Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.403
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(23): e2318843121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805277

RESUMEN

The development and performance of two mass spectrometry (MS) workflows for the intraoperative diagnosis of isocitrate dehydrogenase (IDH) mutations in glioma is implemented by independent teams at Mayo Clinic, Jacksonville, and Huashan Hospital, Shanghai. The infiltrative nature of gliomas makes rapid diagnosis necessary to guide the extent of surgical resection of central nervous system (CNS) tumors. The combination of tissue biopsy and MS analysis used here satisfies this requirement. The key feature of both described methods is the use of tandem MS to measure the oncometabolite 2-hydroxyglutarate (2HG) relative to endogenous glutamate (Glu) to characterize the presence of mutant tumor. The experiments i) provide IDH mutation status for individual patients and ii) demonstrate a strong correlation of 2HG signals with tumor infiltration. The measured ratio of 2HG to Glu correlates with IDH-mutant (IDH-mut) glioma (P < 0.0001) in the tumor core data of both teams. Despite using different ionization methods and different mass spectrometers, comparable performance in determining IDH mutations from core tumor biopsies was achieved with sensitivities, specificities, and accuracies all at 100%. None of the 31 patients at Mayo Clinic or the 74 patients at Huashan Hospital were misclassified when analyzing tumor core biopsies. Robustness of the methodology was evaluated by postoperative re-examination of samples. Both teams noted the presence of high concentrations of 2HG at surgical margins, supporting future use of intraoperative MS to monitor for clean surgical margins. The power of MS diagnostics is shown in resolving contradictory clinical features, e.g., in distinguishing gliosis from IDH-mut glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Mutación , Glioma/genética , Glioma/cirugía , Glioma/patología , Isocitrato Deshidrogenasa/genética , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Espectrometría de Masas en Tándem/métodos , Glutaratos/metabolismo , Espectrometría de Masas/métodos , Ácido Glutámico/metabolismo , Ácido Glutámico/genética
2.
Genes Cells ; 29(3): 192-206, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38269481

RESUMEN

Low-grade neuroepithelial tumors are major causes of drug-resistant focal epilepsy. Clinically, these tumors are defined as low-grade epilepsy-associated neuroepithelial tumors (LEATs). The BRAF V600E mutation is frequently observed in LEAT and linked to poor seizure outcomes. However, its molecular role in epileptogenicity remains elusive. To understand the molecular mechanism underlying the epileptogenicity in LEAT with the BRAF V600E genetic mutation (BRAF V600E-LEAT), we conducted RNA sequencing (RNA-seq) analysis using surgical specimens of BRAF V600E-LEAT obtained and stored at a single institute. We obtained 21 BRAF V600E-LEAT specimens and 4 control specimens, including 24 from Japanese patients and 1 from a patient of Central Asian origin, along with comprehensive clinical data. We submitted the transcriptome dataset of 21 BRAF V600E-LEAT plus 4 controls, as well as detailed clinical information, to a public database. Preliminary bioinformatics analysis using this dataset identified 2134 differentially expressed genes between BRAF V600E-LEAT and control. Additionally, gene set enrichment analysis provided novel insights into the association between estrogen response-related pathways and the epileptogenicity of BRAF V600E-LEAT patients. Our datasets and findings will contribute toward the understanding of the pathology of epilepsy caused by LEAT and the identification of new therapeutic targets.


Asunto(s)
Neoplasias Encefálicas , Epilepsia , Neoplasias Neuroepiteliales , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Epilepsia/genética , Epilepsia/complicaciones , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/metabolismo , Neoplasias Neuroepiteliales/patología , Transcriptoma , Mutación
3.
Brain ; 147(3): 1100-1111, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048613

RESUMEN

Neurological and neurodevelopmental conditions are a major public health concern for which new therapies are urgently needed. The development of effective therapies relies on the precise mapping of the neural substrates causally involved in behaviour generation. Direct electrical stimulation (DES) performed during cognitive and neurological monitoring in awake surgery is currently considered the gold standard for the causal mapping of brain functions. However, DES is limited by the focal nature of the stimulation sites, hampering a real holistic exploration of human brain functions at the network level. We used 4137 DES points derived from 612 glioma patients in combination with human connectome data-resting-state functional MRI, n = 1000 and diffusion weighted imaging, n = 284-to provide a multimodal description of the causal macroscale functional networks subtending 12 distinct behavioural domains. To probe the validity of our procedure, we (i) compared the network topographies of healthy and clinical populations; (ii) tested the predictive capacity of DES-derived networks; (iii) quantified the coupling between structural and functional connectivity; and (iv) built a multivariate model able to quantify single subject deviations from a normative population. Lastly, we probed the translational potential of DES-derived functional networks by testing their specificity and sensitivity in identifying critical neuromodulation targets and neural substrates associated with postoperative language deficits. The combination of DES and human connectome data resulted in an average 29.4-fold increase in whole brain coverage compared to DES alone. DES-derived functional networks are predictive of future stimulation points (97.8% accuracy) and strongly supported by the anatomical connectivity of subcortical stimulations. We did not observe any significant topographical differences between the patients and the healthy population at both group and single subject level. Showcasing concrete clinical applications, we found that DES-derived functional networks overlap with effective neuromodulation targets across several functional domains, show a high degree of specificity when tested with the intracranial stimulation points of a different stimulation technique and can be used effectively to characterize postoperative behavioural deficits. The integration of DES with the human connectome fundamentally advances the quality of the functional mapping provided by DES or functional imaging alone. DES-derived functional networks can reliably predict future stimulation points, have a strong correspondence with the underlying white matter and can be used for patient specific functional mapping. Possible applications range from psychiatry and neurology to neuropsychology, neurosurgery and neurorehabilitation.


Asunto(s)
Neoplasias Encefálicas , Conectoma , Estimulación Encefálica Profunda , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Vigilia , Encéfalo/diagnóstico por imagen
4.
Brain ; 147(8): 2621-2635, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38573324

RESUMEN

Determining preoperatively the maximal extent of resection that would preserve cognitive functions is the core challenge of brain tumour surgery. Over the past decade, the methodological framework to achieve this goal has been thoroughly renewed: the population-level topographically-focused voxel-based lesion-symptom mapping has been progressively overshadowed by machine learning (ML) algorithmics, in which the problem is framed as predicting cognitive outcomes in a patient-specific manner from a typically large set of variables. However, the choice of these predictors is of utmost importance, as they should be both informative and parsimonious. In this perspective, we first introduce the concept of connectotomy: instead of parameterizing resection topography through the status (intact/resected) of a huge number of voxels (or parcels) paving the whole brain in the Cartesian 3D-space, the connectotomy models the resection in the connectivity space, by computing a handful number of networks disconnection indices, measuring how the structural connectivity sustaining each network of interest was hit by the resection. This connectivity-informed reduction of dimensionality is a necessary step for efficiently implementing ML tools, given the relatively small number of patient-examples in available training datasets. We further argue that two other major sources of interindividual variability must be considered to improve the accuracy with which outcomes are predicted: the underlying structure-function phenotype and neuroplasticity, for which we provide an in-depth review and propose new ways of determining relevant predictors. We finally discuss the benefits of our approach for precision surgery of glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Plasticidad Neuronal , Humanos , Glioma/cirugía , Neoplasias Encefálicas/cirugía , Plasticidad Neuronal/fisiología , Fenotipo , Cognición/fisiología , Procedimientos Neuroquirúrgicos/efectos adversos , Aprendizaje Automático , Encéfalo/cirugía , Encéfalo/diagnóstico por imagen , Encéfalo/patología
5.
Brain ; 147(8): 2718-2731, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657204

RESUMEN

Accumulating evidence suggests that the brain exhibits a remarkable capacity for functional compensation in response to neurological damage, a resilience potential that is deeply rooted in the malleable features of its underlying anatomofunctional architecture. This propensity is particularly exemplified by diffuse low-grade glioma, a subtype of primary brain tumour. However, functional plasticity is not boundless, and surgical resections directed at structures with limited neuroplasticity can lead to incapacitating impairments. Yet, maximizing diffuse low-grade glioma resections offers substantial oncological benefits, especially when the resection extends beyond the tumour margins (i.e. supra-tumour or supratotal resection). In this context, the primary objective of this study was to identify which cerebral structures were associated with less favourable cognitive outcomes after surgery, while accounting for intra-tumour and supra-tumour features of the surgical resections. To achieve this objective, we leveraged a unique cohort of 400 patients with diffuse low-grade glioma who underwent surgery with awake cognitive mapping. Patients benefitted from a neuropsychological assessment consisting of 18 subtests administered before and 3 months after surgery. We analysed changes in performance and applied topography-focused and disconnection-focused multivariate lesion-symptom mapping using support vector regressions, in an attempt to capture resected cortico-subcortical structures less amenable to full cognitive compensation. The observed changes in performance were of a limited magnitude, suggesting an overall recovery (13 of 18 tasks recovered fully despite a mean resection extent of 92.4%). Nevertheless, lesion-symptom mapping analyses revealed that a lack of recovery in picture naming was linked to damage in the left inferior temporal gyrus and inferior longitudinal fasciculus. Likewise, for semantic fluency abilities, an association was established with damage to the left precuneus/posterior cingulate. For phonological fluency abilities, the left dorsomedial frontal cortex and the frontal aslant tract were implicated. Moreover, difficulties in spatial exploration were associated with injury to the right dorsomedial prefrontal cortex and its underlying connectivity. An exploratory analysis suggested that supra-tumour resections were associated with a less pronounced recovery following specific resection patterns, such as supra-tumour resections of the left uncinate fasciculus (picture naming), the left corticostriatal tract and the anterior corpus callosum (phonological fluency), the hippocampus and parahippocampus (episodic memory) and the right frontal-mesial areas (visuospatial exploration). Collectively, these patterns of results shed new light on both low-resilient neural systems and the prediction of cognitive recovery following glioma surgery. Furthermore, they indicate that supra-tumour resections were only occasionally less well tolerated from a cognitive viewpoint. In doing so, they have deep implications for surgical planning and rehabilitation strategies.


Asunto(s)
Mapeo Encefálico , Neoplasias Encefálicas , Glioma , Pruebas Neuropsicológicas , Humanos , Glioma/cirugía , Glioma/patología , Masculino , Femenino , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Adulto , Persona de Mediana Edad , Mapeo Encefálico/métodos , Cognición/fisiología , Adulto Joven , Imagen por Resonancia Magnética
6.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38112581

RESUMEN

Developing neurophysiological tools to predict WHO tumor grade can empower the treating teams for a better surgical decision-making process. A total of 38 patients with supratentorial diffuse gliomas underwent an asleep-awake-sedated craniotomies for tumor removal with intraoperative neuromonitoring. The resting motor threshold was calculated for different train stimulation paradigms during awake and asleep phases. Receiver operating characteristic analysis and Bayesian regression models were performed to analyze the prediction of tumor grading based on the resting motor threshold differences. Significant positive spearman correlations were observed between resting motor threshold excitability difference and WHO tumor grade for train stimulation paradigms of 5 (R = 0.54, P = 0.00063), 4 (R = 0.49, P = 0.002), 3 (R = 0.51, P = 0.001), and 2 pulses (R = 0.54, P = 0.0007). Kruskal-Wallis analysis of the median revealed a positive significant difference between the median of excitability difference and WHO tumor grade in all paradigms. Receiver operating characteristic analysis showed 3 mA difference as the best predictor of high-grade glioma across different patterns of motor pathway stimulation. Bayesian regression found that an excitability difference above 3 mA would indicate a 75.8% probability of a glioma being high grade. Our results suggest that cortical motor excitability difference between the asleep and awake phases in glioma surgery could correlate with tumor grade.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/cirugía , Vigilia , Teorema de Bayes , Glioma/cirugía , Craneotomía/efectos adversos , Craneotomía/métodos , Vías Eferentes , Organización Mundial de la Salud , Mapeo Encefálico/métodos
7.
Lancet Oncol ; 25(9): e404-e419, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39214112

RESUMEN

Glioma resection is associated with prolonged survival, but neuro-oncological trials have frequently refrained from quantifying the extent of resection. The Response Assessment in Neuro-Oncology (RANO) resect group is an international, multidisciplinary group that aims to standardise research practice by delineating the oncological role of surgery in diffuse adult-type gliomas as defined per WHO 2021 classification. Favourable survival effects of more extensive resection unfold over months to decades depending on the molecular tumour profile. In tumours with a more aggressive natural history, supramaximal resection might correlate with additional survival benefit. Weighing the expected survival benefits of resection as dictated by molecular tumour profiles against clinical factors, including the introduction of neurological deficits, we propose an algorithm to estimate the oncological effects of surgery for newly diagnosed gliomas. The algorithm serves to select patients who might benefit most from extensive resection and to emphasise the relevance of quantifying the extent of resection in clinical trials.


Asunto(s)
Neoplasias Encefálicas , Glioma , Organización Mundial de la Salud , Humanos , Glioma/cirugía , Glioma/patología , Glioma/clasificación , Glioma/mortalidad , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/mortalidad , Algoritmos , Adulto , Procedimientos Neuroquirúrgicos/efectos adversos , Resultado del Tratamiento
8.
J Am Chem Soc ; 146(36): 24989-25004, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39186481

RESUMEN

Gliomas remain challenging brain tumors to treat due to their infiltrative nature. Accurately identifying tumor boundaries during surgery is crucial for successful resection. This study introduces an innovative intraoperative visualization method utilizing surgical fluorescence microscopy to precisely locate tumor cell dissemination. Here, the focus is on the development of a novel contrasting agent (IR-Glint) for intraoperative visualization of human glial tumors comprising infrared-labeled Glint aptamers. The specificity of IR-Glint is assessed using flow cytometry and microscopy on primary cell cultures. In vivo effectiveness is studied on mouse and rabbit models, employing orthotopic xenotransplantation of human brain gliomas with various imaging techniques, including PET/CT, in vivo fluorescence visualization, confocal laser scanning, and surgical microscopy. The experiments validate the potential of IR-Glint for the intraoperative visualization of gliomas using infrared imaging. IR-Glint penetrates the blood-brain barrier and can be used for both intravenous and surface applications, allowing clear visualization of the tumor. The surface application directly to the brain reduces the dosage required and mitigates potential toxic effects on the patient. The research shows the potential of infrared dye-labeled aptamers for accurately visualizing glial tumors during brain surgery. This novel aptamer-assisted fluorescence-guided surgery (AptaFGS) may pave the way for future advancements in the field of neurosurgery.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias Encefálicas , Cirugía Asistida por Computador , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Animales , Humanos , Ratones , Aptámeros de Nucleótidos/química , Cirugía Asistida por Computador/métodos , Conejos , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Colorantes Fluorescentes/química , Rayos Infrarrojos , Imagen Óptica , Línea Celular Tumoral
9.
Br J Cancer ; 130(8): 1316-1323, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38347094

RESUMEN

BACKGROUND: Little is known about prognostic factors of brain metastases (BM) from colorectal cancer (CRC). HER2 amplification/overexpression (HER2+) was previously described; its impact on prognosis remains uncertain. METHODS: In the translational study HEROES, extensive molecular analysis was performed on primary CRC (prCRC) and their matched resected BM by means of NGS comprehensive genomic profiling and HER2 status as assessed by immunohistochemical/ in situ hybridization. Count of tumour-infiltrating lymphocytes (TILs) was also performed. PRIMARY OBJECTIVE: to describe the molecular landscape of paired BM/prCRC. SECONDARY OBJECTIVES: to search for new prognostic biomarkers of outcome after BM resection: intracranial-only Progression-Free Survival (BM-iPFS), Progression-Free Survival (BM-PFS), and Overall Survival (BM-OS). RESULTS: Out of 22 patients having paired samples of prCRC and BM, HER2+ was found on 4 (18%) BM, 3 (75%) of which also HER2+ in matched prCRC. Lower tumour mutation burden (HR 3.08; 95%CI 1.06-8.93; p = 0.0386) and HER2-negative BM (HER2neg) (HR 7.75;95%CI 1.97-30.40; p = 0.0033) were associated with longer BM-iPFS; HER2neg BM (HR 3.44; 95%CI 1.03-11.53; p = 0.0449) and KRASmut BM (HR 0.31; 95%CI 0.12-0.80; p = 0.0153) conferred longer BM-PFS. Longer BM-OS was found in pts with TILs-enriched (≥1.6/HPF) BM (HR 0.11; 95%CI0.01-0.91; p = 0.0403). CONCLUSIONS: This study shows HER2+ enrichment in both BM and their prCRC. TILs-enriched BM conferred better BM-OS.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Humanos , Pronóstico , Genómica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/cirugía
10.
Hum Brain Mapp ; 45(10): e26764, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38994667

RESUMEN

Presurgical planning prior to brain tumor resection is critical for the preservation of neurologic function post-operatively. Neurosurgeons increasingly use advanced brain mapping techniques pre- and intra-operatively to delineate brain regions which are "eloquent" and should be spared during resection. Functional MRI (fMRI) has emerged as a commonly used non-invasive modality for individual patient mapping of critical cortical regions such as motor, language, and visual cortices. To map motor function, patients are scanned using fMRI while they perform various motor tasks to identify brain networks critical for motor performance, but it may be difficult for some patients to perform tasks in the scanner due to pre-existing deficits. Connectome fingerprinting (CF) is a machine-learning approach that learns associations between resting-state functional networks of a brain region and the activations in the region for specific tasks; once a CF model is constructed, individualized predictions of task activation can be generated from resting-state data. Here we utilized CF to train models on high-quality data from 208 subjects in the Human Connectome Project (HCP) and used this to predict task activations in our cohort of healthy control subjects (n = 15) and presurgical patients (n = 16) using resting-state fMRI (rs-fMRI) data. The prediction quality was validated with task fMRI data in the healthy controls and patients. We found that the task predictions for motor areas are on par with actual task activations in most healthy subjects (model accuracy around 90%-100% of task stability) and some patients suggesting the CF models can be reliably substituted where task data is either not possible to collect or hard for subjects to perform. We were also able to make robust predictions in cases in which there were no task-related activations elicited. The findings demonstrate the utility of the CF approach for predicting activations in out-of-sample subjects, across sites and scanners, and in patient populations. This work supports the feasibility of the application of CF models to presurgical planning, while also revealing challenges to be addressed in future developments. PRACTITIONER POINTS: Precision motor network prediction using connectome fingerprinting. Carefully trained models' performance limited by stability of task-fMRI data. Successful cross-scanner predictions and motor network mapping in patients with tumor.


Asunto(s)
Conectoma , Estudios de Factibilidad , Imagen por Resonancia Magnética , Cuidados Preoperatorios , Humanos , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Femenino , Masculino , Adulto , Cuidados Preoperatorios/métodos , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/fisiopatología , Actividad Motora/fisiología , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Aprendizaje Automático , Adulto Joven
11.
Strahlenther Onkol ; 200(9): 832-837, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38453698

RESUMEN

PURPOSE: Complex visual hallucinations are rarely seen in neurooncology. They are commonly observed alongside psychotic symptoms in schizophrenia or dementia, in Parkinson's or Lewy-body disease, after opioid medications or anesthesia, and, in particular, they appear with visual impairments. METHODS: Here we report two normal-sighted and mentally healthy patients with unusual visual hallucinations after the resection and irradiation of brain metastases, the main features of which were persistent colorful and meaningful images with hallucinatory perseveration. RESULTS: These cases demonstrate the occurrence of complex visual hallucinations after resection of visual cortices as an effect of deafferentation, so-called visual release hallucinations or phantom images, similar to phantom pain after amputation of a limb. CONCLUSION: This case serves to heighten awareness in the radiooncology practitioner of the occurrence of visual release hallucinations (Charles Bonnet syndrome) related to multidisciplinary treatment of brain metastases.


Asunto(s)
Neoplasias Encefálicas , Anciano , Femenino , Humanos , Masculino , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Síndrome de Charles Bonnet/etiología , Terapia Combinada , Alucinaciones/etiología , Imagen por Resonancia Magnética , Miembro Fantasma/etiología , Complicaciones Posoperatorias
12.
Oncology ; 102(11): 913-923, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38471461

RESUMEN

INTRODUCTION: This study explored the failure pattern and clinical outcomes in patients with ependymoma undergoing radiotherapy. METHODS: Between January 2004 and June 2022, we included 32 patients with ependymoma who underwent radiotherapy as part of the multimodality treatment at our institution. Of these, 27 (84.4%) underwent adjuvant radiotherapy, four received radiotherapy after local recurrence, and one received definitive CyberKnife radiotherapy (21 Gy in three fractions). The median prescribed dose was 54 Gy in patients who received conventional radiotherapy. We analyzed the local progression-free survival (LPFS), distant metastasis-free survival (DMFS), progression-free survival (PFS), overall survival (OS), and potential prognostic factors. RESULTS: The median age was 29.8 years. Approximately 28.1% were pediatric patients. Fifteen tumors (46.9%) were World Health Organization (WHO) grade II, 10 (31.3%) were WHO grade III, and seven (22.8%) were WHO grade I. Among them, 15 patients (46.9%) had posterior fossa tumors, 10 (31.3%) had supratentorial tumors, and seven (22.8%) had spinal tumors. Of the 31 patients who underwent upfront surgical resection, 19 (61.3%) underwent gross total resection or near-total resection. Seventeen of 19 patients with first failures (89.5%) had isolated local recurrences. Of the 19 patients with disease progression, 11 (57.9%) were disease free or had stable disease after salvage therapy, and five (26.3%) had disease-related mortality. Most of the first local recurrences after radiotherapy occurred infield (13 of 16, 81.3%). The 5-year LPFS, DMFS, PFS, and OS rates were 48.5%, 89.6%, 45.1%, and 88.4%, respectively, at a median follow-up of 6.25 years. Subtotal resection was associated with poorer LPFS and PFS in patients with intracranial ependymoma (hazard ratio = 3.69, p = 0.018, for LPFS; hazard ratio = 3.20, p = 0.029, for PFS). CONCLUSION: Incorporating radiotherapy into multimodal treatment has led to favorable outcomes in patients with ependymoma, and the extent of resection is a prognostic factor for the local control of intracranial ependymoma.


Asunto(s)
Ependimoma , Humanos , Ependimoma/radioterapia , Ependimoma/mortalidad , Ependimoma/cirugía , Masculino , Femenino , Adulto , Adolescente , Niño , Adulto Joven , Persona de Mediana Edad , Preescolar , Resultado del Tratamiento , Recurrencia Local de Neoplasia/radioterapia , Recurrencia Local de Neoplasia/patología , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/cirugía , Supervivencia sin Progresión , Radioterapia Adyuvante , Estudios Retrospectivos , Pronóstico , Terapia Combinada , Anciano
13.
BMC Cancer ; 24(1): 936, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090564

RESUMEN

PURPOSE: To evaluate the dosimetric characteristics of ZAP-X stereotactic radiosurgery (SRS) for single brain metastasis by comparing with two mature SRS platforms. METHODS: Thirteen patients with single brain metastasis treated with CyberKnife (CK) G4 were selected retrospectively. The prescription dose for the planning target volume (PTV) was 18-24 Gy for 1-3 fractions. The PTV volume ranged from 0.44 to 11.52 cc.Treatment plans of thirteen patients were replanned using the ZAP-X plan system and the Gamma Knife (GK) ICON plan system with the same prescription dose and organs at risk (OARs) constraints. The prescription dose of PTV was normalized to 70% for both ZAP-X and CK, while it was 50% for GK. The dosimetric parameters of three groups included the plan characteristics (CI, GI, GSI, beams, MUs, treatment time), PTV (D2, D95, D98, Dmin, Dmean, Coverage), brain tissue (volume of 100%-10% prescription dose irradiation V100%-V10%, Dmean) and other OARs (Dmax, Dmean),all of these were compared and evaluated. All data were read and analyzed with MIM Maestro. One-way ANOVA or a multisample Friedman rank sum test was performed, where p < 0.05 indicated significant differences. RESULTS: The CI of GK was significantly lower than that of ZAP-X and CK. Regarding the mean value, ZAP-X had a lower GI and higher GSI, but there was no significant difference among the three groups. The MUs of ZAP-X were significantly lower than those of CK, and the mean value of the treatment time of ZAP-X was significantly shorter than that of CK. For PTV, the D95, D98, and target coverage of CK were higher, while the mean of Dmin of GK was significantly lower than that of CK and ZAP-X. For brain tissue, ZAP-X showed a smaller volume from V100% to V20%; the statistical results of V60% and V50% showed a difference between ZAP-X and GK, while the V40% and V30% showed a significant difference between ZAP-X and the other two groups; V10% and Dmean indicated that GK was better. Excluding the Dmax of the brainstem, right optic nerve and optic chiasm, the mean value of all other OARs was less than 1 Gy. For the brainstem, GK and ZAP-X had better protection, especially at the maximum dose. CONCLUSION: For the SRS treating single brain metastasis, all three treatment devices, ZAP-X system, CyberKnife G4 system, and GammaKnife system, could meet clinical treatment requirements. The newly platform ZAP-X could provide a high-quality plan equivalent to or even better than CyberKnife and Gamma Knife, with ZAP-X presenting a certain dose advantage, especially with a more conformal dose distribution and better protection for brain tissue. As the ZAP-X systems get continuous improvements and upgrades, they may become a new SRS platform for the treatment of brain metastasis.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Radiocirugia/métodos , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Masculino , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Femenino , Persona de Mediana Edad , Radiometría , Anciano , Adulto , Órganos en Riesgo/efectos de la radiación
14.
BMC Cancer ; 24(1): 866, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026289

RESUMEN

BACKGROUND: The identification of viable tumors and radiation necrosis after stereotactic radiosurgery (SRS) is crucial for patient management. Tumor habitat analysis involving the grouping of similar voxels can identify subregions that share common biology and enable the depiction of areas of tumor recurrence and treatment-induced change. This study aims to validate an imaging biomarker for tumor recurrence after SRS for brain metastasis by conducting tumor habitat analysis using multi-parametric MRI. METHODS: In this prospective study (NCT05868928), patients with brain metastases will undergo multi-parametric MRI before SRS, and then follow-up MRIs will be conducted every 3 months until 24 months after SRS. The multi-parametric MRI protocol will include T2-weighted and contrast-enhanced T1-weighted imaging, diffusion-weighted imaging, and dynamic susceptibility contrast imaging. Using k-means voxel-wise clustering, this study will define three structural MRI habitats (enhancing, solid low-enhancing, and nonviable) on T1- and T2-weighted images and three physiologic MRI habitats (hypervascular cellular, hypovascular cellular, and nonviable) on apparent diffusion coefficient maps and cerebral blood volume maps. Using RANO-BM criteria as the reference standard, via Cox proportional hazards analysis, the study will prospectively evaluate associations between parameters of the tumor habitats and the time to recurrence. The DICE similarity coefficients between the recurrence site and tumor habitats will be calculated. DISCUSSION: The tumor habitat analysis will provide an objective and reliable measure for assessing tumor recurrence from brain metastasis following SRS. By identifying subregions for local recurrence, our study could guide the next therapeutic targets for patients after SRS. TRIAL REGISTRATION: This study is registered at ClinicalTrials.gov (NCT05868928).


Asunto(s)
Neoplasias Encefálicas , Recurrencia Local de Neoplasia , Radiocirugia , Humanos , Radiocirugia/métodos , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/radioterapia , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/patología , Estudios Prospectivos , Femenino , Masculino , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto , Anciano , Medición de Riesgo/métodos
15.
BMC Cancer ; 24(1): 1030, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169327

RESUMEN

BACKGROUND: Brain metastasis (BrM) is prevalent among patients with NSCLC, and surgical resection of BrM constitutes a promising treatment strategy for local management and histopathological diagnosis, although it is offered for a select group of patients. Limited information exists concerning the improvement in performance status (PS) following BrM resection or the outcomes stratified by subsequent systemic therapy. METHODS: We conducted a retrospective single-center cohort study including NSCLC patients with surgically resected BrM and focused on the improvement in PS and subsequent therapy after BrM resection. RESULTS: 71 patients were included, and the median overall survival was 18.3 months (95% confidence interval [95% CI]: 8.7, not reached). Patients with NSCLC who underwent surgical resection of BrM showed significant improvement in PS (18% and 39% showed ECOG PS of 0-1, before and after BrM resection, respectively [p = 0.006]), and patients with PS improvement were younger than those with PS unimprovement (median, 62 years versus 66 years; p = 0.041). Regarding subsequent systemic therapy after BrM resection, 21 patients (30%) received cytotoxic chemotherapy, 14 patients (20%) received tyrosine kinase inhibitors (TKIs), 3 patients (4%) received immune checkpoint inhibitors (ICIs), and 21 patients (30%) received no subsequent therapy. The survival outcomes of patients stratified by subsequent systemic treatments suggested the tendency that those who received TKI or ICI showed better survival outcomes, although a small number of patients hindered statistical comparisons. CONCLUSIONS: We describe the outcomes of patients with NSCLC who underwent surgical resection of BrM, revealing that younger patients were more likely to anticipate improvement in PS, and patients who received TKI or ICI after BrM resection tended to exhibit a more preferable prognosis.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Masculino , Femenino , Estudios Retrospectivos , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/tratamiento farmacológico , Persona de Mediana Edad , Anciano , Adulto , Anciano de 80 o más Años , Terapia Combinada
16.
BMC Cancer ; 24(1): 3, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166949

RESUMEN

BACKGROUND: Preclinical in vivo cancer models are essential tools for investigating tumor progression and response to treatment prior to clinical trials. Although treatment modalities are regularly assessed in mice upon tumor growth in vivo, surgical resection remains challenging, particularly in the orthotopic site. Here, we report a successful surgical resection of glioblastoma (GBM) in patient-derived orthotopic xenografts (PDOXs). METHODS: We derived a cohort of 46 GBM PDOX models that faithfully recapitulate human disease in mice. We assessed the detection and quantification of intracranial tumors using magnetic resonance imaging (MRI).To evaluate feasibility of surgical resection in PDOXs, we selected two models representing histopathological features of GBM tumors, including diffuse growth into the mouse brain. Surgical resection in the mouse brains was performed based on MRI-guided coordinates. Survival study followed by MRI and immunohistochemistry-based evaluation of recurrent tumors allowed for assessment of clinically relevant parameters. RESULTS: We demonstrate the utility of MRI for the noninvasive assessment of in vivo tumor growth, preoperative programming of resection coordinates and follow-up of tumor recurrence. We report tumor detection by MRI in 90% of GBM PDOX models (36/40), of which 55% (22/40) can be reliably quantified during tumor growth. We show that a surgical resection protocol in mice carrying diffuse primary GBM tumors in the brain leads to clinically relevant outcomes. Similar to neurosurgery in patients, we achieved a near total to complete extent of tumor resection, and mice with resected tumors presented significantly increased survival. The remaining unresected GBM cells that invaded the normal mouse brain prior to surgery regrew tumors with similar histopathological features and tumor microenvironments to the primary tumors. CONCLUSIONS: Our data positions GBM PDOXs developed in mouse brains as a valuable preclinical model for conducting therapeutic studies that involve surgical tumor resection. The high detectability of tumors by MRI across a substantial number of PDOX models in mice will allow for scalability of our approach toward specific tumor types for efficacy studies in precision medicine-oriented approaches. Additionally, these models hold promise for the development of enhanced image-guided surgery protocols.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/diagnóstico por imagen , Glioblastoma/cirugía , Glioblastoma/patología , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/cirugía , Xenoinjertos , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Microambiente Tumoral
17.
J Magn Reson Imaging ; 60(5): 1892-1901, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38263789

RESUMEN

BACKGROUND: Insular low-grade gliomas (LGGs) are surgically challenging due to their proximity to critical structures like the corticospinal tract (CST). PURPOSE: This study aims to determine if preoperative CST shape metrics correlate with postoperative motor complications in insular LGG patients. STUDY TYPE: Retrospective. POPULATION: 42 patients (mean age 40.26 ± 10.21 years, 25 male) with insular LGGs. FIELD STRENGTH/SEQUENCE: Imaging was performed using 3.0 Tesla MRI, incorporating T1-weighted magnetization-prepared rapid gradient-echo, T2-weighted space dark-fluid with spin echo (SE), and diffusional kurtosis imaging (DKI) with gradient echo sequences, all integrated with echo planar imaging. ASSESSMENT: Shape metrics of the CST, including span, irregularity, radius, and irregularity of end regions (RER and IER, respectively), were compared between the affected and healthy hemispheres. Total end region radius (TRER) was determined as the sum of RER 1 and RER 2. The relationships between shape metrics and postoperative short-term (4 weeks) and long-term (>8 weeks) motor disturbances assessing by British Medical Research Council grading system, was analyzed using multivariable regression models. STATISTICAL TESTING: Paired t-tests compared CST metrics between hemispheres. Logistic regression identified associations between these metrics and motor disturbances. The models were developed using all available data and there was no independent validation dataset. Significance was set at P < 0.05. RESULTS: Short-term motor disturbance risk was significantly related to TRER (OR = 199.57). Long-term risk significantly correlated with IER 1 (OR = 59.84), confirmed as a significant marker with an AUC of 0.78. Furthermore, the CST on the affected side significantly had the greater irregularity, larger TRER and RER 1, and smaller span compared to the healthy side. DATA CONCLUSION: Preoperative evaluation of TRER and IER 1 metrics in the CST may serve as a tool for assessing the risk of postoperative motor complications in insular LGG patients. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Neoplasias Encefálicas , Glioma , Imagen por Resonancia Magnética , Complicaciones Posoperatorias , Tractos Piramidales , Humanos , Masculino , Glioma/diagnóstico por imagen , Glioma/cirugía , Femenino , Adulto , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Tractos Piramidales/diagnóstico por imagen , Persona de Mediana Edad , Complicaciones Posoperatorias/diagnóstico por imagen
18.
J Neurooncol ; 170(1): 1-10, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39048723

RESUMEN

PURPOSE: Neuronavigation, explored as an intra-operative adjunct for brain tumor surgery three decades ago, has become globally utilized with a promising upward trajectory. This study aims to chart its success from idea to adoption and evolution within the US and globally. METHODS: A three-pronged methodology included a systematic literature search, impact analysis using NIH relative citation ratio (RCR) and Altmetric scores, and assessment of patent holdings. Data was dichotomized for US and international contexts. RESULTS: The first neuronavigation publication stemmed from Finland in 1993, marking its inception. Over three decades, the cumulative number of 323 studies, along with the significantly increasing publication trend (r = 0.74, p < 0.05) and distribution across 34 countries, underscored its progressive and global adoption. Neuronavigation, mostly optical systems (58%), was utilized in over 19,000 cases, predominantly for brain tumor surgery (84%). Literature impact showed a robust cumulative median RCR score surpassing that for NIH-funded studies (1.37 vs. 1.0), with US studies having a significantly higher median RCR than international (1.71 vs. 1.21, p < 0.05). Technological evolution was characterized by adjuncts, including micro/exo/endoscope (21%), MRI (17%), ultrasound (10%), and CT (7%). Patent analysis demonstrated academic and industrial representation with an interdisciplinary convergence of medical and computational sciences. CONCLUSION: Since its inception thirty years ago, neuronavigation has been adopted worldwide, and it has evolved with adjunct technology integration to enhance its meaningful use. The current neuronavigation innovation pipeline is progressing, with academic and industry partnering to advance its further application in treating brain tumor patients.


Asunto(s)
Neoplasias Encefálicas , Neuronavegación , Neuronavegación/métodos , Humanos , Neoplasias Encefálicas/cirugía , Procedimientos Neuroquirúrgicos/métodos , Historia del Siglo XXI
19.
J Neurooncol ; 170(1): 31-40, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39222190

RESUMEN

Endovascular surgical neuro-oncology is a relatively new subspecialty which uses endovascular neuro-interventional techniques for the management of nervous system tumors and tumor-related vascular conditions. Although there are several endovascular procedures that are widely available as standard-of-care diagnostic and treatment adjuncts, there has been a renewed interest to explore endovascular approaches as a means for selective intra-arterial delivery of therapeutic agents to nervous system tumors, including methods for opening the blood brain and blood tumor barriers. In this review, we discuss the historical development of various forms of endovascular intra-arterial treatment for tumors over the past 40 years, summarize endovascular approaches that are currently being employed, and highlight current clinical trials.


Asunto(s)
Neoplasias Encefálicas , Procedimientos Endovasculares , Humanos , Procedimientos Endovasculares/métodos , Neoplasias Encefálicas/cirugía , Oncología Quirúrgica/métodos
20.
J Neurooncol ; 167(3): 477-485, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38436894

RESUMEN

BACKGROUND: Patient-reported outcome measures (PROMs) are increasingly used to assess patients' perioperative health. The PROM Information System 29 (PROMIS-29) is a well-validated global health assessment instrument for patient physical health, though its utility in cranial neurosurgery is unclear. OBJECTIVE: To investigate the utility of preoperative PROMIS-29 physical health (PH) summary scores in predicting postoperative outcomes in brain tumor patients. METHODS: Adult brain tumor patients undergoing resection at a single institution (January 2018-December 2021) were identified and prospectively received PROMIS-29 surveys during pre-operative visits. PH summary scores were constructed and optimum prediction thresholds for length of stay (LOS), discharge disposition (DD), and 30-day readmission were approximated by finding the Youden index of the associated receiver operating characteristic curves. Bivariate analyses were used to study the distribution of low (z-score≤-1) versus high (z-score>-1) PH scores according to baseline characteristics. Logistic regression models quantified the association between preoperative PH summary scores and post-operative outcomes. RESULTS: A total of 157 brain tumor patients were identified (mean age 55.4±15.4 years; 58.0% female; mean PH score 45.5+10.5). Outcomes included prolonged LOS (24.8%), non-routine discharge disposition (37.6%), and 30-day readmission (19.1%). On bivariate analysis, patients with low PH scores were significantly more likely to be diagnosed with a high-grade tumor (69.6% vs 38.85%, p=0.010) and less likely to have elective surgery (34.8% vs 70.9%, p=0.002). Low PH score was associated with prolonged LOS (26.1% vs 22%, p<0.001), nonroutine discharge (73.9% vs 31.3%, p<0.001) and 30-day readmission (43.5% vs 14.9%, p=0.003). In multivariate analysis, low PH scores predicted greater LOS (odds ratio [OR]=6.09, p=0.003), nonroutine discharge (OR=4.25, p=0.020), and 30-day readmission (OR=3.93, p=0.020). CONCLUSION: The PROMIS-29 PH summary score predicts short-term postoperative outcomes in brain tumor patients and may be incorporated into prospective clinical workflows.


Asunto(s)
Neoplasias Encefálicas , Medición de Resultados Informados por el Paciente , Calidad de Vida , Humanos , Femenino , Masculino , Neoplasias Encefálicas/cirugía , Persona de Mediana Edad , Tiempo de Internación/estadística & datos numéricos , Procedimientos Neuroquirúrgicos , Estudios Prospectivos , Anciano , Adulto , Readmisión del Paciente/estadística & datos numéricos , Periodo Preoperatorio , Pronóstico , Complicaciones Posoperatorias/epidemiología , Estudios de Seguimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA