Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.730
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(3): 609-623.e21, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244548

RESUMEN

Phosphatidic acid (PA) and reactive oxygen species (ROS) are crucial cellular messengers mediating diverse signaling processes in metazoans and plants. How PA homeostasis is tightly regulated and intertwined with ROS signaling upon immune elicitation remains elusive. We report here that Arabidopsis diacylglycerol kinase 5 (DGK5) regulates plant pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). The pattern recognition receptor (PRR)-associated kinase BIK1 phosphorylates DGK5 at Ser-506, leading to a rapid PA burst and activation of plant immunity, whereas PRR-activated intracellular MPK4 phosphorylates DGK5 at Thr-446, which subsequently suppresses DGK5 activity and PA production, resulting in attenuated plant immunity. PA binds and stabilizes the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), regulating ROS production in plant PTI and ETI, and their potentiation. Our data indicate that distinct phosphorylation of DGK5 by PRR-activated BIK1 and MPK4 balances the homeostasis of cellular PA burst that regulates ROS generation in coordinating two branches of plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Diacilglicerol Quinasa , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diacilglicerol Quinasa/metabolismo , NADPH Oxidasas/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosforilación , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo
2.
Cell ; 184(17): 4480-4494.e15, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34320407

RESUMEN

In neutrophils, nicotinamide adenine dinucleotide phosphate (NADPH) generated via the pentose phosphate pathway fuels NADPH oxidase NOX2 to produce reactive oxygen species for killing invading pathogens. However, excessive NOX2 activity can exacerbate inflammation, as in acute respiratory distress syndrome (ARDS). Here, we use two unbiased chemical proteomic strategies to show that small-molecule LDC7559, or a more potent designed analog NA-11, inhibits the NOX2-dependent oxidative burst in neutrophils by activating the glycolytic enzyme phosphofructokinase-1 liver type (PFKL) and dampening flux through the pentose phosphate pathway. Accordingly, neutrophils treated with NA-11 had reduced NOX2-dependent outputs, including neutrophil cell death (NETosis) and tissue damage. A high-resolution structure of PFKL confirmed binding of NA-11 to the AMP/ADP allosteric activation site and explained why NA-11 failed to agonize phosphofructokinase-1 platelet type (PFKP) or muscle type (PFKM). Thus, NA-11 represents a tool for selective activation of PFKL, the main phosphofructokinase-1 isoform expressed in immune cells.


Asunto(s)
Fagocitosis , Fosfofructoquinasa-1 Tipo Hepático/metabolismo , Estallido Respiratorio , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinética , Viabilidad Microbiana/efectos de los fármacos , Modelos Moleculares , NADPH Oxidasas/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Fagocitosis/efectos de los fármacos , Proteínas de Unión a Fosfato/metabolismo , Fosfofructoquinasa-1 Tipo Hepático/antagonistas & inhibidores , Fosfofructoquinasa-1 Tipo Hepático/ultraestructura , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes/aislamiento & purificación , Estallido Respiratorio/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología
3.
Nat Immunol ; 22(2): 140-153, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33349708

RESUMEN

Type 1 conventional dendritic (cDC1) cells are necessary for cross-presentation of many viral and tumor antigens to CD8+ T cells. cDC1 cells can be identified in mice and humans by high expression of DNGR-1 (also known as CLEC9A), a receptor that binds dead-cell debris and facilitates XP of corpse-associated antigens. Here, we show that DNGR-1 is a dedicated XP receptor that signals upon ligand engagement to promote phagosomal rupture. This allows escape of phagosomal contents into the cytosol, where they access the endogenous major histocompatibility complex class I antigen processing pathway. The activity of DNGR-1 maps to its signaling domain, which activates SYK and NADPH oxidase to cause phagosomal damage even when spliced into a heterologous receptor and expressed in heterologous cells. Our data reveal the existence of innate immune receptors that couple ligand binding to endocytic vesicle damage to permit MHC class I antigen presentation of exogenous antigens and to regulate adaptive immunity.


Asunto(s)
Presentación de Antígeno , Reactividad Cruzada , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Fagosomas/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Mitogénicos/metabolismo , Linfocitos T/metabolismo , Animales , Muerte Celular , Técnicas de Cocultivo , Células Dendríticas/inmunología , Células HEK293 , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Lectinas Tipo C/genética , Ligandos , Ratones , NADPH Oxidasas/metabolismo , Fagosomas/genética , Fagosomas/inmunología , Fosforilación , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Receptores Inmunológicos/genética , Receptores Mitogénicos/genética , Transducción de Señal , Quinasa Syk/metabolismo , Linfocitos T/inmunología
4.
Cell ; 173(6): 1468-1480.e9, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29731167

RESUMEN

The cell wall, a defining feature of plants, provides a rigid structure critical for bonding cells together. To overcome this physical constraint, plants must process cell wall linkages during growth and development. However, little is known about the mechanism guiding cell-cell detachment and cell wall remodeling. Here, we identify two neighboring cell types in Arabidopsis that coordinate their activities to control cell wall processing, thereby ensuring precise abscission to discard organs. One cell type produces a honeycomb structure of lignin, which acts as a mechanical "brace" to localize cell wall breakdown and spatially limit abscising cells. The second cell type undergoes transdifferentiation into epidermal cells, forming protective cuticle, demonstrating de novo specification of epidermal cells, previously thought to be restricted to embryogenesis. Loss of the lignin brace leads to inadequate cuticle formation, resulting in surface barrier defects and susceptible to infection. Together, we show how plants precisely accomplish abscission.


Asunto(s)
Arabidopsis/fisiología , Pared Celular/metabolismo , Lignina/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular , Membrana Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , NADPH Oxidasas/metabolismo , Plantas Modificadas Genéticamente/fisiología , Pseudomonas syringae , Propiedades de Superficie
5.
Annu Rev Biochem ; 86: 715-748, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28441057

RESUMEN

Oxidative stress is two sided: Whereas excessive oxidant challenge causes damage to biomolecules, maintenance of a physiological level of oxidant challenge, termed oxidative eustress, is essential for governing life processes through redox signaling. Recent interest has focused on the intricate ways by which redox signaling integrates these converse properties. Redox balance is maintained by prevention, interception, and repair, and concomitantly the regulatory potential of molecular thiol-driven master switches such as Nrf2/Keap1 or NF-κB/IκB is used for system-wide oxidative stress response. Nonradical species such as hydrogen peroxide (H2O2) or singlet molecular oxygen, rather than free-radical species, perform major second messenger functions. Chemokine-controlled NADPH oxidases and metabolically controlled mitochondrial sources of H2O2 as well as glutathione- and thioredoxin-related pathways, with powerful enzymatic back-up systems, are responsible for fine-tuning physiological redox signaling. This makes for a rich research field spanning from biochemistry and cell biology into nutritional sciences, environmental medicine, and molecular knowledge-based redox medicine.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Mitocondrias/metabolismo , NADPH Oxidasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Regulación de la Expresión Génica , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , NADPH Oxidasas/genética , Factor 2 Relacionado con NF-E2/genética , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/genética , Oxidación-Reducción , Transducción de Señal , Oxígeno Singlete/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
6.
Annu Rev Biochem ; 85: 765-92, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27050287

RESUMEN

Neutrophils are essential for killing bacteria and other microorganisms, and they also have a significant role in regulating the inflammatory response. Stimulated neutrophils activate their NADPH oxidase (NOX2) to generate large amounts of superoxide, which acts as a precursor of hydrogen peroxide and other reactive oxygen species that are generated by their heme enzyme myeloperoxidase. When neutrophils engulf bacteria they enclose them in small vesicles (phagosomes) into which superoxide is released by activated NOX2 on the internalized neutrophil membrane. The superoxide dismutates to hydrogen peroxide, which is used by myeloperoxidase to generate other oxidants, including the highly microbicidal species hypochlorous acid. NOX activation occurs at other sites in the cell, where it is considered to have a regulatory function. Neutrophils also release oxidants, which can modify extracellular targets and affect the function of neighboring cells. We discuss the identity and chemical properties of the specific oxidants produced by neutrophils in different situations, and what is known about oxidative mechanisms of microbial killing, inflammatory tissue damage, and signaling.


Asunto(s)
Cloraminas/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácido Hipocloroso/metabolismo , Neutrófilos/inmunología , Superóxidos/metabolismo , Tiocianatos/metabolismo , Membrana Celular/efectos de los fármacos , Células Cultivadas , Cloraminas/inmunología , Expresión Génica , Humanos , Peróxido de Hidrógeno/inmunología , Ácido Hipocloroso/inmunología , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , NADPH Oxidasa 2 , NADPH Oxidasas/genética , NADPH Oxidasas/inmunología , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Oxidación-Reducción , Peroxidasa/genética , Peroxidasa/inmunología , Transducción de Señal , Superóxidos/inmunología , Acetato de Tetradecanoilforbol/farmacología , Tiocianatos/inmunología , Zimosan/farmacología
7.
Annu Rev Biochem ; 84: 765-90, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26034893

RESUMEN

Hydrogen peroxide (H2O2) is a prime member of the reactive oxygen species (ROS) family of molecules produced during normal cell function and in response to various stimuli, but if left unchecked, it can inflict oxidative damage on all types of biological macromolecules and lead to cell death. In this context, a major source of H2O2 for redox signaling purposes is the NADPH oxidase (Nox) family of enzymes, which were classically studied for their roles in phagocytic immune response but have now been found to exist in virtually all mammalian cell types in various isoforms with distinct tissue and subcellular localizations. Downstream of this tightly regulated ROS generation, site-specific, reversible covalent modification of proteins, particularly oxidation of cysteine thiols to sulfenic acids, represents a prominent posttranslational modification akin to phosphorylation as an emerging molecular mechanism for transforming an oxidant signal into a dynamic biological response. We review two complementary types of chemical tools that enable (a) specific detection of H2O2 generated at its sources and (b) mapping of sulfenic acid posttranslational modification targets that mediate its signaling functions, which can be used to study this important chemical signal in biological systems.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , NADPH Oxidasas/metabolismo , Transducción de Señal , Animales , Humanos , Oxidación-Reducción , Ácidos Sulfénicos/metabolismo
8.
Cell ; 163(2): 301-12, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26451482

RESUMEN

The ability to continuously adjust posture and balance is necessary for reliable motor behavior. Vestibular and proprioceptive systems influence postural adjustments during movement by signaling functionally complementary sensory information. Using viral tracing and mouse genetics, we reveal two patterns of synaptic specificity between brainstem vestibular neurons and spinal motor neurons, established through distinct mechanisms. First, vestibular input targets preferentially extensor over flexor motor pools, a pattern established by developmental refinement in part controlled by vestibular signaling. Second, vestibular input targets slow-twitch over fast motor neuron subtypes within extensor pools, while proprioceptors exhibit inversely correlated connectivity profiles. Genetic manipulations affecting the functionality of proprioceptive feedback circuits lead to adjustments in vestibular input to motor neuron subtypes counterbalancing the imposed changes, without changing the sparse vestibular input to flexor pools. Thus, two sensory signaling systems interact to establish complementary synaptic input patterns to the final site of motor output processing.


Asunto(s)
Equilibrio Postural , Postura , Propiocepción , Núcleos Vestibulares/metabolismo , Animales , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Neuronas Motoras/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Sinapsis , Vestíbulo del Laberinto/metabolismo
9.
Nature ; 631(8021): 654-662, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987590

RESUMEN

Large-scale cell death is commonly observed during organismal development and in human pathologies1-5. These cell death events extend over great distances to eliminate large populations of cells, raising the question of how cell death can be coordinated in space and time. One mechanism that enables long-range signal transmission is trigger waves6, but how this mechanism might be used for death events in cell populations remains unclear. Here we demonstrate that ferroptosis, an iron- and lipid-peroxidation-dependent form of cell death, can propagate across human cells over long distances (≥5 mm) at constant speeds (around 5.5 µm min-1) through trigger waves of reactive oxygen species (ROS). Chemical and genetic perturbations indicate a primary role of ROS feedback loops (Fenton reaction, NADPH oxidase signalling and glutathione synthesis) in controlling the progression of ferroptotic trigger waves. We show that introducing ferroptotic stress through suppression of cystine uptake activates these ROS feedback loops, converting cellular redox systems from being monostable to being bistable and thereby priming cell populations to become bistable media over which ROS propagate. Furthermore, we demonstrate that ferroptosis and its propagation accompany the massive, yet spatially restricted, cell death events during muscle remodelling of the embryonic avian limb, substantiating its use as a tissue-sculpting strategy during embryogenesis. Our findings highlight the role of ferroptosis in coordinating global cell death events, providing a paradigm for investigating large-scale cell death in embryonic development and human pathologies.


Asunto(s)
Retroalimentación Fisiológica , Ferroptosis , Especies Reactivas de Oxígeno , Animales , Embrión de Pollo , Humanos , Cistina/metabolismo , Retroalimentación Fisiológica/fisiología , Ferroptosis/fisiología , Glutatión/metabolismo , Hierro/metabolismo , Peroxidación de Lípido , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Desarrollo Embrionario , Extremidades/embriología
10.
Nat Immunol ; 17(9): 1046-56, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27478939

RESUMEN

Single-nucleotide variations in C13orf31 (LACC1) that encode p.C284R and p.I254V in a protein of unknown function (called 'FAMIN' here) are associated with increased risk for systemic juvenile idiopathic arthritis, leprosy and Crohn's disease. Here we set out to identify the biological mechanism affected by these coding variations. FAMIN formed a complex with fatty acid synthase (FASN) on peroxisomes and promoted flux through de novo lipogenesis to concomitantly drive high levels of fatty-acid oxidation (FAO) and glycolysis and, consequently, ATP regeneration. FAMIN-dependent FAO controlled inflammasome activation, mitochondrial and NADPH-oxidase-dependent production of reactive oxygen species (ROS), and the bactericidal activity of macrophages. As p.I254V and p.C284R resulted in diminished function and loss of function, respectively, FAMIN determined resilience to endotoxin shock. Thus, we have identified a central regulator of the metabolic function and bioenergetic state of macrophages that is under evolutionary selection and determines the risk of inflammatory and infectious disease.


Asunto(s)
Artritis Juvenil/genética , Enfermedad de Crohn/genética , Infecciones/genética , Lepra/genética , Macrófagos/inmunología , Proteínas/genética , Choque Séptico/genética , Adenosina Trifosfato/metabolismo , Animales , Bacteriólisis , Células Cultivadas , Metabolismo Energético , Acido Graso Sintasa Tipo I/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Metabolismo de los Lípidos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Polimorfismo de Nucleótido Simple , Riesgo
11.
Nat Immunol ; 17(10): 1167-75, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27548433

RESUMEN

CD8α(+) dendritic cells (DCs) are specialized at cross-presenting extracellular antigens on major histocompatibility complex (MHC) class I molecules to initiate cytotoxic T lymphocyte (CTL) responses; however, details of the mechanisms that regulate cross-presentation remain unknown. We found lower expression of the lectin family member Siglec-G in CD8α(+) DCs, and Siglec-G deficient (Siglecg(-/-)) mice generated more antigen-specific CTLs to inhibit intracellular bacterial infection and tumor growth. MHC class I-peptide complexes were more abundant on Siglecg(-/-) CD8α(+) DCs than on Siglecg(+/+) CD8α(+) DCs. Mechanistically, phagosome-expressed Siglec-G recruited the phosphatase SHP-1, which dephosphorylated the NADPH oxidase component p47(phox) and inhibited the activation of NOX2 on phagosomes. This resulted in excessive hydrolysis of exogenous antigens, which led to diminished formation of MHC class I-peptide complexes for cross-presentation. Therefore, Siglec-G inhibited DC cross-presentation by impairing such complex formation, and our results add insight into the regulation of cross-presentation in adaptive immunity.


Asunto(s)
Reactividad Cruzada , Células Dendríticas/inmunología , Lectinas/metabolismo , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Neoplasias Experimentales/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Linfocitos T Citotóxicos/inmunología , Animales , Antígenos/metabolismo , Antígenos CD8/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Lectinas/genética , Activación de Linfocitos , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasas/metabolismo , Fragmentos de Péptidos/metabolismo , Fagocitosis/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Transducción de Señal , Carga Tumoral/genética
12.
Cell ; 153(2): 402-12, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23541512

RESUMEN

The precise localization of extracellular matrix and cell wall components is of critical importance for multicellular organisms. Lignin is a major cell wall modification that often forms intricate subcellular patterns that are central to cellular function. Yet the mechanisms of lignin polymerization and the subcellular precision of its formation remain enigmatic. Here, we show that the Casparian strip, a lignin-based, paracellular diffusion barrier in plants, forms as a precise, median ring by the concerted action of a specific, localized NADPH oxidase, brought into proximity of localized peroxidases through the action of Casparian strip domain proteins (CASPs). Our findings in Arabidopsis provide a simple mechanistic model of how plant cells regulate lignin formation with subcellular precision. We speculate that scaffolding of NADPH oxidases to the downstream targets of the reactive oxygen species (ROS) that they produce might be a widespread mechanism to ensure specificity and subcellular precision of ROS action within the extracellular matrix.


Asunto(s)
Arabidopsis/citología , Arabidopsis/enzimología , Lignina/metabolismo , NADPH Oxidasas/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Transporte Biológico , Pared Celular/metabolismo , Difusión , Peróxido de Hidrógeno/metabolismo , NADPH Oxidasas/genética , Proteínas de Plantas/metabolismo , Polimerizacion , Superóxidos/metabolismo
13.
Cell ; 153(4): 797-811, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23663779

RESUMEN

All metazoan guts are subjected to immunologically unique conditions in which an efficient antimicrobial system operates to eliminate pathogens while tolerating symbiotic commensal microbiota. However, the molecular mechanisms controlling this process are only partially understood. Here, we show that bacterial-derived uracil acts as a ligand for dual oxidase (DUOX)-dependent reactive oxygen species generation in Drosophila gut and that the uracil production in bacteria causes inflammation in the gut. The acute and controlled uracil-induced immune response is required for efficient elimination of bacteria, intestinal cell repair, and host survival during infection of nonresident species. Among resident gut microbiota, uracil production is absent in symbionts, allowing harmonious colonization without DUOX activation, whereas uracil release from opportunistic pathobionts provokes chronic inflammation. These results reveal that bacteria with distinct abilities to activate uracil-induced gut inflammation, in terms of intensity and duration, act as critical factors that determine homeostasis or pathogenesis in gut-microbe interactions.


Asunto(s)
Drosophila/inmunología , Drosophila/microbiología , Inmunidad Mucosa , Pectobacterium carotovorum/fisiología , Simbiosis , Uracilo/metabolismo , Animales , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiología , Homeostasis , Humanos , Inflamación/inmunología , Inflamación/microbiología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo
14.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38108453

RESUMEN

A growing wealth of data suggest that reactive oxygen species (ROS) signalling might be crucial in conferring embryonic or adult stem cells their specific properties. However, how stem cells control ROS production and scavenging, and how ROS in turn contribute to stemness, remain poorly understood. Using the Xenopus retina as a model system, we first investigated the redox status of retinal stem cells (RSCs). We discovered that they exhibit higher ROS levels compared with progenitors and retinal neurons, and express a set of specific redox genes. We next addressed the question of ROS functional involvement in these cells. Using pharmacological or genetic tools, we demonstrate that inhibition of NADPH oxidase-dependent ROS production increases the proportion of quiescent RSCs. Surprisingly, this is accompanied by an apparent acceleration of the mean division speed within the remaining proliferating pool. Our data further unveil that such impact on RSC cell cycling is achieved by modulation of the Wnt/Hedgehog signalling balance. Altogether, we highlight that RSCs exhibit distinctive redox characteristics and exploit NADPH oxidase signalling to limit quiescence and fine-tune their proliferation rate.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Animales , Xenopus laevis/metabolismo , Especies Reactivas de Oxígeno , Proliferación Celular , Proteínas Hedgehog , Retina/metabolismo , Células Madre Adultas/metabolismo , NADPH Oxidasas/genética , Vía de Señalización Wnt
15.
Plant Cell ; 36(2): 471-488, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37820743

RESUMEN

Plants produce a burst of reactive oxygen species (ROS) after pathogen infection to successfully activate immune responses. During pattern-triggered immunity (PTI), ROS are primarily generated by the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). RBOHD is degraded in the resting state to avoid inappropriate ROS production; however, the enzyme mediating RBOHD degradation and how to prevent RBOHD degradation after pathogen infection is unclear. In this study, we identified an Arabidopsis (Arabidopsis thaliana) vacuole-localized papain-like cysteine protease, XYLEM CYSTEINE PEPTIDASE 1 (XCP1), and its inhibitor CYSTATIN 6 (CYS6). Pathogen-associated molecular pattern-induced ROS burst and resistance were enhanced in the xcp1 mutant but were compromised in the cys6 mutant, indicating that XCP1 and CYS6 oppositely regulate PTI responses. Genetic and biochemical analyses revealed that CYS6 interacts with XCP1 and depends on XCP1 to enhance PTI. Further experiments showed that XCP1 interacts with RBOHD and accelerates RBOHD degradation in a vacuole-mediated manner. CYS6 inhibited the protease activity of XCP1 toward RBOHD, which is critical for RBOHD accumulation upon pathogen infection. As CYS6, XCP1, and RBOHD are conserved in all plant species tested, our findings suggest the existence of a conserved strategy to precisely regulate ROS production under different conditions by modulating the stability of RBOHD.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteasas de Cisteína , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cistatina M/metabolismo , Reconocimiento de Inmunidad Innata , Arabidopsis/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Proteasas de Cisteína/metabolismo , Inmunidad de la Planta/genética
16.
Immunity ; 49(5): 929-942.e5, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30446385

RESUMEN

Commensal microbes colonize the gut epithelia of virtually all animals and provide several benefits to their hosts. Changes in commensal populations can lead to dysbiosis, which is associated with numerous pathologies and decreased lifespan. Peptidoglycan recognition proteins (PGRPs) are important regulators of the commensal microbiota and intestinal homeostasis. Here, we found that a null mutation in Drosophila PGRP-SD was associated with overgrowth of Lactobacillus plantarum in the fly gut and a shortened lifespan. L. plantarum-derived lactic acid triggered the activation of the intestinal NADPH oxidase Nox and the generation of reactive oxygen species (ROS). In turn, ROS production promoted intestinal damage, increased proliferation of intestinal stem cells, and dysplasia. Nox-mediated ROS production required lactate oxidation by the host intestinal lactate dehydrogenase, revealing a host-commensal metabolic crosstalk that is probably broadly conserved. Our findings outline a mechanism whereby host immune dysfunction leads to commensal dysbiosis that in turn promotes age-related pathologies.


Asunto(s)
Drosophila/fisiología , Ácido Láctico/metabolismo , Longevidad , Microbiota , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Disbiosis , Expresión Génica , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Mutación , NADPH Oxidasas/genética , Transducción de Señal , Simbiosis
17.
Nature ; 592(7852): 110-115, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33692545

RESUMEN

The plant immune system involves cell-surface receptors that detect intercellular pathogen-derived molecules, and intracellular receptors that activate immunity upon detection of pathogen-secreted effector proteins that act inside the plant cell. Immunity mediated by surface receptors has been extensively studied1, but that mediated by intracellular receptors has rarely been investigated in the absence of surface-receptor-mediated immunity. Furthermore, interactions between these two immune pathways are poorly understood. Here, by activating intracellular receptors without inducing surface-receptor-mediated immunity, we analyse interactions between these two distinct immune systems in Arabidopsis. Pathogen recognition by surface receptors activates multiple protein kinases and NADPH oxidases, and we find that intracellular receptors primarily potentiate the activation of these proteins by increasing their abundance through several mechanisms. Likewise, the hypersensitive response that depends on intracellular receptors is strongly enhanced by the activation of surface receptors. Activation of either immune system alone is insufficient to provide effective resistance against the bacterial pathogen Pseudomonas syringae. Thus, immune pathways activated by cell-surface and intracellular receptors in plants mutually potentiate to activate strong defences against pathogens. These findings reshape our understanding of plant immunity and have broad implications for crop improvement.


Asunto(s)
Arabidopsis/inmunología , Proteínas NLR/inmunología , Inmunidad de la Planta/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Arabidopsis/citología , Arabidopsis/microbiología , Muerte Celular , NADPH Oxidasas/metabolismo , Células Vegetales/inmunología , Células Vegetales/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas Quinasas/metabolismo , Pseudomonas fluorescens/inmunología , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , Transducción de Señal/inmunología
18.
Nature ; 592(7852): 105-109, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33692546

RESUMEN

The plant immune system is fundamental for plant survival in natural ecosystems and for productivity in crop fields. Substantial evidence supports the prevailing notion that plants possess a two-tiered innate immune system, called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI is triggered by microbial patterns via cell surface-localized pattern-recognition receptors (PRRs), whereas ETI is activated by pathogen effector proteins via predominantly intracellularly localized receptors called nucleotide-binding, leucine-rich repeat receptors (NLRs)1-4. PTI and ETI are initiated by distinct activation mechanisms and involve different early signalling cascades5,6. Here we show that Arabidopsis PRR and PRR co-receptor mutants-fls2 efr cerk1 and bak1 bkk1 cerk1 triple mutants-are markedly impaired in ETI responses when challenged with incompatible Pseudomonas syrinage bacteria. We further show that the production of reactive oxygen species by the NADPH oxidase RBOHD is a critical early signalling event connecting PRR- and NLR-mediated immunity, and that the receptor-like cytoplasmic kinase BIK1 is necessary for full activation of RBOHD, gene expression and bacterial resistance during ETI. Moreover, NLR signalling rapidly augments the transcript and/or protein levels of key PTI components. Our study supports a revised model in which potentiation of PTI is an indispensable component of ETI during bacterial infection. This revised model conceptually unites two major immune signalling cascades in plants and mechanistically explains some of the long-observed similarities in downstream defence outputs between PTI and ETI.


Asunto(s)
Arabidopsis/inmunología , Proteínas NLR/inmunología , Inmunidad de la Planta/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , NADPH Oxidasas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas Serina-Treonina Quinasas/metabolismo , Pseudomonas syringae/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/inmunología
19.
Proc Natl Acad Sci U S A ; 121(23): e2320388121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805284

RESUMEN

Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91phox), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22phox heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22phox are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple ß-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.


Asunto(s)
Microscopía por Crioelectrón , NADPH Oxidasa 2 , NADPH Oxidasas , Fagocitos , Humanos , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/química , Fagocitos/metabolismo , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/química , Unión Proteica , Sitios de Unión , Enfermedad Granulomatosa Crónica/metabolismo , Enfermedad Granulomatosa Crónica/genética , Modelos Moleculares , Especies Reactivas de Oxígeno/metabolismo
20.
Immunol Rev ; 314(1): 442-456, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36380497

RESUMEN

Human and murine neutrophils differ with respect to representation in blood, receptors, nuclear morphology, signaling pathways, granule proteins, NADPH oxidase regulation, magnitude of oxidant and hypochlorous acid production, and their repertoire of secreted molecules. These differences often matter and can undermine extrapolations from murine studies to clinical care, as illustrated by several failed therapeutic interventions based on mouse models. Likewise, coevolution of host and pathogen undercuts fidelity of murine models of neutrophil-predominant human infections. However, murine systems that accurately model the human condition can yield insights into human biology difficult to obtain otherwise. The challenge for investigators who employ murine systems is to distinguish models from pretenders and to know when the mouse provides biologically accurate insights. Testing with human neutrophils observations made in murine systems would provide a safeguard but is not always possible. At a minimum, studies that use exclusively murine neutrophils should have accurate titles supported by data and restrict conclusions to murine neutrophils and not encompass all neutrophils. For now, the integration of evidence from studies of neutrophil biology performed using valid murine models coupled with testing in vitro of human neutrophils combines the best of both approaches to elucidate the mysteries of human neutrophil biology.


Asunto(s)
NADPH Oxidasas , Neutrófilos , Humanos , Ratones , Animales , NADPH Oxidasas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA