RESUMEN
Pneumocystis jirovecii is a ubiquitous opportunistic fungus that can cause life-threatening pneumonia. People with HIV (PWH) who have low CD4 counts are one of the populations at the greatest risk of Pneumocystis jirovecii pneumonia (PCP). While guidelines have approached the diagnosis, prophylaxis, and management of PCP, the numerous studies of PCP in PWH are dominated by the 1980s and 1990s. As such, most studies have included younger male populations, despite PCP affecting both sexes and a broad age range. Many studies have been small and observational in nature, with an overall lack of randomized controlled trials. In many jurisdictions, and especially in low- and middle-income countries, the diagnosis can be challenging due to lack of access to advanced and/or invasive diagnostics. Worldwide, most patients will be treated with 21 days of high-dose trimethoprim sulfamethoxazole, although both the dose and the duration are primarily based on historical practice. Whether treatment with a lower dose is as effective and less toxic is gaining interest based on observational studies. Similarly, a 21-day tapering regimen of prednisone is used for patients with more severe disease, yet other doses, other steroids, or shorter durations of treatment with corticosteroids have not been evaluated. Now with the widespread availability of antiretroviral therapy, improved and less invasive PCP diagnostic techniques, and interest in novel treatment strategies, this review consolidates the scientific body of literature on the diagnosis and management of PCP in PWH, as well as identifies areas in need of more study and thoughtfully designed clinical trials.
Asunto(s)
Infecciones por VIH , Pneumocystis carinii , Neumonía por Pneumocystis , Femenino , Humanos , Masculino , Neumonía por Pneumocystis/diagnóstico , Neumonía por Pneumocystis/tratamiento farmacológico , Neumonía por Pneumocystis/prevención & control , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico , Combinación Trimetoprim y Sulfametoxazol/farmacologíaRESUMEN
Pneumocystis pneumonia (PCP) is a fungal pulmonary disease with high mortality in immunocompromised patients. Neutrophils are essential in defending against fungal infections; however, their role in PCP is controversial. Here we aim to investigate the effects of neutrophil extracellular traps (NETs) on Pneumocystis clearance and lung injury using a mouse model of PCP. Intriguingly, although neutrophils play a fundamental role in defending against fungal infections, NETs failed to eliminate Pneumocystis, but instead impaired the killing of Pneumocystis. Mechanically, Pneumocystis triggered Leukotriene B4 (LTB4)-dependent neutrophil swarming, leading to agglutinative NET formation. Blocking Leukotriene B4 with its receptor antagonist Etalocib significantly reduced the accumulation and NET release of neutrophils in vitro and in vivo, enhanced the killing ability of neutrophils against Pneumocystis, and alleviated lung injury in PCP mice. This study identifies the deleterious role of agglutinative NETs in Pneumocystis infection and reveals a new way to prevent NET formation, which provides new insights into the pathogenesis of PCP.
Asunto(s)
Trampas Extracelulares , Leucotrieno B4 , Neutrófilos , Pneumocystis , Neumonía por Pneumocystis , Trampas Extracelulares/inmunología , Animales , Ratones , Neutrófilos/inmunología , Neumonía por Pneumocystis/inmunología , Leucotrieno B4/metabolismo , Leucotrieno B4/inmunología , Pneumocystis/inmunología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , HumanosRESUMEN
High levels of IFN-γ are produced in the lung during an adaptive immune response to Pneumocystis, but the effects of this prototypical Th1 cytokine on fungal clearance and immunopathogenesis have not been fully defined. Therefore, Pneumocystis-infected immunodeficient mice were immune reconstituted and administered control or anti-IFN-γ neutralizing Ab to determine how IFN-γ regulates the balance between host defense and immune-mediated lung injury. Mice treated with anti-IFN-γ demonstrated an initial worsening of Pneumocystis pneumonia-related immunopathogenesis, with greater weight loss, heightened lung inflammation, and more severe pulmonary function deficits than control mice. However, IFN-γ neutralization also enhanced macrophage phagocytosis of Pneumocystis and accelerated fungal clearance. When anti-IFN-γ-treated mice were also given IL-4 and IL-13 to promote a Th2-biased lung environment, the accelerated fungal clearance was preserved, but the severity of immunopathogenesis was reduced, and a more rapid recovery was observed. A direct suppressive effect of IFN-γ on macrophages was required but was not solely responsible for delayed fungal clearance, suggesting that IFN-γ acts through multiple mechanisms that likely include modulation of both macrophage and Th polarization. Enhanced Pneumocystis clearance in anti-IFN-γ-treated and IFN-γR-deficient mice was associated with significantly elevated IL-17+ CD4+ T cells and IL-17 protein in the lungs. Furthermore, neutralization of IL-17, but not IL-4, signaling blocked the accelerated fungal clearance observed in anti-IFN-γ-treated mice. Together, these data demonstrate that although IFN-γ delays fungal clearance by suppressing the lung Th17 response, it also serves an important regulatory role that limits immunopathogenesis and preserves pulmonary function.
Asunto(s)
Pneumocystis , Neumonía por Pneumocystis , Animales , Ratones , Neumonía por Pneumocystis/microbiología , Neumonía por Pneumocystis/patología , Interleucina-17 , Pulmón , Interferón gamma , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
CD40-CD40 ligand interactions are critical for controlling Pneumocystis infection. However, which CD40-expressing cell populations are important for this interaction have not been well defined. We used a cohousing mouse model of Pneumocystis infection, combined with flow cytometry and quantitative polymerase chain reaction, to examine the ability of different populations of cells from C57BL/6 mice to reconstitute immunity in CD40 knockout mice. Unfractionated splenocytes, as well as purified B cells, were able to control Pneumocystis infection, while B cell-depleted splenocytes and unstimulated bone marrow-derived dendritic cells were unable to control infection in CD40 knockout mice. Pneumocystis antigen-pulsed bone marrow-derived dendritic cells showed early but limited control of infection. Additional findings were consistent with recent studies that suggested a role for antigen presentation by B cells; specifically, by using cells from immunized animals, B cells were able to present Pneumocystis antigens to induce proliferation of T cells. Thus, CD40 expression by B cells appears necessary for robust immunity to Pneumocystis.
Asunto(s)
Linfocitos B , Antígenos CD40 , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Antígenos CD40/inmunología , Antígenos CD40/metabolismo , Linfocitos B/inmunología , Ratones , Pneumocystis/inmunología , Infecciones por Pneumocystis/inmunología , Infecciones por Pneumocystis/microbiología , Células Dendríticas/inmunología , Neumonía por Pneumocystis/inmunología , Bazo/inmunología , Modelos Animales de Enfermedad , Citometría de Flujo , Linfocitos T/inmunologíaRESUMEN
Pneumocystis species are respiratory fungal pathogens that cause life-threatening opportunistic infections in immunocompromised hosts. Pneumocystis typically evade pulmonary innate immunity but are efficiently eradicated by a functional adaptive immune response. FVB/NJ mice are unique in that they display protective alveolar macrophage-dependent innate immunity against Pneumocystis, and remain resistant to infection even in the absence of CD4+ T lymphocyte function. FVB/NJ alveolar macrophages (AMs) were found to display an M2-biased phenotype at baseline, which was potentiated after stimulation with Pneumocystis, suggesting that macrophage polarization may dictate the outcome of the Pneumocystis-macrophage interaction. To determine whether Stat6, a key global regulator of M2 polarization, was required for FVB/NJ innate immunity, FVB Stat6-/- mice were generated. FVB Stat6-deficient AMs were markedly impaired in their ability to polarize to an M2 phenotype when stimulated with Th2 cytokines. However, FVB Stat6-/- mice remained highly resistant to infection, indicating that Stat6 signaling is dispensable for innate FVB/NJ resistance. Despite the loss of Stat6 signaling, primary AMs from FVB Stat6-/- mice maintained baseline expression of M2 markers, and also strongly upregulated M2-associated genes following direct stimulation with Pneumocystis. Additional FVB/NJ knockout strains were generated, but only FVB MerTK-/- mice showed a marginally increased susceptibility to Pneumocystis infection. Together, these findings demonstrate that effective FVB/NJ innate immunity against Pneumocystis does not require Stat6 signaling and suggest that alternative pathways regulate M2 bias and macrophage-mediated innate resistance in FVB/NJ mice.
Asunto(s)
Inmunidad Innata , Macrófagos Alveolares , Pneumocystis , Factor de Transcripción STAT6 , Animales , Factor de Transcripción STAT6/metabolismo , Factor de Transcripción STAT6/genética , Ratones , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/microbiología , Pneumocystis/inmunología , Ratones Noqueados , Infecciones por Pneumocystis/inmunología , Infecciones por Pneumocystis/microbiología , Neumonía por Pneumocystis/inmunología , Neumonía por Pneumocystis/microbiología , Transducción de Señal/inmunología , Citocinas/metabolismo , Activación de Macrófagos/inmunologíaRESUMEN
BACKGROUND: This meta-analysis examines the comparative diagnostic performance of polymerase chain reaction (PCR) for the diagnosis of Pneumocystis pneumonia (PCP) on different respiratory tract samples, in both human immunodeficiency virus (HIV) and non-HIV populations. METHODS: A total of 55 articles met inclusion criteria, including 11 434 PCR assays on respiratory specimens from 7835 patients at risk of PCP. QUADAS-2 tool indicated low risk of bias across all studies. Using a bivariate and random-effects meta-regression analysis, the diagnostic performance of PCR against the European Organisation for Research and Treatment of Cancer-Mycoses Study Group definition of proven PCP was examined. RESULTS: Quantitative PCR (qPCR) on bronchoalveolar lavage fluid provided the highest pooled sensitivity of 98.7% (95% confidence interval [CI], 96.8%-99.5%), adequate specificity of 89.3% (95% CI, 84.4%-92.7%), negative likelihood ratio (LR-) of 0.014, and positive likelihood ratio (LR+) of 9.19. qPCR on induced sputum provided similarly high sensitivity of 99.0% (95% CI, 94.4%-99.3%) but a reduced specificity of 81.5% (95% CI, 72.1%-88.3%), LR- of 0.024, and LR+ of 5.30. qPCR on upper respiratory tract samples provided lower sensitivity of 89.2% (95% CI, 71.0%-96.5%), high specificity of 90.5% (95% CI, 80.9%-95.5%), LR- of 0.120, and LR+ of 9.34. There was no significant difference in sensitivity and specificity of PCR according to HIV status of patients. CONCLUSIONS: On deeper respiratory tract specimens, PCR negativity can be used to confidently exclude PCP, but PCR positivity will likely require clinical interpretation to distinguish between colonization and active infection, partially dependent on the strength of the PCR signal (indicative of fungal burden), the specimen type, and patient population tested.
Asunto(s)
Líquido del Lavado Bronquioalveolar , Huésped Inmunocomprometido , Neumonía por Pneumocystis , Sensibilidad y Especificidad , Neumonía por Pneumocystis/diagnóstico , Neumonía por Pneumocystis/microbiología , Humanos , Líquido del Lavado Bronquioalveolar/microbiología , Reacción en Cadena de la Polimerasa/métodos , Esputo/microbiología , Sistema Respiratorio/microbiología , Pneumocystis carinii/genética , Pneumocystis carinii/aislamiento & purificación , Infecciones por VIH/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodosRESUMEN
Pneumocystis jirovecii pneumonia is an opportunistic infection that affects HIV-infected and immunocompromised persons and rarely affects immunocompetent patients. However, after the advent of the COVID-19 pandemic, some COVID-19 patients without immunocompromise or HIV were infected with P. jirovecii. Clinical manifestations were atypical, easily misdiagnosed, and rapidly progressive, and the prognosis was poor.
Asunto(s)
COVID-19 , Coinfección , Pneumocystis carinii , Neumonía por Pneumocystis , SARS-CoV-2 , Humanos , Persona de Mediana Edad , COVID-19/complicaciones , Inmunocompetencia , Huésped Inmunocomprometido , Neumonía por Pneumocystis/complicaciones , Neumonía por Pneumocystis/diagnósticoRESUMEN
BACKGROUND: Patients with relapsed/refractory multiple myeloma are at increased risk of infection. Infections during treatment with teclistamab, the first B-cell maturation antigen-directed bispecific antibody approved for triple-class-exposed relapsed/refractory multiple myeloma, was examined in the phase 1/2 MajesTEC-1 study. METHODS: Patients (N = 165) received subcutaneous teclistamab 1.5 mg/kg weekly after a step-up dosing schedule (0.06 mg/kg and 0.3 mg/kg, each separated by 2-4 days). Patients were monitored frequently for infections; prophylaxis and management were per institutional guidelines. RESULTS: At a median follow-up of 22.8 months (range, 0.3-33.6), infections were reported in 132 patients (80.0%). Grade 3/4 infections occurred in 91 patients (55.2%), including COVID-19 (21.2%), respiratory infections (19.4%), Pneumocystis jirovecii pneumonia (4.2%), viral infections (4.2%), and gastrointestinal infections (1.2%). Twenty-one patients died from infections (18 from COVID-19). Median time to first onset of any-grade and grade 3 to 5 infections was 1.7 and 4.2 months, respectively. Overall, 70.9% of patients had ≥1 postbaseline immunoglobulin G (IgG) level <400 mg/dL; median time to IgG <400 mg/dL was 1.2 months (range, 0.2-19.8) and 46.1% received ≥1 dose of IgG replacement. Grade 3/4 neutropenia occurred in 65.5% of patients (median time to grade ≥3 neutropenia/febrile neutropenia was 2.3 months [range, 0-18.1]). CONCLUSION: Based on the infection profile of B-cell maturation antigen-targeted bispecific antibodies such as teclistamab, it is recommended that clinicians and patients remain vigilant for a range of infection types throughout treatment to facilitate prompt intervention. Appropriate screening, prophylaxis, and management of infections, hypogammaglobulinemia, and neutropenia are important. CLINICAL TRIAL REGISTRATION: NCT03145181/NCT04557098 (ClinicalTrials.gov) PLAIN LANGUAGE SUMMARY: Before starting teclistamab, patients should be up to date with vaccinations (including COVID-19) and screened for hepatitis B and C and HIV. Teclistamab should not be given to patients with any active infections. Prophylactic antimicrobials should be administered per institutional guidelines. Prophylaxis for Pneumocystis jirovecii pneumonia and herpes simplex/varicella zoster virus is recommended during teclistamab treatment. Close monitoring of infections and immunoglobulin G (IgG) levels should continue throughout teclistamab treatment. IgG replacement (administered every 3-6 weeks) should be used to maintain IgG ≥400 mg/dL. Growth factors should be considered for grade ≥3 neutropenia with infection/fever and grade 4 neutropenia.
Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , COVID-19 , Mieloma Múltiple , Neutropenia , Neumonía por Pneumocystis , Humanos , Mieloma Múltiple/tratamiento farmacológico , Incidencia , Antígeno de Maduración de Linfocitos B/uso terapéutico , Anticuerpos Biespecíficos/efectos adversos , Neumonía por Pneumocystis/tratamiento farmacológico , Antineoplásicos/uso terapéutico , COVID-19/epidemiología , Inmunoglobulina G/uso terapéuticoRESUMEN
Solid organ transplant recipients (SOTRs) frequently receive adjunctive glucocorticoid therapy (AGT) for Pneumocystis jirovecii pneumonia (PJP). This multicenter cohort of SOTRs with PJP admitted to 20 transplant centers in Canada, the United States, Europe, and Australia, was examined for whether AGT was associated with a lower rate of all-cause intensive care unit (ICU) admission, 90-day death, or a composite outcome (ICU admission or death). Of 172 SOTRs with PJP (median [IQR] age: 60 (51.5-67.0) years; 58 female [33.7%]), the ICU admission and death rates were 43.4%, and 20.8%, respectively. AGT was not associated with a reduced risk of ICU admission (adjusted odds ratio [aOR] [95% CI]: 0.49 [0.21-1.12]), death (aOR [95% CI]: 0.80 [0.30-2.17]), or the composite outcome (aOR [95% CI]: 0.97 [0.71-1.31]) in the propensity score-adjusted analysis. AGT was not significantly associated with at least 1 unit of the respiratory portion of the Sequential Organ Failure Assessment score improvement by day 5 (12/37 [32.4%] vs 39/111 [35.1%]; P = .78). We did not observe significant associations between AGT and ICU admission or death in SOTRs with PJP. Our findings should prompt a reevaluation of routine AGT administration in posttransplant PJP treatment and highlight the need for interventional studies.
Asunto(s)
Trasplante de Órganos , Pneumocystis carinii , Neumonía por Pneumocystis , Femenino , Humanos , Persona de Mediana Edad , Europa (Continente) , Glucocorticoides/uso terapéutico , Trasplante de Órganos/efectos adversos , Neumonía por Pneumocystis/tratamiento farmacológico , Neumonía por Pneumocystis/etiología , Estudios Retrospectivos , Receptores de Trasplantes , Masculino , AncianoRESUMEN
Pneumocystis jirovecii, the fungus that causes Pneumocystis jirovecii pneumonia (PJP), is a leading cause of morbidity and mortality in immunocompromised individuals. We have previously shown that lung epithelial cells can bind Pneumocystis spp. ß-glucans via the EphA2 receptor, resulting in activation and release of proinflammatory cytokines. Herein, we show that in vivo Pneumocystis spp. ß-glucans activation of the inflammatory signaling cascade in macrophages can be pharmacodynamically inhibited with the EphA2 receptor small-molecule inhibitor ALW-II-41-27. In vitro, when ALW-II-41-27 is administrated via intraperitoneal to mice prior to the administration of highly proinflammatory Saccharomyces cerevisiae ß-glucans in the lung, a significant reduction in TNF-alpha release was noted in the ALW-II-41-27 pre-treated group. Taken together, our data suggest that targeting host lung macrophage activation via EphA2 receptor-fungal ß-glucans interactions with ALW-II-41-27 or other EphA2 receptor kinase targeting inhibitors might be an attractive and viable strategy to reduce detrimental lung inflammation associated with PJP.
Asunto(s)
Benzamidas , Niacinamida/análogos & derivados , Pneumocystis carinii , Pneumocystis , Neumonía por Pneumocystis , Receptor EphA2 , beta-Glucanos , Ratones , Animales , beta-Glucanos/metabolismo , Proteínas Tirosina Quinasas Receptoras , Neumonía por Pneumocystis/microbiología , Macrófagos/microbiología , Huésped InmunocomprometidoRESUMEN
Pneumocystis cyst life forms contain abundant ß-glucan carbohydrates, synthesized using ß-1,3 and ß-1,6 glucan synthase enzymes and the donor uridine diphosphate (UDP)-glucose. In yeast, phosphoglucomutase (PGM) plays a crucial role in carbohydrate metabolism by interconverting glucose 1-phosphate and glucose 6-phosphate, a vital step in UDP pools for ß-glucan cell wall formation. This pathway has not yet been defined in Pneumocystis. Herein, we surveyed the Pneumocystis jirovecii and Pneumocystis murina genomes, which predicted a homolog of the Saccharomyces cerevisiae major PGM enzyme. Furthermore, we show that PjPgm2p and PmPgm2p function similarly to the yeast counterpart. When both Pneumocystis pgm2 homologs are heterologously expressed in S. cerevisiae pgm2Δ cells, both genes can restore growth and sedimentation rates to wild-type levels. Additionally, we demonstrate that yeast pgm2Δ cell lysates expressing the two Pneumocystis pgm2 transcripts individually can restore PGM activities significantly altered in the yeast pgm2Δ strain. The addition of lithium, a competitive inhibitor of yeast PGM activity, significantly reduces PGM activity. Next, we tested the effects of lithium on P. murina viability ex vivo and found the compound displays significant anti-Pneumocystis activity. Finally, we demonstrate that a para-aryl derivative (ISFP10) with known inhibitory activity against the Aspergillus fumigatus PGM protein and exhibiting 50-fold selectivity over the human PGM enzyme homolog can also significantly reduce Pmpgm2 activity in vitro. Collectively, our data genetically and functionally validate phosphoglucomutases in both P. jirovecii and P. murina and suggest the potential of this protein as a selective therapeutic target for individuals with Pneumocystis pneumonia.
Asunto(s)
Pneumocystis carinii , Pneumocystis , Neumonía por Pneumocystis , beta-Glucanos , Humanos , Pneumocystis carinii/genética , Neumonía por Pneumocystis/tratamiento farmacológico , Fosfoglucomutasa/genética , Fosfoglucomutasa/metabolismo , Fosfoglucomutasa/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Litio/metabolismo , Litio/farmacología , Pneumocystis/genética , beta-Glucanos/metabolismo , Fosfatos/farmacología , Glucosa/metabolismo , Uridina Difosfato/metabolismo , Uridina Difosfato/farmacologíaRESUMEN
Pneumocystis jirovecii can cause life-threatening pneumonia (PjP), and patients with haematological malignancies are at high risk of this infection. Prophylactic measures have significantly decreased morbidity and mortality, but there is a paucity of contemporary data on the incidence and clinical course of PjP in well-defined and homogenous patient populations, such as children suffering from acute lymphoblastic leukaemia (ALL). In the multi-international trial AIEOP-BFM ALL2009, PjP was diagnosed in six children (incidence 1/1000) and was associated with insufficient prophylaxis in five of them. Although none of the patients died of PjP, the long-term impact of the infection is unclear.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Pneumocystis carinii , Neumonía por Pneumocystis , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Niño , Masculino , Femenino , Preescolar , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Adolescente , IncidenciaRESUMEN
Pneumocystis jirovecii pneumonia (PJP) is a serious and sometimes fatal infection occurring in immunocompromised individuals. High-risk patients include those with low CD4 counts due to human immunodeficiency virus infection and transplant recipients. The incidence of PJP is increasing, and rapid detection of PJP is needed to effectively target treatment and improve patient outcomes. A common method used is an immunofluorescent assay (IFA), which has limitations, including labor costs, low sensitivity, and requirement for expert interpretation. This study evaluates the performance of the DiaSorin Molecular Pneumocystis jirovecii analyte-specific reagent (ASR) in a laboratory-developed test (LDT) for the direct detection of P. jirovecii DNA without prior nucleic acid extraction. Respiratory samples (n = 135) previously tested by IFA from 111 patients were included. Using a composite standard of in-house IFA and reference lab PJP PCR, the percent positive agreement for the LDT using the DiaSorin ASR was 97.8% (90/92). The negative percent agreement was 97.7% (42/43). The lower limit of detection of the assay was determined to be 1,200 copies/mL in bronchoalveolar lavage fluid. Analytical specificity was assessed using cultures of oropharyngeal flora and common respiratory bacterial and fungal pathogens. No cross-reactivity was observed. Our study suggests that the DiaSorin Pneumocystis ASR accurately detects P. jirovecii DNA and demonstrates improved sensitivity compared to the IFA method. IMPORTANCE: Our study is unique compared to other previously published studies on the DiaSorin analyte-specific reagent (ASR) because we focused on microbiological diagnostic methods commonly used (immunofluorescent assay) as opposed to pathology findings or reference PCR. In addition, in our materials and methods, we describe the protocol for the use of the DiaSorin ASR as a singleplex assay, which will allow other users to evaluate the ASR for clinical use in their lab.
Asunto(s)
Pneumocystis carinii , Neumonía por Pneumocystis , Humanos , Pneumocystis carinii/genética , Indicadores y Reactivos , Sensibilidad y Especificidad , Neumonía por Pneumocystis/diagnóstico , Neumonía por Pneumocystis/microbiología , Líquido del Lavado Bronquioalveolar/microbiología , Huésped Inmunocomprometido , ADNRESUMEN
PURPOSE OF REVIEW: This review highlights the epidemiology of Pneumocystis jirovecii pneumonia in solid organ transplant recipients, advancements in the diagnostic landscape, and updates in treatment and prevention. RECENT FINDINGS: The increasing use of immune-depleting agents in the context of solid organ transplantation has given rise to P. jirovecii pneumonia in this population. The use of prophylaxis has dramatically reduced risk of infection; however, late-onset infections occur after cessation of prophylaxis and in the setting of lymphopenia, advancing patient age, acute allograft rejection, and cytomegalovirus infection. Diagnosis requires respiratory specimens, with PCR detection of Pneumocystis replacing traditional staining methods. Quantitative PCR may be a useful adjunct to differentiate between infection and colonization. Metagenomic next-generation sequencing is gaining attention as a noninvasive diagnostic tool. Trimethoprim-sulfamethoxazole remains the drug of choice for treatment and prevention of Pneumocystis pneumonia. Novel antifungal agents are under investigation. SUMMARY: P. jirovecii is a fungal opportunistic pathogen that remains a cause of significant morbidity and mortality in solid organ transplant recipients. Early detection and timely treatment remain the pillars of management.
Asunto(s)
Trasplante de Órganos , Pneumocystis carinii , Neumonía por Pneumocystis , Humanos , Neumonía por Pneumocystis/diagnóstico , Neumonía por Pneumocystis/tratamiento farmacológico , Neumonía por Pneumocystis/epidemiología , Combinación Trimetoprim y Sulfametoxazol , Trasplante de Órganos/efectos adversos , Trasplante Homólogo/efectos adversos , Receptores de TrasplantesRESUMEN
OBJECTIVES: Life-threatening antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) with rapidly progressive glomerulonephritis (RPGN) and/or alveolar haemorrhage (AH) has a poor prognosis. Rituximab (RTX) is as effective as cyclophosphamide (CY) in remission induction therapy; however, the effectiveness and safety of RTX have not been established in life-threatening AAV. This study aimed to investigate the short-term effectiveness and safety of RTX in life-threatening AAV with RPGN and/or AH. METHODS: Between April 2018 and March 2020, cases treated with systemic glucocorticoids and RTX or intravenous CY (IVCY) was extracted from a Japanese nationwide inpatient database. Effectiveness was evaluated by in-hospital mortality and severe renal dysfunction requiring haemodialysis (HD) at discharge. Safety was evaluated by the in-hospital incidence of infections. The propensity score (PS) for RTX was estimated. Multivariable Cox and logistic regression with adjustment for PS were conducted to estimate the association of RTX with outcomes. RESULTS: From 16 001 612 hospitalised records, 687 life-threatening AAV cases were extracted. No significant difference in in-hospital mortality (adjusted HR 1.06; 95% CI 0.62 to 1.80) was found between the groups. Although the RTX group had a lower risk of fungal infections (adjusted OR (aOR) 0.45; 95% CI 0.23 to 0.84) and pneumocystis pneumonia (aOR 0.58; 95% CI 0.32 to 1.00), they might have an increased risk of severe renal dysfunction requiring HD at discharge (aOR 2.58; 95% CI 1.02 to 6.91). CONCLUSIONS: In life-threatening AAV, RTX has similar short-term effectiveness on mortality to IVCY. Although RTX might have a lower risk of fungal infections and pneumocystis pneumonia, the short-term renal prognosis might be inferior to IVCY.
Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Enfermedades Renales , Neumonía por Pneumocystis , Humanos , Rituximab/efectos adversos , Neumonía por Pneumocystis/inducido químicamente , Puntaje de Propensión , Resultado del Tratamiento , Ciclofosfamida/efectos adversos , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/tratamiento farmacológico , Inducción de RemisiónRESUMEN
Pneumocystis jirovecii is a prevalent opportunistic fungal pathogen that can lead to life-threatening Pneumocystis pneumonia in immunocompromised individuals. Given that timely and accurate diagnosis is essential for initiating prompt treatment and enhancing patient outcomes, it is vital to develop a rapid, simple, and sensitive method for P. jirovecii detection. Herein, we exploited a novel detection method for P. jirovecii by combining recombinase polymerase amplification (RPA) of nucleic acids isothermal amplification and the trans cleavage activity of Cas12a. The factors influencing the efficiency of RPA and Cas12a-mediated trans cleavage reaction, such as RPA primer, crRNA, the ratio of crRNA to Cas12a and ssDNA reporter concentration, were optimized. Our RPA-Cas12a-based fluorescent assay can be completed within 30-40 min, comprising a 25-30 min RPA reaction and a 5-10 min trans cleavage reaction. It can achieve a lower detection threshold of 0.5 copies/µL of target DNA with high specificity. Moreover, our RPA-Cas12a-based fluorescent method was examined using 30 artificial samples and demonstrated high accuracy with a diagnostic accuracy of 93.33%. In conclusion, a novel, rapid, sensitive, and cost-effective RPA-Cas12a-based detection method was developed and demonstrates significant potential for on-site detection of P. jirovecii in resource-limited settings.
Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Pneumocystis carinii , Sensibilidad y Especificidad , Pneumocystis carinii/genética , Pneumocystis carinii/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Neumonía por Pneumocystis/diagnóstico , Neumonía por Pneumocystis/microbiología , Técnicas de Diagnóstico Molecular/métodos , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Proteínas Asociadas a CRISPR/genética , ADN de Hongos/genética , Recombinasas/metabolismo , Recombinasas/genética , Proteínas BacterianasRESUMEN
BACKGROUND: Increasing evidence revealed that lung microbiota dysbiosis was associated with pulmonary infection in lung transplant recipients (LTRs). Pneumocystis jirovecii (P. jirovecii) is an opportunistic fungal pathogen that frequently causes lethal pneumonia in LTRs. However, the lung microbiota in LTRs with P. jirovecii pneumonia (PJP) remains unknow. METHODS: In this prospective observational study, we performed metagenomic next-generation sequencing (mNGS) on 72 bronchoalveolar lavage fluid (BALF) samples from 61 LTRs (20 with PJP, 22 with PJC, 19 time-matched stable LTRs, and 11 from LTRs after PJP recovery). We compared the lung microbiota composition of LTRs with and without P. jirovecii, and analyzed the related clinical variables. RESULTS: BALFs collected at the episode of PJP showed a more discrete distribution with a lower species diversity, and microbiota composition differed significantly compared to P. jirovecii colonization (PJC) and control group. Human gammaherpesvirus 4, Phreatobacter oligotrophus, and Pseudomonas balearica were the differential microbiota species between the PJP and the other two groups. The network analysis revealed that most species had a positive correlation, while P. jirovecii was correlated negatively with 10 species including Acinetobacter venetianus, Pseudomonas guariconensis, Paracandidimonas soli, Acinetobacter colistiniresistens, and Castellaniella defragrans, which were enriched in the control group. The microbiota composition and diversity of BALF after PJP recovery were also different from the PJP and control groups, while the main components of the PJP recovery similar to control group. Clinical variables including age, creatinine, total protein, albumin, IgG, neutrophil, lymphocyte, CD3+CD45+, CD3+CD4+ and CD3+CD8+ T cells were deeply implicated in the alterations of lung microbiota in LTRs. CONCLUSIONS: This study suggests that LTRs with PJP had altered lung microbiota compared to PJC, control, and after recovery groups. Furthermore, lung microbiota is related to age, renal function, nutritional and immune status in LTRs.
Asunto(s)
Microbiota , Pneumocystis carinii , Neumonía por Pneumocystis , Humanos , Neumonía por Pneumocystis/diagnóstico , Neumonía por Pneumocystis/complicaciones , Receptores de Trasplantes , Linfocitos T CD8-positivos , Pneumocystis carinii/genética , PulmónRESUMEN
BACKGROUND: Pneumocystis pneumonia (PCP) is a life-threatening opportunistic fungal infection with a high mortality rate in immunocompromised patients, ranging from 20 to 80%. However, current understanding of the variation in host immune response against Pneumocystis across different timepoints is limited. METHODS: In this study, we conducted a time-resolved single-cell RNA sequencing analysis of CD45+ cells sorted from lung tissues of mice infected with Pneumocystis. The dynamically changes of the number, transcriptome and interaction of multiply immune cell subsets in the process of Pneumocystis pneumonia were identified according to bioinformatic analysis. Then, the accumulation of Trem2hi interstitial macrophages after Pneumocystis infection was verified by flow cytometry and immunofluorescence. We also investigate the role of Trem2 in resolving the Pneumocystis infection by depletion of Trem2 in mouse models. RESULTS: Our results characterized the CD45+ cell composition of lung in mice infected with Pneumocystis from 0 to 5 weeks, which revealed a dramatic reconstitution of myeloid compartments and an emergence of PCP-associated macrophage (PAM) following Pneumocystis infection. PAM was marked by the high expression of Trem2. We also predicted that PAMs were differentiated from Ly6C+ monocytes and interacted with effector CD4+ T cell subsets via multiple ligand and receptor pairs. Furthermore, we determine the surface markers of PAMs and validated the presence and expansion of Trem2hi interstitial macrophages in PCP by flow cytometry. PAMs secreted abundant pro-inflammation cytokines, including IL-6, TNF-α, GM-CSF, and IP-10. Moreover, PAMs inhibited the proliferation of T cells, and depletion of Trem2 in mouse lead to reduced fungal burden and decreased lung injury in PCP. CONCLUSION: Our study delineated the dynamic transcriptional changes in immune cells and suggests a role for PAMs in PCP, providing a framework for further investigation into PCP's cellular and molecular basis, which could provide a resource for further discovery of novel therapeutic targets.
Asunto(s)
Glicoproteínas de Membrana , Neumonía por Pneumocystis , Receptores Inmunológicos , Animales , Ratones , Inmunidad , Inflamación/metabolismo , Pulmón/microbiología , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neumonía por Pneumocystis/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismoRESUMEN
OBJECTIVE: To evaluate the risk and protective factors of serious infection (SI) in patients with systemic lupus erythematosus (SLE) within 180 days of rituximab (RTX) treatment. METHODS: Patients with SLE treated with RTX were analyzed. SI was defined as any infectious disease requiring hospitalization. The clinical characteristics, laboratory profiles, medications, and incidence rate (IR) are presented. Multivariate Cox proportional hazards models and Kaplan-Meier analysis for risk factors of SI were performed. RESULTS: A total of 174 patients with SLE receiving RTX treatment were enrolled. The overall IR of SIs was 51.0/100 patient-years (PYs). Pneumonia (30.4/100 PYs), followed by soft tissue infections, intra-abdominal infections, and Pneumocystis jiroveci pneumonia (all 6.1/100 PYs) were the leading types of SIs. Twelve patients died during the 180-day follow-up (crude mortality rate: 14.6/100 PYs). Chronic kidney disease (CKD), defined as an estimated glomerular filtration rate < 60 mL/min/1.73 m2 (hazard ratio [HR] 2.88, 95% CI 1.30-6.38), and a background prednisolone (PSL) equivalent dosage ≥ 15 mg/day (HR 3.50, 95% CI 1.57-7.78) were risk factors for SIs among all patients with SLE. Kaplan-Meier analysis confirmed the risk of SI for patients with SLE with CKD and a background PSL equivalent dosage ≥ 15 mg/day (log-rank P = 0.001 and 0.02, respectively). Hydroxychloroquine (HCQ) reduced the risk of SIs in patients with SLE (HR 0.35, 95% CI 0.15-0.82; log-rank P = 0.003). CONCLUSION: SI was prevalent in patients with SLE after RTX treatment. Patients with SLE with CKD and high-dose glucocorticoid use required constant vigilance. HCQ may reduce the risk of SI among patients with SLE administered RTX.
Asunto(s)
Lupus Eritematoso Sistémico , Neumonía por Pneumocystis , Insuficiencia Renal Crónica , Humanos , Rituximab/efectos adversos , Incidencia , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/epidemiología , Hidroxicloroquina/uso terapéutico , Factores de Riesgo , Prednisolona/uso terapéutico , Neumonía por Pneumocystis/epidemiologíaRESUMEN
Patients with multiple myeloma (MM) are at high risk for infections, including opportunistic infections such as Pneumocystis jirovecii pneumonia (PJP). We conducted a retrospective analysis of patients with MM developing PJP over a 6-year period between January 2016 and December 2021 at the University Hospital of Würzburg by screening cases of microbiologically documented PJP. A total of 201 positive results for P. jirovecii in respiratory specimens were retrospectively retrieved through our microbiology database. Of these cases, 13 patients with MM fulfilled the definition of probable PJP according to EORTC fungal disease definitions. We observed two peaks in PJP incidence, one after stem cell transplantation during first-line treatment (n = 5) and the other in heavily pretreated patients with six or more prior lines of therapy (n = 6). There was high morbidity with nine (69%) patients admitted to the ICU, seven of whom (78%) required mechanical ventilation, and high mortality (62%, n = 8). Notably, only two of the 13 patients (15%) had received PJP prophylaxis. The main reason for discontinuation of prophylaxis with trimethoprim-sulfamethoxazole was grade IV neutropenia. The observed morbidity and mortality of PJP in MM patients are significant and even higher than reported for patients with other hematologic malignancies. According to most current guidelines, the use of prophylaxis would have been clearly recommended in no more than three (23%) of the 13 patients. This illustrates the need to critically reconsider the indications for PJP prophylaxis, which remain incompletely defined.