Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Anat ; 237(3): 427-438, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32786168

RESUMEN

Trunk muscles in vertebrates are classified as either dorsal epaxial or ventral hypaxial muscles. Epaxial and hypaxial muscles are defined as muscles innervated by the dorsal and ventral rami of spinal nerves, respectively. Each cluster of spinal motor neurons passing through dorsal rami innervates epaxial muscles, whereas clusters traveling on the ventral rami innervate hypaxial muscles. Herein, we show that some motor neurons exhibiting molecular profiles for epaxial muscles follow a path in the ventral rami. Dorsal deep-shoulder muscles and some body wall muscles are defined as hypaxial due to innervation via the ventral rami, but a part of these ventral rami has the molecular profile of motor neurons that innervate epaxial muscles. Thus, the epaxial and hypaxial boundary cannot be determined simply by the ramification pattern of spinal nerves. We propose that, although muscle innervation occurs via the ventral rami, dorsal deep-shoulder muscles and some body wall muscles represent an intermediate group that lies between epaxial and hypaxial muscles.


Asunto(s)
Neuronas Motoras/citología , Músculo Esquelético/inervación , Somitos/inervación , Nervios Espinales/embriología , Animales , Tipificación del Cuerpo , Embrión de Pollo , Coturnix , Músculo Esquelético/embriología , Tubo Neural , Somitos/embriología , Torso/embriología , Torso/inervación
2.
Dev Biol ; 442(1): 101-114, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29944871

RESUMEN

During amniote peripheral nervous system development, segmentation ensures the correct patterning of the spinal nerves relative to the vertebral column. Along the antero-posterior (rostro-caudal) axis, each somite-derived posterior half-sclerotome expresses repellent molecules to restrict axon growth and neural crest migration to the permissive anterior half-segment. To identify novel regulators of spinal nerve patterning, we investigated the differential gene expression of anterior and posterior half-sclerotomes in the chick embryo by RNA-sequencing. Several genes encoding extracellular matrix proteins were found to be enriched in either anterior (e.g. Tenascin-C, Laminin alpha 4) or posterior (e.g. Fibulin-2, Fibromodulin, Collagen VI alpha 2) half-sclerotomes. Among them, the extracellular matrix protein Fibulin-2 was found specifically restricted to the posterior half-sclerotome. By using in ovo ectopic expression in chick somites, we found that Fibulin-2 modulates spinal axon growth trajectories in vivo. While no intrinsic axon repellent activity of Fibulin-2 was found, we showed that it enhances the growth cone repulsive activity of Semaphorin 3A in vitro. Some molecules regulating axon growth during development are found to be upregulated in the adult central nervous system (CNS) following traumatic injury. Here, we found increased Fibulin-2 protein levels in reactive astrocytes at the lesion site of a mouse model of CNS injury. Together, these results suggest that the developing vertebral column and the adult CNS share molecular features that control axon growth and plasticity, which may open up the possibility for the identification of novel therapeutic targets for brain and spinal cord injury.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Proteínas de la Matriz Extracelular/fisiología , Nervios Espinales/embriología , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Axones/fisiología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/fisiología , Embrión de Pollo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Ratones , Cresta Neural/metabolismo , Cresta Neural/fisiología , Semaforina-3A/metabolismo , Somitos/fisiología , Médula Espinal/metabolismo , Médula Espinal/fisiología
3.
Proc Natl Acad Sci U S A ; 110(43): 17528-33, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24101487

RESUMEN

Rhythmic waves of spontaneous electrical activity are widespread in the developing nervous systems of birds and mammals, and although many aspects of neural development are activity-dependent, it has been unclear if rhythmic waves are required for in vivo motor circuit development, including the proper targeting of motoneurons to muscles. We show here that electroporated channelrhodopsin-2 can be activated in ovo with light flashes to drive waves at precise intervals of approximately twice the control frequency in intact chicken embryos. Optical monitoring of associated axial movements ensured that the altered frequency was maintained. In embryos thus stimulated, motor axons correctly executed the binary dorsal-ventral pathfinding decision but failed to make the subsequent pool-specific decision to target to appropriate muscles. This observation, together with the previous demonstration that slowing the frequency by half perturbed dorsal-ventral but not pool-specific pathfinding, shows that modest changes in frequency differentially disrupt these two major pathfinding decisions. Thus, many drugs known to alter early rhythmic activity have the potential to impair normal motor circuit development, and given the conservation between mouse and avian spinal cords, our observations are likely relevant to mammals, where such studies would be difficult to carry out.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Neuronas Motoras/fisiología , Optogenética/métodos , Potenciales de Acción/efectos de la radiación , Animales , Proteínas Aviares/metabolismo , Embrión de Pollo , Electromiografía , Luz , Modelos Neurológicos , Neuronas Motoras/metabolismo , Contracción Muscular/fisiología , Contracción Muscular/efectos de la radiación , Periodicidad , Músculo Cuádriceps/embriología , Músculo Cuádriceps/fisiología , Rodopsina/metabolismo , Nervios Espinales/embriología , Nervios Espinales/fisiología
4.
Cell Mol Life Sci ; 71(5): 813-29, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23765105

RESUMEN

Understanding how thousands of different neuronal types are generated in the CNS constitutes a major challenge for developmental neurobiologists and is a prerequisite before considering cell or gene therapies of nervous lesions or pathologies. During embryonic development, spinal motor neurons (MNs) segregate into distinct subpopulations that display specific characteristics and properties including molecular identity, migration pattern, allocation to specific motor columns, and innervation of defined target. Because of the facility to correlate these different characteristics, the diversification of spinal MNs has become the model of choice for studying the molecular and cellular mechanisms underlying the generation of multiple neuronal populations in the developing CNS. Therefore, how spinal motor neuron subpopulations are produced during development has been extensively studied during the last two decades. In this review article, we will provide a comprehensive overview of the genetic and molecular mechanisms that contribute to the diversification of spinal MNs.


Asunto(s)
Diferenciación Celular/fisiología , Modelos Biológicos , Neuronas Motoras/citología , Neurogénesis/fisiología , Transducción de Señal/fisiología , Nervios Espinales/citología , Nervios Espinales/embriología , Proteínas de Homeodominio/metabolismo , Humanos , Neuronas Motoras/clasificación
5.
BMC Biol ; 10: 4, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22289422

RESUMEN

BACKGROUND: During nerve growth, cytoplasmic vesicles add new membrane preferentially to the growth cone located at the distal tip of extending axons. Growth cone membrane is also retrieved locally, and asymmetric retrieval facilitates membrane remodeling during growth cone repulsion by a chemorepellent gradient. Moreover, growth inhibitory factors can stimulate bulk membrane retrieval and induce growth cone collapse. Despite these functional insights, the processes mediating local membrane remodeling during axon extension remain poorly defined. RESULTS: To investigate the spatial and temporal dynamics of membrane retrieval in actively extending growth cones, we have used a transient labeling and optical recording method that can resolve single vesicle events. Live-cell confocal imaging revealed rapid membrane retrieval by distinct endocytic modes based on spatial distribution in Xenopus spinal neuron growth cones. These modes include endocytic "hot-spots" triggered at the base of filopodia, at the lateral margins of lamellipodia, and along dorsal ridges of the growth cone. Additionally, waves of endocytosis were induced when individual filopodia detached from the substrate and fused with the growth cone dorsal surface or with other filopodia. Vesicle formation at sites of membrane remodeling by self-contact required F-actin polymerization. Moreover, bulk membrane retrieval by macroendocytosis correlated positively with the substrate-dependent rate of axon extension and required the function of Rho-family GTPases. CONCLUSIONS: This study provides insight into the dynamic membrane remodeling processes essential for nerve growth by identifying several distinct modes of rapid membrane retrieval in the growth cone during axon extension. We found that endocytic membrane retrieval is intensified at specific subdomains and may drive the dynamic membrane ruffling and re-absorption of filopodia and lamellipodia in actively extending growth cones. The findings offer a platform for determining the molecular mechanisms of distinct endocytic processes that may remodel the surface distribution of receptors, ion channels and other membrane-associated proteins locally to drive growth cone extension and chemotactic guidance.


Asunto(s)
Membrana Celular/metabolismo , Nervios Espinales/embriología , Imagen de Lapso de Tiempo , Xenopus/embriología , Animales , Células Cultivadas , Endocitosis , Femenino , Masculino , Vesículas Transportadoras/metabolismo , Vacuolas/metabolismo
6.
Eur J Neurosci ; 35(8): 1230-41, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22339904

RESUMEN

Spontaneous embryonic movements, called embryonic motility, are produced by correlated spontaneous activity in the cranial and spinal nerves, which is driven by brainstem and spinal networks. Using optical imaging with a voltage-sensitive dye, we have revealed previously that this correlated activity is a widely propagating wave of neural depolarization, which we termed the depolarization wave. We have observed in the chick and rat embryos that the activity spread over an extensive region of the CNS, including the spinal cord, hindbrain, cerebellum, midbrain and forebrain. One important consideration is whether a depolarization wave with similar characteristics occurs in other species, especially in different mammals. Here, we provide evidence for the existence of the depolarization wave in the mouse embryo by showing that the widely propagating wave appeared independently of the localized spontaneous activity detected previously with Ca(2+) imaging. Furthermore, we mapped the origin of the depolarization wave and revealed that the wave generator moved from the rostral spinal cord to the caudal cord as development proceeded, and was later replaced with mature rhythmogenerators. The present study, together with an accompanying paper that describes pharmacological properties of the mouse depolarization wave, shows that a synchronized wave with common characteristics is expressed in different species, suggesting fundamental roles in neural development.


Asunto(s)
Encéfalo/fisiología , Embrión de Mamíferos/fisiología , Potenciales de la Membrana/fisiología , Médula Espinal/fisiología , Imagen de Colorante Sensible al Voltaje , Factores de Edad , Animales , Encéfalo/embriología , Mapeo Encefálico , Estimulación Eléctrica , Ratones , Ratones Endogámicos ICR , Cloruro de Potasio/farmacología , Médula Espinal/anatomía & histología , Médula Espinal/embriología , Nervios Espinales/embriología , Nervios Espinales/fisiología , Nervio Vago/embriología , Nervio Vago/fisiología
7.
J Anat ; 220(6): 591-602, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22458512

RESUMEN

We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline.


Asunto(s)
Tipificación del Cuerpo/fisiología , Columna Vertebral/embriología , Animales , Embrión de Pollo , Tubo Neural/embriología , Tubo Neural/fisiología , Notocorda/embriología , Notocorda/fisiología , Factores de Transcripción Paired Box/metabolismo , Nervios Espinales/embriología , Nervios Espinales/fisiología , Columna Vertebral/fisiología
8.
Dev Dyn ; 240(1): 9-22, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21108318

RESUMEN

We isolated a novel zebrafish mutant, lullaby (llb), and showed that the llb locus encodes the zebrafish orthologue of isl1. Rohon-Beard (RB) primary sensory neurons are multipolar neurons that extend their central axons longitudinally within the spinal cord and also extend their peripheral axons under the skin. In llb embryos, the outgrowth of the peripheral axons of RB neurons was selectively impaired, which correlated with down-regulation of the expression of dihydropyrimidinase-like 3 (dpysl3, also known as collapsin response mediator protein 4, crmp4). Antisense morpholino oligonucleotide (AMO)-mediated knockdown of dpysl3 inhibited the outgrowth of the peripheral axons of RB neurons, and semaphorin 3d (sema3d) AMO enhanced this effect. These data indicate that Dpysl3 is cooperating with Sema3d in the peripheral axon outgrowth, and Isl1 is required for the selective outgrowth of the peripheral axons of RB neurons by maintaining the expression of dpysl3.


Asunto(s)
Axones/fisiología , Proteínas de Homeodominio/fisiología , Proteínas del Tejido Nervioso/fisiología , Células Receptoras Sensoriales/fisiología , Proteínas de Pez Cebra/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Secuencia de Bases , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Sitios Genéticos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Modelos Biológicos , Datos de Secuencia Molecular , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Mutación/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células Receptoras Sensoriales/metabolismo , Homología de Secuencia , Nervios Espinales/anomalías , Nervios Espinales/embriología , Nervios Espinales/metabolismo , Factores de Transcripción , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
J Anat ; 219(6): 756-65, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21954879

RESUMEN

Fetal development of human deep back muscles has not yet been fully described, possibly because of the difficulty in identifying muscle bundle directions in horizontal sections. Here, we prepared near-frontal sections along the thoracic back skin (eight fetuses) as well as horizontal sections (six fetuses) from 14 mid-term fetuses at 9-15 weeks of gestation. In the deep side of the trapezius and rhomboideus muscles, the CD34-positive thoracolumbar fascia was evident even at 9 weeks. Desmin-reactivity was strong and homogeneous in the superficial muscle fibers in contrast to the spotty expression in the deep fibers. Thus, in back muscles, formation of the myotendinous junction may start from the superficial muscles and advance to the deep muscles. The fact that developing intramuscular tendons were desmin-negative suggested little possibility of a secondary change from the muscle fibers to tendons. We found no prospective spinalis muscle or its tendinous connections with other muscles. Instead, abundant CD68-positive macrophages along the spinous process at 15 weeks suggested a change in muscle attachment, an event that may result in a later formation of the spinalis muscle. S100-positive intramuscular nerves exhibited downward courses from the multifidus longus muscle in the original segment to the rotatores brevis muscles in the inferiorly adjacent level. The medial cutaneous nerve had already reached the thoracolumbar fascia at 9 weeks, but by 15 weeks the nerve could not penetrate the trapezius muscle. Finally, we propose a folded myotomal model of the primitive transversospinalis muscle that seems to explain a fact that the roofing tile-like configuration of nerve twigs in the semispinalis muscle is reversed in the multifidus and rotatores muscles.


Asunto(s)
Dorso , Músculo Esquelético/embriología , Nervios Espinales/embriología , Humanos , Inmunohistoquímica , Músculo Esquelético/inervación , Nervios Espinales/anatomía & histología , Vértebras Torácicas
10.
World Neurosurg ; 135: 352-356, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31838236

RESUMEN

The C1 spinal nerve is a fascinating anatomic structure owing to its wide range of variations. Throughout history, understanding of the cranial and spinal nerves has probably influenced the current conception of this nerve among anatomists. Located at the craniocervical junction, the C1 spinal nerve contributes to the motor innervation of deep cervical muscles through the cervical (anterior) and Cruveilhier's (posterior) plexuses. Sensory functions of this nerve are more enigmatic; despite investigations into its dorsal rootlets, a dorsal root ganglion, and the relationships between this nerve and adjacent cranial and spinal nerves, there is still no consensus regarding its true anatomy. In this article, we review the available literature and discuss some of the developmental models that could potentially explain the wide range of variations and functions of the C1 nerve.


Asunto(s)
Nervios Espinales/anatomía & histología , Nervios Espinales/fisiología , Plexo Cervical/anatomía & histología , Plexo Cervical/embriología , Plexo Cervical/fisiología , Humanos , Nervios Espinales/embriología
11.
Elife ; 92020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33048048

RESUMEN

The cerebrospinal fluid (CSF) contains an extracellular thread conserved in vertebrates, the Reissner fiber, which controls body axis morphogenesis in the zebrafish embryo. Yet, the signaling cascade originating from this fiber to ensure body axis straightening is not understood. Here, we explore the functional link between the Reissner fiber and undifferentiated spinal neurons contacting the CSF (CSF-cNs). First, we show that the Reissner fiber is required in vivo for the expression of urp2, a neuropeptide expressed in CSF-cNs. We show that the Reissner fiber is also required for embryonic calcium transients in these spinal neurons. Finally, we study how local adrenergic activation can substitute for the Reissner fiber-signaling pathway to CSF-cNs and rescue body axis morphogenesis. Our results show that the Reissner fiber acts on CSF-cNs and thereby contributes to establish body axis morphogenesis, and suggest it does so by controlling the availability of a chemical signal in the CSF.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Neuronas/fisiología , Nervios Espinales/embriología , Pez Cebra/embriología , Animales , Embrión no Mamífero/embriología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Expresión Génica , Morfogénesis/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Transducción de Señal , Pez Cebra/genética
12.
Elife ; 92020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32452761

RESUMEN

Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate aberrant nerve terminal growth.


Asunto(s)
Orientación del Axón/fisiología , Proteínas de la Membrana/metabolismo , Óxido Nítrico/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Transducción de Señal , Animales , Astrocitos/fisiología , Línea Celular , Embrión de Pollo , Pollos , Biología Evolutiva , Técnicas de Silenciamiento del Gen , Conos de Crecimiento/fisiología , Humanos , Proteínas de la Membrana/genética , Neurociencias , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Disulfuro Isomerasas/genética , Ratas , Somitos/embriología , Somitos/fisiología , Nervios Espinales/embriología , Nervios Espinales/fisiología
13.
BMC Dev Biol ; 9: 30, 2009 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-19463158

RESUMEN

BACKGROUND: The polarization of somite-derived sclerotomes into anterior and posterior halves underlies vertebral morphogenesis and spinal nerve segmentation. To characterize the full extent of molecular differences that underlie this polarity, we have undertaken a systematic comparison of gene expression between the two sclerotome halves in the mouse embryo. RESULTS: Several hundred genes are differentially-expressed between the two sclerotome halves, showing that a marked degree of molecular heterogeneity underpins the development of somite polarity. CONCLUSION: We have identified a set of genes that warrant further investigation as regulators of somite polarity and vertebral morphogenesis, as well as repellents of spinal axon growth. Moreover the results indicate that, unlike the posterior half-sclerotome, the central region of the anterior-half-sclerotome does not contribute bone and cartilage to the vertebral column, being associated instead with the development of the segmented spinal nerves.


Asunto(s)
Somitos/citología , Nervios Espinales/citología , Nervios Espinales/embriología , Animales , Tipificación del Cuerpo/fisiología , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Ratones , Neurogénesis , ARN/metabolismo , Somitos/embriología , Somitos/metabolismo , Nervios Espinales/metabolismo
14.
J Cell Biol ; 51(3): 703-21, 1971 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-4256859

RESUMEN

Acetylcholinesterase (AChE) activity has been studied in the myoblast of skeletal muscle of the 9-13 day fetal rabbit. Cytochemical activity is present in the nuclear envelope and the endoplasmic reticulum, including its derivatives the subsurface reticulum and the sarcoplasmic reticulum. End product is also found in the Golgi complex of the more differentiated myoblasts. The formation of reticulum-bound acetylcholinesterase in the myoblast appears to be independent of nerve-muscle contact, since the enzyme is present before the outgrowth of the spinal nerve. The nerve lacks cytochemical end product until the myoblast is well differentiated. Possible mechanisms of spontaneous muscle contraction have been discussed. A second type of myotomal cell, which exhibits a poorly localized end product of AChE activity, has been described. The ready solubility of the enzyme or diffusibility of its end product suggests that the enzyme may be a lyoesterase. This cell may be the precursor of the morphologically undifferentiated cell which is closely apposed to the myotubes in later stages of skeletal muscle development. Biochemical studies show a significant increase in AChE activity in the dermomyotome by day 12, when many of the myoblasts are well differentiated and the second type of myotomal cell is prominent. Cytochemical studies have indicated that many of the cells in the sample lack reaction product of enzymic activity, whereas others are very active. Biochemical values, therefore, reflect the amount of enzyme in the dermomyotome as a whole, but give little information on the enzymic content of individual cells.


Asunto(s)
Acetilcolinesterasa/análisis , Músculos/enzimología , Animales , Axones/enzimología , Isótopos de Carbono , Diferenciación Celular , Nucléolo Celular , Núcleo Celular/enzimología , Colina , Medios de Cultivo , Citoplasma/enzimología , Retículo Endoplásmico/enzimología , Eritrocitos/enzimología , Ganglios Espinales/embriología , Edad Gestacional , Aparato de Golgi/enzimología , Histocitoquímica , Microscopía Electrónica , Microscopía de Contraste de Fase , Mitocondrias Musculares , Contracción Muscular , Husos Musculares/citología , Músculos/citología , Músculos/embriología , Conejos , Retículo Sarcoplasmático/enzimología , Células de Schwann/enzimología , Nervios Espinales/citología , Nervios Espinales/embriología , Factores de Tiempo
15.
Science ; 254(5034): 1019-22, 1991 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-1658939

RESUMEN

The development and stability of synaptic connections in the nervous system are influenced by the pattern of electrical activity and the competitive interaction between the adjacent nerve terminals. To investigate this influence, a culture system of nerve and muscle cells has been developed in which a single embryonic muscle cell is coinnervated by two spinal neurons. The effect of electrical activity on the synaptic efficacy was examined after repetitive electrical stimulation was applied to one or both neurons. Brief tetanic stimulation of one neuron resulted in immediate functional suppression of the synapse made by the unstimulated neuron innervating the same muscle cell. This heterosynaptic suppression was largely absent when the tetanic stimulation was applied concurrently to both neurons. This result demonstrates that activity-dependent synaptic competition can be studied in vitro at a cellular level.


Asunto(s)
Músculos/inervación , Unión Neuromuscular/fisiología , Nervios Espinales/embriología , Sinapsis/fisiología , Animales , Células Cultivadas , Estimulación Eléctrica , Técnicas In Vitro , Contracción Muscular , Músculos/embriología , Músculos/fisiología , Unión Neuromuscular/embriología , Nervios Espinales/fisiología , Transmisión Sináptica , Xenopus laevis
16.
Birth Defects Res A Clin Mol Teratol ; 85(9): 791-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19452514

RESUMEN

BACKGROUND: Clinical studies and research in animals have established that alcohol consumption during pregnancy produces irreversible developmental anomalies. Deficits in fine motor performance are often noted in infants diagnosed with fetal alcohol syndrome. However, the effects of alcohol on the spinal motoneurons have not been examined. In this study, the morphometric alterations in spinal motoneurons were assessed as a result of prenatal alcohol exposure. METHODS: Pregnant Sprague Dawley rats were administered with 1.0 ml of 20% ethyl alcohol per 100 gm body weight via intraperitoneal injections, and unexposed rats served as controls. Rats were perfused through the left cardiac ventricle and a complete laminectomy was performed. Spinal cord sections from the L4-5 segments were cut serially and stained for cresyl fast violet. Sections were also subjected to TUNEL assay for detection of apoptosis. Observations were made between 1 and 4 weeks after birth. RESULTS: Morphologic characteristics of motoneurons in the alcohol-exposed group of rats were altered. Counts and measurements revealed significant reduction in number and size of alcohol-exposed spinal motoneurons at all time points studied. CONCLUSIONS: Prenatal exposure to alcohol showed cytotoxic effects whereby it adversely affected both motoneuron growth and differentiation in utero.


Asunto(s)
Depresores del Sistema Nervioso Central/toxicidad , Etanol/toxicidad , Trastornos del Espectro Alcohólico Fetal/patología , Neuronas Motoras/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Nervios Espinales/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Trastornos del Espectro Alcohólico Fetal/etiología , Masculino , Exposición Materna , Neuronas Motoras/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Ratas , Ratas Sprague-Dawley , Nervios Espinales/embriología , Nervios Espinales/patología
17.
Folia Morphol (Warsz) ; 68(2): 84-7, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19449294

RESUMEN

The nerves to the cervical and thoracic vertebrae were traced in 10 serially sectioned human embryos. It was found that the vertebral bodies receive nerve fibres from the trunks of the spinal nerves, anterior branches and meningeal branches of the spinal nerves, and from the sympathetic trunks. Slender twigs from the trunk of the spinal nerve arise close to the spinal ganglion and terminate in the posterior and lateral surfaces of the vertebrae. Fibres from the anterior branches of the spinal nerves terminate in the lateral and anterior surfaces of the vertebrae. Thin rami from the sympathetic trunk reach the anterior surface of the vertebrae.


Asunto(s)
Vértebras Cervicales/embriología , Vértebras Cervicales/inervación , Feto/inervación , Primer Trimestre del Embarazo , Vértebras Torácicas/embriología , Vértebras Torácicas/inervación , Femenino , Humanos , Embarazo , Nervios Espinales/anatomía & histología , Nervios Espinales/embriología , Sistema Nervioso Simpático/anatomía & histología , Sistema Nervioso Simpático/embriología
18.
Neuron ; 19(3): 519-30, 1997 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9331345

RESUMEN

The molecules of the collapsin/semaphorin gene family have been thought to play an essential role in axon guidance during development. Semaphorin III/D is a member of this family, has been shown to repel dorsal root ganglion (DRG) axons in vitro, and has been implicated in the patterning of sensory afferents in the spinal cord. Although semaphorin III/D mRNA is expressed in a wide variety of neural and nonneural tissues in vivo, the role played by semaphorin III/D in regions other than the spinal cord is not known. Here, we show that mice homozygous for a targeted mutation in semaphorin III/D show severe abnormality in peripheral nerve projection. This abnormality is seen in the trigeminal, facial, vagus, accessory, and glossopharyngeal nerves but not in the oculomotor nerve. These results suggest that semaphorin III/D functions as a selective repellent in vivo.


Asunto(s)
Glicoproteínas/genética , Factores de Crecimiento Nervioso/genética , Sistema Nervioso Periférico/anomalías , Sistema Nervioso Periférico/embriología , Vías Aferentes , Animales , Axones/fisiología , Embrión de Pollo , Quimera , Ojo/embriología , Ojo/inervación , Cara/embriología , Cara/inervación , Nervio Facial/anomalías , Nervio Facial/embriología , Galactósidos , Ganglios Espinales/citología , Ganglios Espinales/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Nervio Glosofaríngeo/anomalías , Nervio Glosofaríngeo/embriología , Glicoproteínas/deficiencia , Homocigoto , Indoles , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis/fisiología , Factores de Crecimiento Nervioso/deficiencia , Nervio Oculomotor/embriología , Semaforina-3A , Nervios Espinales/embriología , Coloración y Etiquetado , Nervio Trigémino/anomalías , Nervio Trigémino/embriología , Nervio Vago/anomalías , Nervio Vago/embriología
19.
J Physiol ; 586(4): 1059-75, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18096599

RESUMEN

Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride equilibrium potential (E(Cl)) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated with a NKCC1 down-regulation. Here, we show in mouse embryonic spinal cord that both KCC2 and NKCC1 are expressed and functional early in development (E11.5-E13.5) when GABA(A) receptor activation induces strong excitatory action. After E15.5, a switch occurs rendering GABA unable to provide excitation. At these subsequent stages, NKCC1 becomes both inactive and less abundant in motoneurons while KCC2 remains functional and hyperpolarizes E(Cl). In conclusion, in contrast to other systems, the cotransporters are concomitantly expressed early in the development of the mouse spinal cord. Moreover, whereas NKCC1 follows a classical functional extinction, KCC2 is highly expressed throughout both early and late embryonic life.


Asunto(s)
Cloruros/metabolismo , Neuronas Motoras/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Nervios Espinales/embriología , Potenciales de Acción/fisiología , Animales , Fenómenos Biofísicos , Biofisica , Bumetanida/farmacología , Femenino , Furosemida/farmacología , Agonistas del GABA/farmacología , Ácidos Isonicotínicos/farmacología , Ratones , Neuronas Motoras/efectos de los fármacos , Técnicas de Placa-Clamp , Embarazo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Miembro 2 de la Familia de Transportadores de Soluto 12 , Nervios Espinales/metabolismo , Simportadores/metabolismo , Cotransportadores de K Cl
20.
Neurotoxicology ; 29(2): 203-12, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18304643

RESUMEN

Types I and II pyrethroid insecticides cause temporally distinct decreases in voltage-gated sodium channel (VGSC) inactivation rates that are proposed to underlie their characteristic differences in toxicity signs. How alterations in VGSC channel function give rise to the characteristic differences in signs of pyrethroid intoxication is not completely understood, particularly those changes that occur in functional networks of interconnected neurons. To characterize better pyrethroid actions at the network level, effects of the Type I pyrethroid permethrin (PM) and the Type II pyrethroid deltamethrin (DM) on spontaneous glutamate network-dependent spikes and bursts were investigated in primary cultures of frontal cortex or spinal cord neurons grown on microelectrode arrays (MEAs). Fast GABAergic transmission was blocked by BIC, and concentration-dependent effects of DM (1nM to 5microM) and PM (10nM to 50microM) were examined. Both compounds caused concentration-dependent reductions in the network spike and burst rates. DM was more potent than PM, with IC(50) values of approximately 0.13 and approximately 4microM for inhibition of spike rate in cortical and spinal cord neurons, respectively. Both compounds decreased the percentage of spikes that occurred within a burst and increased the interspike interval within bursts. Onset of effects was rapid, but recovery from total activity loss was not readily achievable. Individual neurons responded heterogeneously; activity of most declined monophasically, but activity in others exhibited biphasic responses with increases followed by decreases in activity. In spinal cord, DM caused a greater number of biphasic responses (29%) than PM (10%). These results demonstrate that both DM and PM inhibit activity of glutamatergic networks, but with different potencies.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Insecticidas/toxicidad , Red Nerviosa/efectos de los fármacos , Inhibición Neural , Neuronas/efectos de los fármacos , Nitrilos/toxicidad , Permetrina/toxicidad , Piretrinas/toxicidad , Nervios Espinales/efectos de los fármacos , Animales , Células Cultivadas , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Relación Dosis-Respuesta a Droga , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ácido Glutámico/metabolismo , Ratones , Ratones Endogámicos ICR , Análisis por Micromatrices , Microelectrodos , Red Nerviosa/embriología , Red Nerviosa/metabolismo , Neuronas/metabolismo , Nervios Espinales/embriología , Nervios Espinales/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA