Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.498
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 156(3): 603-616, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24485463

RESUMEN

Glioblastomas (GBMs) are the most common and malignant primary brain tumors and are aggressively treated with surgery, chemotherapy, and radiotherapy. Despite this treatment, recurrence is inevitable and survival has improved minimally over the last 50 years. Recent studies have suggested that GBMs exhibit both heterogeneity and instability of differentiation states and varying sensitivities of these states to radiation. Here, we employed an iterative combined theoretical and experimental strategy that takes into account tumor cellular heterogeneity and dynamically acquired radioresistance to predict the effectiveness of different radiation schedules. Using this model, we identified two delivery schedules predicted to significantly improve efficacy by taking advantage of the dynamic instability of radioresistance. These schedules led to superior survival in mice. Our interdisciplinary approach may also be applicable to other human cancer types treated with radiotherapy and, hence, may lay the foundation for significantly increasing the effectiveness of a mainstay of oncologic therapy. PAPERCLIP:


Asunto(s)
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Dosis de Radiación , Animales , Neoplasias Encefálicas/patología , Glioblastoma/patología , Humanos , Ratones , Modelos Biológicos
2.
Mol Cell ; 81(6): 1276-1291.e9, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33539787

RESUMEN

Aberrant cell proliferation is a hallmark of cancer, including glioblastoma (GBM). Here we report that protein arginine methyltransferase (PRMT) 6 activity is required for the proliferation, stem-like properties, and tumorigenicity of glioblastoma stem cells (GSCs), a subpopulation in GBM critical for malignancy. We identified a casein kinase 2 (CK2)-PRMT6-regulator of chromatin condensation 1 (RCC1) signaling axis whose activity is an important contributor to the stem-like properties and tumor biology of GSCs. CK2 phosphorylates and stabilizes PRMT6 through deubiquitylation, which promotes PRMT6 methylation of RCC1, which in turn is required for RCC1 association with chromatin and activation of RAN. Disruption of this pathway results in defects in mitosis. EPZ020411, a specific small-molecule inhibitor for PRMT6, suppresses RCC1 arginine methylation and improves the cytotoxic activity of radiotherapy against GSC brain tumor xenografts. This study identifies a CK2α-PRMT6-RCC1 signaling axis that can be therapeutically targeted in the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Carcinogénesis , Proteínas de Ciclo Celular , Glioblastoma , Factores de Intercambio de Guanina Nucleótido , Mitosis/efectos de la radiación , Proteínas de Neoplasias , Proteínas Nucleares , Proteína-Arginina N-Metiltransferasas , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/efectos de la radiación , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Femenino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Mitosis/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Genes Dev ; 32(7-8): 512-523, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29632085

RESUMEN

Glioblastoma is the most frequently occurring and invariably fatal primary brain tumor in adults. The vast majority of glioblastomas is characterized by chromosomal copy number alterations, including gain of whole chromosome 7 and loss of whole chromosome 10. Gain of whole chromosome 7 is an early event in gliomagenesis that occurs in proneural-like precursor cells, which give rise to all isocitrate dehydrogenase (IDH) wild-type glioblastoma transcriptional subtypes. Platelet-derived growth factor A (PDGFA) is one gene on chromosome 7 known to drive gliomagenesis, but, given its location near the end of 7p, there are likely several other genes located along chromosome 7 that select for its increased whole-chromosome copy number within glioblastoma cells. To identify other potential genes that could select for gain of whole chromosome 7, we developed an unbiased bioinformatics approach that identified homeobox A5 (HOXA5) as a gene whose expression correlated with gain of chromosome 7 and a more aggressive phenotype of the resulting glioma. High expression of HOXA5 in glioblastoma was associated with a proneural gene expression pattern and decreased overall survival in both human proneural and PDGF-driven mouse glioblastoma. Furthermore, HOXA5 overexpression promoted cellular proliferation and potentiated radioresistance. We also found enrichment of HOXA5 expression in recurrent human and mouse glioblastoma at first recurrence after radiotherapy. Overall, this study implicates HOXA5 as a chromosome 7-associated gene-level locus that promotes selection for gain of whole chromosome 7 and an aggressive phenotype in glioblastoma.


Asunto(s)
Neoplasias Encefálicas/genética , Cromosomas Humanos Par 7 , Glioblastoma/genética , Proteínas de Homeodominio/metabolismo , Fosfoproteínas/metabolismo , Animales , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Proliferación Celular , Duplicación Cromosómica , Glioblastoma/mortalidad , Glioblastoma/patología , Glioblastoma/radioterapia , Proteínas de Homeodominio/genética , Humanos , Isocitrato Deshidrogenasa/genética , Ratones , Recurrencia Local de Neoplasia , Fosfoproteínas/genética , Tolerancia a Radiación , Factores de Transcripción
4.
PLoS Comput Biol ; 20(1): e1011400, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38289964

RESUMEN

Metastasis is the process through which cancer cells break away from a primary tumor, travel through the blood or lymph system, and form new tumors in distant tissues. One of the preferred sites for metastatic dissemination is the brain, affecting more than 20% of all cancer patients. This figure is increasing steadily due to improvements in treatments of primary tumors. Stereotactic radiosurgery (SRS) is one of the main treatment options for patients with a small or moderate number of brain metastases (BMs). A frequent adverse event of SRS is radiation necrosis (RN), an inflammatory condition caused by late normal tissue cell death. A major diagnostic problem is that RNs are difficult to distinguish from BM recurrences, due to their similarities on standard magnetic resonance images (MRIs). However, this distinction is key to choosing the best therapeutic approach since RNs resolve often without further interventions, while relapsing BMs may require open brain surgery. Recent research has shown that RNs have a faster growth dynamics than recurrent BMs, providing a way to differentiate the two entities, but no mechanistic explanation has been provided for those observations. In this study, computational frameworks were developed based on mathematical models of increasing complexity, providing mechanistic explanations for the differential growth dynamics of BMs relapse versus RN events and explaining the observed clinical phenomenology. Simulated tumor relapses were found to have growth exponents substantially smaller than the group in which there was inflammation due to damage induced by SRS to normal brain tissue adjacent to the BMs, thus leading to RN. ROC curves with the synthetic data had an optimal threshold that maximized the sensitivity and specificity values for a growth exponent ß* = 1.05, very close to that observed in patient datasets.


Asunto(s)
Neoplasias Encefálicas , Traumatismos por Radiación , Radiocirugia , Humanos , Recurrencia Local de Neoplasia/radioterapia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Radiocirugia/efectos adversos , Radiocirugia/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Traumatismos por Radiación/etiología , Traumatismos por Radiación/patología , Traumatismos por Radiación/cirugía , Necrosis/etiología , Necrosis/cirugía , Estudios Retrospectivos
5.
Cell Mol Life Sci ; 81(1): 247, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829550

RESUMEN

BACKGROUND: The high degree of intratumoral genomic heterogeneity is a major obstacle for glioblastoma (GBM) tumors, one of the most lethal human malignancies, and is thought to influence conventional therapeutic outcomes negatively. The proneural-to-mesenchymal transition (PMT) of glioma stem cells (GSCs) confers resistance to radiation therapy in glioblastoma patients. POLD4 is associated with cancer progression, while the mechanisms underlying PMT and tumor radiation resistance have remained elusive. METHOD: Expression and prognosis of the POLD family were analyzed in TCGA, the Chinese Glioma Genome Atlas (CGGA) and GEO datasets. Tumorsphere formation and in vitro limiting dilution assay were performed to investigate the effect of UCHL3-POLD4 on GSC self-renewal. Apoptosis, TUNEL, cell cycle phase distribution, modification of the Single Cell Gel Electrophoresis (Comet), γ-H2AX immunofluorescence, and colony formation assays were conducted to evaluate the influence of UCHL3-POLD4 on GSC in ionizing radiation. Coimmunoprecipitation and GST pull-down assays were performed to identify POLD4 protein interactors. In vivo, intracranial xenograft mouse models were used to investigate the molecular effect of UCHL3, POLD4 or TCID on GCS. RESULT: We determined that POLD4 was considerably upregulated in MES-GSCs and was associated with a meagre prognosis. Ubiquitin carboxyl terminal hydrolase L3 (UCHL3), a DUB enzyme in the UCH protease family, is a bona fide deubiquitinase of POLD4 in GSCs. UCHL3 interacted with, depolyubiquitinated, and stabilized POLD4. Both in vitro and in vivo assays indicated that targeted depletion of the UCHL3-POLD4 axis reduced GSC self-renewal and tumorigenic capacity and resistance to IR treatment by impairing homologous recombination (HR) and nonhomologous end joining (NHEJ). Additionally, we proved that the UCHL3 inhibitor TCID induced POLD4 degradation and can significantly enhance the therapeutic effect of IR in a gsc-derived in situ xenograft model. CONCLUSION: These findings reveal a new signaling axis for GSC PMT regulation and highlight UCHL3-POLD4 as a potential therapeutic target in GBM. TCID, targeted for reducing the deubiquitinase activity of UCHL3, exhibited significant synergy against MES GSCs in combination with radiation.


Asunto(s)
Células Madre Neoplásicas , Tolerancia a Radiación , Ubiquitina Tiolesterasa , Humanos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Tolerancia a Radiación/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de la radiación , Animales , Ratones , Línea Celular Tumoral , Glioma/patología , Glioma/genética , Glioma/radioterapia , Glioma/metabolismo , Apoptosis/genética , Apoptosis/efectos de la radiación , Ubiquitinación , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Ratones Desnudos , Fenotipo , Regulación Neoplásica de la Expresión Génica , Pronóstico
6.
Mol Cancer ; 23(1): 123, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849845

RESUMEN

BACKGROUND: Pediatric-type diffuse high-grade glioma (pHGG) is the most frequent malignant brain tumor in children and can be subclassified into multiple entities. Fusion genes activating the MET receptor tyrosine kinase often occur in infant-type hemispheric glioma (IHG) but also in other pHGG and are associated with devastating morbidity and mortality. METHODS: To identify new treatment options, we established and characterized two novel orthotopic mouse models harboring distinct MET fusions. These included an immunocompetent, murine allograft model and patient-derived orthotopic xenografts (PDOX) from a MET-fusion IHG patient who failed conventional therapy and targeted therapy with cabozantinib. With these models, we analyzed the efficacy and pharmacokinetic properties of three MET inhibitors, capmatinib, crizotinib and cabozantinib, alone or combined with radiotherapy. RESULTS: Capmatinib showed superior brain pharmacokinetic properties and greater in vitro and in vivo efficacy than cabozantinib or crizotinib in both models. The PDOX models recapitulated the poor efficacy of cabozantinib experienced by the patient. In contrast, capmatinib extended survival and induced long-term progression-free survival when combined with radiotherapy in two complementary mouse models. Capmatinib treatment increased radiation-induced DNA double-strand breaks and delayed their repair. CONCLUSIONS: We comprehensively investigated the combination of MET inhibition and radiotherapy as a novel treatment option for MET-driven pHGG. Our seminal preclinical data package includes pharmacokinetic characterization, recapitulation of clinical outcomes, coinciding results from multiple complementing in vivo studies, and insights into molecular mechanism underlying increased efficacy. Taken together, we demonstrate the groundbreaking efficacy of capmatinib and radiation as a highly promising concept for future clinical trials.


Asunto(s)
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogénicas c-met , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Glioma/patología , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/terapia , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Ratones , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Benzamidas/farmacología , Benzamidas/uso terapéutico , Línea Celular Tumoral , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Femenino , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Crizotinib/farmacología , Crizotinib/uso terapéutico , Modelos Animales de Enfermedad , Niño , Clasificación del Tumor , Anilidas/farmacología , Imidazoles , Triazinas
7.
Cancer Sci ; 115(2): 589-599, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38146096

RESUMEN

Although intravenous bevacizumab (IVBEV) is the most promising treatment for cerebral radiation necrosis (CRN), there is no conclusion on the optimal dosage. Our retrospective study aimed to compare the efficacy and safety of high-dose with low-dose IVBEV in treating CRN associated with radiotherapy for brain metastases (BMs). This paper describes 75 patients who were diagnosed with CRN secondary to radiotherapy for BMs, treated with low-dose or high-dose IVBEV and followed up for a minimum of 6 months. The clinical data collected for this study include changes in brain MRI, clinical symptoms, and corticosteroid usage before, during, and after IVBEV treatment. At the 3-month mark following administration of IVBEV, a comparison of two groups revealed that the median percentage decreases in CRN volume on T2-weighted fluid-attenuated inversion recovery and T1-weighted gadolinium contrast-enhanced image (T1CE), as well as the signal ratio reduction on T1CE, were 65.8% versus 64.8% (p = 0.860), 41.2% versus 51.9% (p = 0.396), and 37.4% versus 35.1% (p = 0.271), respectively. Similarly, at 6 months post-IVBEV, the median percentage reductions of the aforementioned parameters were 59.5% versus 62.0% (p = 0.757), 39.1% versus 31.3% (p = 0.851), and 35.4% versus 28.2% (p = 0.083), respectively. Notably, the incidence of grade ≥3 adverse events was higher in the high-dose group (n = 4, 9.8%) than in the low-dose group (n = 0). Among patients with CRN secondary to radiotherapy for BMs, the administration of high-dose IVBEV did not demonstrate superiority over low-dose IVBEV. Moreover, the use of high-dose IVBEV was associated with a higher incidence of grade ≥3 adverse events compared with low-dose IVBEV.


Asunto(s)
Neoplasias Encefálicas , Humanos , Bevacizumab/efectos adversos , Estudios Retrospectivos , Necrosis/etiología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología
8.
N Engl J Med ; 384(17): 1613-1622, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33838625

RESUMEN

BACKGROUND: Outcomes in children and adolescents with recurrent or progressive high-grade glioma are poor, with a historical median overall survival of 5.6 months. Pediatric high-grade gliomas are largely immunologically silent or "cold," with few tumor-infiltrating lymphocytes. Preclinically, pediatric brain tumors are highly sensitive to oncolytic virotherapy with genetically engineered herpes simplex virus type 1 (HSV-1) G207, which lacks genes essential for replication in normal brain tissue. METHODS: We conducted a phase 1 trial of G207, which used a 3+3 design with four dose cohorts of children and adolescents with biopsy-confirmed recurrent or progressive supratentorial brain tumors. Patients underwent stereotactic placement of up to four intratumoral catheters. The following day, they received G207 (107 or 108 plaque-forming units) by controlled-rate infusion over a period of 6 hours. Cohorts 3 and 4 received radiation (5 Gy) to the gross tumor volume within 24 hours after G207 administration. Viral shedding from saliva, conjunctiva, and blood was assessed by culture and polymerase-chain-reaction assay. Matched pre- and post-treatment tissue samples were examined for tumor-infiltrating lymphocytes by immunohistologic analysis. RESULTS: Twelve patients 7 to 18 years of age with high-grade glioma received G207. No dose-limiting toxic effects or serious adverse events were attributed to G207 by the investigators. Twenty grade 1 adverse events were possibly related to G207. No virus shedding was detected. Radiographic, neuropathological, or clinical responses were seen in 11 patients. The median overall survival was 12.2 months (95% confidence interval, 8.0 to 16.4); as of June 5, 2020, a total of 4 of 11 patients were still alive 18 months after G207 treatment. G207 markedly increased the number of tumor-infiltrating lymphocytes. CONCLUSIONS: Intratumoral G207 alone and with radiation had an acceptable adverse-event profile with evidence of responses in patients with recurrent or progressive pediatric high-grade glioma. G207 converted immunologically "cold" tumors to "hot." (Supported by the Food and Drug Administration and others; ClinicalTrials.gov number, NCT02457845.).


Asunto(s)
Neoplasias Encefálicas/terapia , Glioma/terapia , Viroterapia Oncolítica , Adolescente , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Niño , Preescolar , Terapia Combinada , Femenino , Glioma/diagnóstico por imagen , Glioma/patología , Glioma/radioterapia , Humanos , Estimación de Kaplan-Meier , Células Asesinas Naturales , Recuento de Leucocitos , Masculino , Viroterapia Oncolítica/efectos adversos , Linfocitos T
9.
Cancer Immunol Immunother ; 73(1): 20, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240876

RESUMEN

Lung cancer is the most common primary tumor to metastasize to the brain. Although advances in lung cancer therapy have increased rates of survival over the past few decades, control and treatment of lung cancer brain metastasis remains an urgent clinical need. Herein, we examine the temporal coordination of α-CTLA-4 administration in combination with whole-brain radiation therapy in a syngeneic preclinical model of lung cancer brain metastasis in both C57Bl/6 and athymic nude mice. Brain tumor burden, survival, and weight loss were monitored. Immunotherapy administration 24 h prior to irradiation resulted in increased brain tumor burden, while administration of immunotherapy 12 h after radiation decreased tumor burden. Neither of the treatments affected survival outcomes or weight loss due to brain tumor recurrence. These findings suggest that the coordination of α-CTLA-4 administration in addition to whole-brain radiation therapy may be a viable strategy for reduction of tumor burden for the management of lung cancer brain metastasis.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Animales , Ratones , Encéfalo , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Irradiación Craneana , Antígeno CTLA-4 , Inmunoterapia/métodos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Ratones Desnudos , Recurrencia Local de Neoplasia , Carga Tumoral , Pérdida de Peso
10.
J Pharmacol Exp Ther ; 390(2): 260-275, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38858089

RESUMEN

Radiation therapy, a standard treatment option for many cancer patients, induces DNA double-strand breaks (DSBs), leading to cell death. Ataxia telangiectasia mutated (ATM) kinase is a key regulator of DSB repair, and ATM inhibitors are being explored as radiosensitizers for various tumors, including primary and metastatic brain tumors. Efficacy of radiosensitizers for brain tumors may be influenced by a lack of effective drug delivery across the blood-brain barrier. The objective of this study was to evaluate the systemic pharmacokinetics and mechanisms that influence the central nervous system (CNS) distribution of WSD0628, a novel and potent ATM inhibitor, in the mouse. Further, we have used these observations to form the basis of predicting effective exposures for clinical application. We observed a greater than dose proportional increase in exposure, likely due to saturation of clearance processes. Our results show that WSD0628 is orally bioavailable and CNS penetrant, with unbound partitioning in CNS (i.e., unbound tissue partition coefficient) between 0.15 and 0.3. CNS distribution is not limited by the efflux transporters P-glycoprotein and breast cancer resistant protein. WSD0628 is distributed uniformly among different brain regions. Thus, WSD0628 has favorable pharmacokinetic properties and potential for further exploration to determine the pharmacodynamics-pharmacokinetics efficacy relationship in CNS tumors. This approach will provide critical insights for the clinical translation of WSD0628 for the treatment of primary and secondary brain tumors. SIGNIFICANCE STATEMENT: This study evaluates the preclinical systemic pharmacokinetics, dose proportionality, and mechanisms influencing CNS distribution of WSD0628, a novel ATM inhibitor for the treatment of brain tumors. Results indicate that WSD0628 is orally bioavailable and CNS penetrant without efflux transporter liability. We also observed a greater than dose proportional increase in exposure in both the plasma and brain. These favorable pharmacokinetic properties indicate WSD0628 has potential for further exploration for use as a radiosensitizer in the treatment of brain tumors.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Neoplasias Encefálicas , Fármacos Sensibilizantes a Radiaciones , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Ratones , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Masculino , Femenino , Relación Dosis-Respuesta a Droga , Distribución Tisular , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2
11.
J Transl Med ; 22(1): 688, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075517

RESUMEN

BACKGROUND: Radioresistance and immune escape are crucial reasons for unsatisfactory therapeutic effects of glioblastoma (GBM). Although triggering receptor expressed on myeloid cells-2 (TREM2) involved in forming immunosuppressive microenvironment, but the underlying mechanism and its roles in mediating cancer radioresistance remain unclear, moreover, the efficient delivery of drugs targeting TREM2 to GBM encounters serious challenges. Hence, this study aimed to elucidate the effect and mechanisms of targeted TREM2 silencing on reversing the radioresistance and immune escape of GBM aided by a glutathione-responsive biomimetic nanoparticle (NP) platform. METHODS: Radioresistant GBM cell lines and TREM2 stable knockdown GBM cell lines were firstly established. RNA sequencing, colony formation assay, western blot, enzyme-linked immunosorbent assay and co-immunoprecipitation assay were used to detect the molecular mechanisms of TREM2 in regulating the radioresistance and immune escape of GBM. The glutathione-responsive biomimetic NP, angiopep-2 (A2)- cell membrane (CM)-NP/siTREM2/spam1, was then constructed to triply and targeted inhibit TREM2 for in vivo study. Orthotopic GBM-bearing mouse models were established to evaluate the anti-GBM effect of TREM2 inhibition, multiplex immunofluorescence assay was conducted to detect the infiltration of immune cells. RESULTS: TREM2 was a regulator in accelerating the radioresistance and immune escape of GBM through participating in DNA damage repair and forming a positive feedback loop with high mobility group box 1 (HMGB1) to cascade the activation of Toll-like receptor 4 (TLR4)/protein kinase B (Akt) signaling. A2-CM-NP/siTREM2/spam1 was successfully synthesized with excellent passive targeting, active targeting and homologous targeting, and the in vivo results exhibited its remarkable anti-GBM therapeutic effect through promoting the infiltration of type 1 helper T cells and CD8+T cells, reducing the infiltration of type 2 helper T cells and regulatory T cells, repolarizing macrophages to M1-type, and decreasing the secretion of pro-tumor and immunosuppressive cytokines. CONCLUSIONS: Targeting TREM2 therapy is a promising avenue for optimizing radiotherapy and immunotherapy to improve the prognosis of GBM patients.


Asunto(s)
Glioblastoma , Proteína HMGB1 , Glicoproteínas de Membrana , Proteínas Proto-Oncogénicas c-akt , Tolerancia a Radiación , Receptores Inmunológicos , Transducción de Señal , Receptor Toll-Like 4 , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/inmunología , Glioblastoma/genética , Receptores Inmunológicos/metabolismo , Humanos , Animales , Línea Celular Tumoral , Glicoproteínas de Membrana/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Toll-Like 4/metabolismo , Proteína HMGB1/metabolismo , Escape del Tumor , Ratones , Retroalimentación Fisiológica , Ratones Desnudos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología
12.
Strahlenther Onkol ; 200(9): 815-826, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977432

RESUMEN

PURPOSE: Automated treatment planning for multiple brain metastases differs from traditional planning approaches. It is therefore helpful to understand which parameters for optimization are available and how they affect the plan quality. This study aims to provide a reference for designing multi-metastases treatment plans and to define quality endpoints for benchmarking the technique from a scientific perspective. METHODS: In all, 20 patients with a total of 183 lesions were retrospectively planned according to four optimization scenarios. Plan quality was evaluated using common plan quality parameters such as conformity index, gradient index and dose to normal tissue. Therefore, different scenarios with combinations of optimization parameters were evaluated, while taking into account dependence on the number of treated lesions as well as influence of different beams. RESULTS: Different scenarios resulted in minor differences in plan quality. With increasing number of lesions, the number of monitor units increased, so did the dose to healthy tissue and the number of interlesional dose bridging in adjacent metastases. Highly modulated cases resulted in 4-10% higher V10% compared to less complex cases, while monitor units did not increase. Changing the energy to a flattening filter free (FFF) beam resulted in lower local V12Gy (whole brain-PTV) and even though the number of monitor units increased by 13-15%, on average 46% shorter treatment times were achieved. CONCLUSION: Although no clinically relevant differences in parameters where found, we identified some variation in the dose distributions of the different scenarios. Less complex scenarios generated visually more dose overlap; therefore, a more complex scenario may be preferred although differences in the quality metrics appear minor.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Humanos , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos
13.
Strahlenther Onkol ; 200(1): 39-48, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37591978

RESUMEN

PURPOSE: The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MRDR) and radiotherapy (MRRT) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated. MATERIALS AND METHODS: An anthropomorphic skull phantom was scanned using a 1.5­T MR scanner, and the magnitude of MR distortion was calculated with (MRDR-DC and MRRT-DC) and without (MRDR-nDC and MRRT-nDC) distortion-correction algorithms. Automated noncoplanar volumetric modulated arc therapy (HyperArc, HA; Varian Medical Systems, Palo Alto, CA, USA) plans were generated for 53 patients with 186 brain metastases. The MR distortion at each gross tumor volume (GTV) was calculated using the distance between the center of the GTV and the MR image isocenter (MIC) and the quadratic regression curve derived from the phantom study (MRRT-DC and MRRT-nDC). Subsequently, the radiation isocenter of the HA plans was shifted according to the MR distortion at each GTV (HADC and HAnDC). RESULTS: The median MR distortions were approximately 0.1 mm when the distance from the MIC was < 30 mm, whereas the median distortion varied widely when the distance was > 60 mm (0.23, 0.47, 0.37, and 0.57 mm in MRDR-DC, MRDR-nDC, MRRT-DC, and MRRT-nDC, respectively). The dose to the 98% of the GTV volume (D98%) decreased as the distance from the MIC increased. In the HADC plans, the relative dose difference of D98% was less than 5% when the GTV was located within 70 mm from the MIC, whereas the underdose of GTV exceeded 5% when it was 48 mm (-26.5% at maximum) away from the MIC in the HAnDC plans. CONCLUSION: Use of a distortion-correction algorithm in the studied MR diagnoses is essential, and the dosimetric impact of MR distortion is not negligible, particularly for tumors located far away from the MIC.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Radiocirugia/métodos , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Imagen por Resonancia Magnética/métodos , Dosificación Radioterapéutica
14.
Strahlenther Onkol ; 200(9): 838-843, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38488900

RESUMEN

This article presents the rare case of a 54-year-old gentleman with primary glioblastoma developing multiple extracranial metastases 7 months after diagnosis. Initially, the patient complained of progressive headaches, confusion, and weakness of the left arm. Magnetic resonance imaging of the brain showed a right temporoparietal tumor with substantial surrounding subcortical edema and midline shift to the left. Two consecutive craniotomies resulted in complete microsurgical resection of the lesion. Histology was consistent with a World Health Organization grade IV, IDH-wildtype glioblastoma. Further treatment was standard chemoradiation including intensity-modulated radiotherapy with oral temozolomide chemotherapy. Seven months after diagnosis, the cranial lesion progressed, and the patient developed painful metastases in multiple bones and suspicious right-sided cervical lymph nodes. Immunohistochemistry and molecular signature supported the case of a metastatic glioblastoma. Further treatment was palliative radiotherapy of the spinal lesions along with symptomatic pain management. Extracranial metastasis of glioblastoma is a rare complication of which only a few cases have been reported in the literature. Little is known about the precise mechanisms of tumor dissemination and the appropriate treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Metástasis Linfática , Neoplasias de la Columna Vertebral , Humanos , Glioblastoma/secundario , Glioblastoma/patología , Glioblastoma/radioterapia , Masculino , Persona de Mediana Edad , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Metástasis Linfática/patología , Metástasis Linfática/radioterapia , Neoplasias de la Columna Vertebral/secundario , Neoplasias de la Columna Vertebral/radioterapia , Terapia Combinada , Imagen por Resonancia Magnética , Cuidados Paliativos
15.
Strahlenther Onkol ; 200(9): 832-837, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38453698

RESUMEN

PURPOSE: Complex visual hallucinations are rarely seen in neurooncology. They are commonly observed alongside psychotic symptoms in schizophrenia or dementia, in Parkinson's or Lewy-body disease, after opioid medications or anesthesia, and, in particular, they appear with visual impairments. METHODS: Here we report two normal-sighted and mentally healthy patients with unusual visual hallucinations after the resection and irradiation of brain metastases, the main features of which were persistent colorful and meaningful images with hallucinatory perseveration. RESULTS: These cases demonstrate the occurrence of complex visual hallucinations after resection of visual cortices as an effect of deafferentation, so-called visual release hallucinations or phantom images, similar to phantom pain after amputation of a limb. CONCLUSION: This case serves to heighten awareness in the radiooncology practitioner of the occurrence of visual release hallucinations (Charles Bonnet syndrome) related to multidisciplinary treatment of brain metastases.


Asunto(s)
Neoplasias Encefálicas , Anciano , Femenino , Humanos , Masculino , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Síndrome de Charles Bonnet/etiología , Terapia Combinada , Alucinaciones/etiología , Imagen por Resonancia Magnética , Miembro Fantasma/etiología , Complicaciones Posoperatorias
16.
Strahlenther Onkol ; 200(9): 774-784, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38546749

RESUMEN

PURPOSE: Sarcopenia may complicate treatment in cancer patients. Herein, we assessed whether sarcopenia measurements derived from radiation planning computed tomography (CT) were associated with complications and tumor progression during radiochemotherapy for glioblastoma. METHODS: Consecutive patients undergoing radiotherapy planning for glioblastoma between 2010 and 2021 were analyzed. Retrocervical muscle cross-sectional area (CSA) was measured via threshold-based semi-automated radiation planning CT analysis. Patients in the lowest sex-specific quartile of muscle measurements were defined as sarcopenic. We abstracted treatment characteristics and tumor progression from the medical records and performed uni- and multivariable time-to-event analyses. RESULTS: We included 363 patients in our cohort (41.6% female, median age 63 years, median time to progression 7.7 months). Sarcopenic patients were less likely to receive chemotherapy (p < 0.001) and more likely to be treated with hypofractionated radiotherapy (p = 0.005). Despite abbreviated treatment, they more often discontinued radiotherapy (p = 0.023) and were more frequently prescribed corticosteroids (p = 0.014). After treatment, they were more often transferred to inpatient palliative care treatment (p = 0.035). Finally, progression-free survival was substantially shorter in sarcopenic patients in univariable (median 5.1 vs. 8.4 months, p < 0.001) and multivariable modeling (hazard ratio 0.61 [confidence interval 0.46-0.81], p = 0.001). CONCLUSION: Sarcopenia is a strong risk factor for treatment discontinuation and reduced progression-free survival in glioblastoma patients. We propose that sarcopenic patients should receive intensified supportive care during radiotherapy and during follow-up as well as expedited access to palliative care.


Asunto(s)
Neoplasias Encefálicas , Quimioradioterapia , Glioblastoma , Supervivencia sin Progresión , Sarcopenia , Humanos , Sarcopenia/etiología , Glioblastoma/terapia , Glioblastoma/radioterapia , Glioblastoma/mortalidad , Femenino , Masculino , Persona de Mediana Edad , Anciano , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/mortalidad , Tomografía Computarizada por Rayos X , Progresión de la Enfermedad , Planificación de la Radioterapia Asistida por Computador , Hipofraccionamiento de la Dosis de Radiación , Estudios Retrospectivos , Privación de Tratamiento
17.
Strahlenther Onkol ; 200(9): 785-796, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38649484

RESUMEN

BACKGROUND: Alopecia causes significant distress for patients and negatively impacts quality of life for low-grade glioma (LGG) patients. We aimed to compare and evaluate variations in dose distribution for scalp-sparing in LGG patients with proton therapy and photon therapy, namely intensity-modulated proton therapy (IMPT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and helical tomotherapy (HT). METHODS: This retrospective study utilized a dataset comprising imaging data from 22 patients with LGG who underwent postoperative radiotherapy. Treatment plans were generated for each patient with scalp-optimized (SO) approaches and scalp-non-optimized (SNO) approaches using proton techniques and photons techniques; all plans adhered to the same dose constraint of delivering a total radiation dose of 54.04 Gy to the target volume. All treatment plans were subsequently analyzed. RESULTS: All the plans generated in this study met the dose constraints for the target volume and OARs. The SO plans resulted in reduced maximum scalp dose (Dmax), mean scalp dose (Dmean), and volume of the scalp receiving 30 Gy (V30) and 40 Gy (V40) compared with SNO plans in all radiation techniques. Among all radiation techniques, the IMPT plans exhibited superior performance compared to other plans for dose homogeneity as for SO plans. Also, IMPT showed lower values for Dmean and Dmax than all photon radiation techniques. CONCLUSION: Our study provides evidence that the SO approach is a feasible technique for reducing scalp radiation dose. However, it is imperative to conduct prospective trials to assess the benefits associated with this approach.


Asunto(s)
Neoplasias Encefálicas , Glioma , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Cuero Cabelludo , Humanos , Cuero Cabelludo/efectos de la radiación , Glioma/radioterapia , Neoplasias Encefálicas/radioterapia , Femenino , Masculino , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Terapia de Protones/métodos , Tratamientos Conservadores del Órgano/métodos , Traumatismos por Radiación/prevención & control , Traumatismos por Radiación/etiología , Alopecia/etiología , Alopecia/radioterapia , Órganos en Riesgo/efectos de la radiación , Radiometría , Anciano , Clasificación del Tumor , Adulto Joven
18.
Strahlenther Onkol ; 200(6): 535-543, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38453699

RESUMEN

PURPOSE: Vitexin can cooperate with hyperbaric oxygen to sensitize the radiotherapy of glioma by inhibiting the hypoxia-inducible factor (HIF)-1α. However, whether vitexin has a direct radiosensitization and how it affects the HIF-1α expression remain unclear. This study investigated these issues. METHODS: The SU3 cells-inoculated nude mice were divided into control, radiation, and vitexin + radiation groups. The vitexin + radiation-treated mice were intraperitoneally injected with 75 mg/kg vitexin daily for 21 days. On the 3rd, 10th, and 17th days during the vitexin treatment, the radiation-treated mice were locally irradiated with 10 Gy, respectively. In vitro, the microRNA (miR)-17-5p or miR-130b-3p mimics-transfected SU3 cells were used to examine the effects of vitexin plus radiation on expression of miR-17-5p- or miR-130b-3p-induced radioresistance-related pathway proteins. The effects of vitexin on miR-17-5p and miR-130b-3p expression in SU3 cells were also evaluated. RESULTS: Compared with the radiation group, the tumor volume, tumor weight, and expression of HIF-1α, vascular endothelial growth factor, and glucose transporter-1/3 proteins, miR-17-5p, and miR-130b-3p in tumor tissues in the vitexin + radiation group decreased, whereas the expression of phosphatase and tensin homolog (PTEN) protein increased. After treatment of miR-17-5p or miR-130b-3p mimics-transfected SU3 cells with vitexin plus radiation, the PTEN protein expression also increased, the HIF-1α protein expression decreased correspondingly. Moreover, vitexin decreased the miR-17-5p and miR-130b-3p expression in SU3 cells. CONCLUSION: Vitexin can enhance the radiosensitivity of glioma, and its mechanism may partly be related to the attenuation of HIF-1α pathway after lowering the inhibitory effect of miR-17-5p and miR-130b-3p on PTEN.


Asunto(s)
Apigenina , Glioma , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ratones Desnudos , MicroARNs , Fosfohidrolasa PTEN , Tolerancia a Radiación , Animales , MicroARNs/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Apigenina/farmacología , Apigenina/uso terapéutico , Fosfohidrolasa PTEN/genética , Ratones , Glioma/radioterapia , Glioma/patología , Glioma/genética , Glioma/tratamiento farmacológico , Tolerancia a Radiación/efectos de los fármacos , Línea Celular Tumoral , Humanos , Transducción de Señal/efectos de los fármacos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Fármacos Sensibilizantes a Radiaciones/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C
19.
BMC Cancer ; 24(1): 837, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003464

RESUMEN

BACKGROUND: This study aimed to compare the survival outcome and side effects in patients with primary high-grade glioma (HGG) who received carbon ion radiotherapy (CIRT) alone or as a boost strategy after photon radiation (photon + CIRTboost). PATIENTS AND METHODS: Thirty-four (34) patients with histologically confirmed HGG and received CIRT alone or Photon + CIRTboost, with concurrent temozolomide between 2020.03-2023.08 in Wuwei Cancer Hospital & Institute, China were retrospectively reviewed. Overall survival (OS), progression-free survival (PFS), and acute and late toxicities were analyzed and compared. RESULTS: Eight WHO grade 3 and 26 grade 4 patients were included in the analysis. The median PFS in the CIRT alone and Photon + CIRTboost groups were 15 and 19 months respectively for all HGG cases, and 15 and 17.5 months respectively for grade 4 cases. The median OS in the CIRT alone and Photon + CIRTboost groups were 28 and 31 months respectively for all HGG cases, and 21 and 19 months respectively for grade 4 cases. No significant difference in these survival outcomes was observed between the CIRT alone and Photon + CIRTboost groups. Only grade 1 acute toxicities were observed in CIRT alone and Photon + CIRTboost groups. CIRT alone group had a significantly lower ratio of acute toxicities compared to Photon + CIRTboost (3/18 vs. 9/16, p = 0.03). No significant difference in late toxicities was observed. CONCLUSION: Both CIRT alone and Photon + CIRTboost with concurrent temozolomide are safe, without significant differences in PFS and OS in HGG patients. It is meaningful to explore whether dose escalation of CIRTboost might improve survival outcomes of HGG patients in future randomized trials.


Asunto(s)
Glioma , Radioterapia de Iones Pesados , Fotones , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Radioterapia de Iones Pesados/efectos adversos , Radioterapia de Iones Pesados/métodos , Femenino , Masculino , Glioma/radioterapia , Glioma/mortalidad , Glioma/patología , Fotones/uso terapéutico , Fotones/efectos adversos , Adulto , Anciano , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/mortalidad , Temozolomida/uso terapéutico , Clasificación del Tumor , Adulto Joven , Supervivencia sin Progresión , Resultado del Tratamiento
20.
BMC Cancer ; 24(1): 940, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095756

RESUMEN

BACKGROUND: Stereotactic irradiation has become the mainstay treatment for brain metastases (BM), and whole-brain radiotherapy (WBRT) is often used for symptom palliation. However, the survival time of patients with BM undergoing palliative WBRT (pWBRT) is limited, making it difficult to select patients who should receive treatment. METHODS: We collected patient data from 2016 to 2022 at the Shizuoka Cancer Center and retrospectively analyzed the factors related to survival time. Overall survival (OS) was defined as the survival time after WBRT. RESULTS: A total of 301 patients (median age, 66 years) who underwent pWBRT were included. The primary cancers were lung, breast, gastrointestinal tract, and other cancers in 203 (67%), 38 (13%), 33 (11%), and 27 (9%) patients, respectively. Median OS of all patients was 4.1 months. In the multivariate analysis, male sex (hazard ratio [HR]:1.4), Karnofsky Performance Status (KPS) ≤ 60 (HR:1.7), presence of extracranial metastasis (ECM) (HR:1.6), neutrophil-lymphocyte ratio (NLR) ≥ 5 (HR:1.6), and lactate dehydrogenase (LDH) ≥ upper limit of normal (ULN) (HR:1.3) were significantly associated with shorter OS (all P < 0.05). To predict the OS, we created a prognostic scoring system (PSS). We gave one point to each independent prognostic factor. Median OS for patients with scores of 0-2, 3, and 4-5 were 9.0, 3.5 and 1.7 months, respectively (P < 0.001). CONCLUSIONS: Male sex, KPS ≤ 60, presence of ECM, NLR ≥ 5, and LDH ≥ ULN were poor prognostic factors for patients with BM undergoing pWBRT. By PSS combining these factors, it may be possible to select patients who should undergo pWBRT.


Asunto(s)
Neoplasias Encefálicas , Irradiación Craneana , Cuidados Paliativos , Radiocirugia , Humanos , Masculino , Femenino , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/mortalidad , Radiocirugia/métodos , Anciano , Cuidados Paliativos/métodos , Pronóstico , Persona de Mediana Edad , Estudios Retrospectivos , Anciano de 80 o más Años , Irradiación Craneana/métodos , Adulto , Estado de Ejecución de Karnofsky
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA