacología , Mitofagia/efectos de los fármacos , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Animales , Línea Celular Tumoral , Antineoplásicos/farmacología , Ratones , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB CRESUMEN
Acute pancreatitis (AP) is a potentially life-threatening inflammatory disease that can lead to the development of systemic inflammatory response syndrome and its progression to severe acute pancreatitis. Hence, there is an urgent need for the rational design of highly efficient antioxidants to treat AP. Herein, an optimized Cu-based metal-organic framework (MOF) nanozyme with exceptional antioxidant activity is introduced, designed to effectively alleviate AP, by engineering the metal coordination centers in MN2Cl2 (M = Co, Ni, Cu). Specifically, the Cu MOF, which benefits from a Cu active center similar to that of natural superoxide dismutase (SOD), exhibited at least four times higher SOD-like activity than the Ni/Co MOF. Theoretical analyses further demonstrate that the CuN2Cl2 site not only has a moderate adsorption effect on the substrate molecule â¢OOH but also reduces the dissociation energy of the product H2O2. Additionally, the Cu MOF nanozyme possesses the excellent catalase-like activity and â¢OH removal ability. Consequently, the Cu MOF with broad-spectrum antioxidant activity can efficiently scavenge reactive oxygen species to alleviate arginine-induced AP. More importantly, it can also mitigate apoptosis and necrosis of acinar cells by activating the PINK1/PARK2-mediated mitophagy pathway. This study highlights the distinctive functions of tunable MOF nanozymes and their potential bio-applications.
Asunto(s)
Estructuras Metalorgánicas , Pancreatitis , Estructuras Metalorgánicas/química , Pancreatitis/tratamiento farmacológico , Animales , Antioxidantes/química , Antioxidantes/farmacología , Dominio Catalítico , Cobre/química , Ratones , Especies Reactivas de Oxígeno/metabolismo , Humanos , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/química , Mitofagia/efectos de los fármacosRESUMEN
BACKGROUND: Subarachnoid hemorrhage (SAH) represents a form of cerebrovascular event characterized by a notable mortality and morbidity rate. Fibroblast growth factor 21 (FGF21), a versatile hormone predominantly synthesized by the hepatic tissue, has emerged as a promising neuroprotective agent. Nevertheless, the precise impacts and underlying mechanisms of FGF21 in the context of SAH remain enigmatic. METHODS: To elucidate the role of FGF21 in inhibiting the microglial cGAS-STING pathway and providing protection against SAH-induced cerebral injury, a series of cellular and molecular techniques, including western blot analysis, real-time polymerase chain reaction, immunohistochemistry, RNA sequencing, and behavioral assays, were employed. RESULTS: Administration of recombinant fibroblast growth factor 21 (rFGF21) effectively mitigated neural apoptosis, improved cerebral edema, and attenuated neurological impairments post-SAH. Transcriptomic analysis revealed that SAH triggered the upregulation of numerous genes linked to innate immunity, particularly those involved in the type I interferon (IFN-I) pathway and microglial function, which were notably suppressed upon adjunctive rFGF21 treatment. Mechanistically, rFGF21 intervention facilitated mitophagy in an AMP-activated protein kinase (AMPK)-dependent manner, thereby preventing mitochondrial DNA (mtDNA) release into the cytoplasm and dampening the activation of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Conditional knockout of STING in microglia markedly ameliorated the inflammatory response and mitigated secondary brain injuries post-SAH. CONCLUSION: Our results present the initial evidence that FGF21 confers a protective effect against neuroinflammation-associated brain damage subsequent to SAH. Mechanistically, we have elucidated a novel pathway by which FGF21 exerts this neuroprotection through inhibition of the cGAS-STING signaling cascade.
Asunto(s)
Factores de Crecimiento de Fibroblastos , Proteínas de la Membrana , Ratones Endogámicos C57BL , Mitofagia , Enfermedades Neuroinflamatorias , Nucleotidiltransferasas , Transducción de Señal , Hemorragia Subaracnoidea , Animales , Proteínas de la Membrana/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , Mitofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Nucleotidiltransferasas/metabolismo , Masculino , Ratones , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Microglía/metabolismo , Microglía/patología , Microglía/efectos de los fármacos , Apoptosis/efectos de los fármacosRESUMEN
Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.
Asunto(s)
Cardiolipinas , Enfermedades de las Plantas , Cardiolipinas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Virulencia , Oryza/microbiología , Mitofagia/efectos de los fármacos , Antifúngicos/farmacología , Fosforilación , AscomicetosRESUMEN
Cisplatin (CDDP) often leads to kidney impairment, limiting its effectiveness in cancer treatment. The lack of mitophagy in proximal tubules exacerbates this issue. Hence, targeting SIRT-3 and PGC1-α shows promise in mitigating CDDP-induced kidney damage. The potential renoprotective effects of linagliptin, however, remain poorly understood. This study represents the first exploration of linagliptin's impact on CDDP-induced kidney impairment in rats, emphasizing its potential role in mitophagic pathways. The experiment involved four rat groups: Group (I) received saline only, Group (II) received a single intraperitoneal injection of CDDP at 6 mg/kg. Groups (III) and (IV) received linagliptin at 6 and 10 mg/kg p.o., respectively, seven days before CDDP administration, continuing for an additional four days. Various parameters, including renal function tests, oxidative stress, TNF-α, IL-1ß, IL-6, PGC-1α, FOXO-3a, p-ERK1, and the gene expression of SIRT-3 and P62 in renal tissue, were assessed. Linagliptin improved renal function, increased antioxidant enzyme activity, and decreased IL-1ß, TNF-α, and IL-6 expression. Additionally, linagliptin significantly upregulated PGC-1α and PINK-1/Parkin-2 expression while downregulating P62 expression. Moreover, linagliptin activated FOXO-3a and SIRT-3, suggesting a potential enhancement of mitophagy. Linagliptin demonstrated a positive impact on various factors related to kidney health in the context of CDDP-induced impairment. These findings suggest a potential role for linagliptin in improving cancer treatment outcomes. Clinical trials are warranted to further investigate and validate its efficacy in a clinical setting.