Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.887
Filtrar
Más filtros

Intervalo de año de publicación
1.
RNA ; 30(4): 448-462, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38282416

RESUMEN

This report describes a chemiluminescence-based detection method for RNAs on northern blots, designated Chemi-Northern. This approach builds on the simplicity and versatility of northern blotting, while dispensing of the need for expensive and cumbersome radioactivity. RNAs are first separated by denaturing gel electrophoresis, transferred to a nylon membrane, and then hybridized to a biotinylated RNA or DNA antisense probe. Streptavidin conjugated with horseradish peroxidase and enhanced chemiluminescence substrate are then used to detect the probe bound to the target RNA. Our results demonstrate the versatility of this method in detecting natural and engineered RNAs expressed in cells, including messenger and noncoding RNAs. We show that Chemi-Northern detection is sensitive and fast, detecting attomole amounts of RNA in as little as 1 sec, with high signal intensity and low background. The dynamic response displays excellent linearity. Using Chemi-Northern, we measure the reproducible, statistically significant reduction of mRNA levels by human sequence-specific RNA-binding proteins, PUM1 and PUM2. Additionally, we measure the interaction of the poly(A) binding protein, PABPC1, with polyadenylated mRNA. Thus, the Chemi-Northern method provides a versatile, simple, and cost-effective method to enable researchers to analyze expression, processing, binding, and decay of RNAs.


Asunto(s)
Proteínas de Unión al ARN , ARN , Humanos , Northern Blotting , ARN Mensajero/metabolismo , ARN/química , Sondas de Oligonucleótidos , Secuencia de Bases , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Sondas de ADN
2.
Plant J ; 118(1): 263-276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38078656

RESUMEN

Small RNAs play important roles in regulation of plant development and response to various stresses. Northern blot is an important technique in small RNA research. Isotope- and biotin- (or digoxigenin) labeled probes are frequently used in small RNA northern blot. However, isotope-based probe is limited by strict environmental regulation and availability in many places in the world while biotin-based probe is usually suffered from low sensitivity. In this study, we developed a T4 DNA polymerase-based method for incorporation of a cluster of 33 biotin-labeled C in small RNA probe (T4BC33 probe). T4BC33 probe reaches similar sensitivity as 32P-labeled probe in dot blot and small RNA northern blot experiments. Addition of locked nucleic acids in T4BC33 probe further enhanced its sensitivity in detecting low-abundance miRNAs. With newly developed northern blot method, expression of miR6027 and miR6149 family members was validated. Northern blot analysis also confirmed the successful application of virus-based miRNA silencing in pepper, knocking down accumulation of Can-miR6027a and Can-miR6149L. Importantly, further analysis showed that knocking-down Can-miR6027a led to upregulation of a nucleotide binding-leucine rich repeat domain protein coding gene (CaRLb1) and increased immunity against Phytophthora capsici in pepper leaves. Our study provided a highly sensitive and convenient method for sRNA research and identified new targets for genetic improvement of pepper immunity against P. capsici.


Asunto(s)
Capsicum , MicroARNs , MicroARNs/genética , Biotina , Northern Blotting , Isótopos , Capsicum/genética , Enfermedades de las Plantas/genética
3.
RNA ; 28(3): 418-432, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34930808

RESUMEN

The 22 mitochondrial and ∼45 cytosolic tRNAs in human cells contain several dozen different post-transcriptional modified nucleotides such that each carries a unique constellation that complements its function. Many tRNA modifications are linked to altered gene expression, and deficiencies due to mutations in tRNA modification enzymes (TMEs) are responsible for numerous diseases. Easily accessible methods to detect tRNA hypomodifications can facilitate progress in advancing such molecular studies. Our laboratory developed a northern blot method that can quantify relative levels of base modifications on multiple specific tRNAs ∼10 yr ago, which has been used to characterize four different TME deficiencies and is likely further extendable. The assay method depends on differential annealing efficiency of a DNA-oligo probe to the modified versus unmodified tRNA. The signal of this probe is then normalized by a second probe elsewhere on the same tRNA. This positive hybridization in the absence of modification (PHAM) assay has proven useful for i6A37, t6A37, m3C32, and m2,2G26 in multiple laboratories. Yet, over the years we have observed idiosyncratic inconsistency and variability in the assay. Here we document these for some tRNAs and probes and illustrate principles and practices for improved reliability and uniformity in performance. We provide an overview of the method and illustrate benefits of the improved conditions. This is followed by data that demonstrate quantitative validation of PHAM using a TME deletion control, and that nearby modifications can falsely alter the calculated apparent modification efficiency. Finally, we include a calculator tool for matching probe and hybridization conditions.


Asunto(s)
Northern Blotting/métodos , ARN de Transferencia/química , Células HEK293 , Humanos , Metilación , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , Levaduras
4.
Electrophoresis ; 45(17-18): 1546-1554, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38785136

RESUMEN

Double-stranded RNA is an immunogenic byproduct present in RNA synthesized with in vitro transcription. dsRNA byproducts engage virus-sensing innate immunity receptors and cause inflammation. Removing dsRNA from in vitro transcribed messenger RNA (mRNA) reduces immunogenicity and improves protein translation. Levels of dsRNA are typically 0.1%-0.5% of total transcribed RNA. Because they form such a minor fraction of the total RNA in transcription reactions, it is difficult to confidently identify discrete bands on agarose gels that correspond to the dsRNA byproducts. Thus, the sizes of dsRNA byproducts are largely unknown. Total levels of dsRNA are typically assayed with dsRNA-specific antibodies in ELISA and immuno dot-blot assays. Here we report a dsRNA-specific immuno-northern blot technique that provides a clear picture of the dsRNA size distributions in transcribed RNA. This technique could complement existing dsRNA analytical methods in studies of dsRNA byproduct synthesis, dsRNA removal, and characterization of therapeutic RNA drug substances.


Asunto(s)
Northern Blotting , ARN Bicatenario , Transcripción Genética , ARN Bicatenario/química , ARN Bicatenario/análisis , Northern Blotting/métodos , ARN Mensajero/análisis , ARN Mensajero/genética
5.
Development ; 147(9)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32273274

RESUMEN

MicroRNAs (miRNAs) are short (∼22 nt) single-stranded non-coding RNAs that regulate gene expression at the post-transcriptional level. Over recent years, many studies have extensively characterized the involvement of miRNA-mediated regulation in neurogenesis and brain development. However, a comprehensive catalog of cortical miRNAs expressed in a cell-specific manner in progenitor types of the developing mammalian cortex is still missing. Overcoming this limitation, here we exploited a double reporter mouse line previously validated by our group to allow the identification of the transcriptional signature of neurogenic commitment and provide the field with the complete atlas of miRNA expression in proliferating neural stem cells, neurogenic progenitors and newborn neurons during corticogenesis. By extending the currently known list of miRNAs expressed in the mouse brain by over twofold, our study highlights the power of cell type-specific analyses for the detection of transcripts that would otherwise be diluted out when studying bulk tissues. We further exploited our data by predicting putative miRNAs and validated the power of our approach by providing evidence for the involvement of miR-486 in brain development.


Asunto(s)
MicroARNs/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Animales , Northern Blotting , Biología Computacional/métodos , Electroporación , Femenino , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Neurogénesis/genética , Neurogénesis/fisiología
6.
Cell ; 132(5): 860-74, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18329371

RESUMEN

To explore the role of Dicer-dependent control mechanisms in B lymphocyte development, we ablated this enzyme in early B cell progenitors. This resulted in a developmental block at the pro- to pre-B cell transition. Gene-expression profiling revealed a miR-17 approximately 92 signature in the 3'UTRs of genes upregulated in Dicer-deficient pro-B cells; a top miR-17 approximately 92 target, the proapoptotic molecule Bim, was highly upregulated. Accordingly, B cell development could be partially rescued by ablation of Bim or transgenic expression of the prosurvival protein Bcl-2. This allowed us to assess the impact of Dicer deficiency on the V(D)J recombination program in developing B cells. We found intact Ig gene rearrangements in immunoglobulin heavy (IgH) and kappa chain loci, but increased sterile transcription and usage of D(H) elements of the DSP family in IgH, and increased N sequence addition in Igkappa due to deregulated transcription of the terminal deoxynucleotidyl transferase gene.


Asunto(s)
Diversidad de Anticuerpos , Linfocitos B/citología , Supervivencia Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Regiones no Traducidas 3'/química , Regiones no Traducidas 3'/metabolismo , Animales , Northern Blotting , Perfilación de la Expresión Génica , Reordenamiento Génico de Linfocito B , Inmunoglobulinas/genética , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasa III , Organismos Libres de Patógenos Específicos
7.
Mol Cell ; 58(3): 431-9, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25891074

RESUMEN

Repetitive extragenic palindromic (REP) sequences are highly structured elements found downstream of ∼500 genes in Escherichia coli that result in extensive stem-loop structures in their mRNAs. However, their physiological role has remained elusive. Here, we show that REP sequences can downregulate translation, but only if they are within 15 nt of a termination codon; a spacing of 16 nt has no effect, suggesting that the REP element acts to stall ribosome movement. Ribosome stalling leads to cleavage of the mRNA and induction of the trans-translation process. Using nrdAB as a model, we find that its regulation can be partially reversed by overexpression of RNA helicases and can be fully overcome upon UV stress, emphasizing the importance of this regulatory process. Since 50% of REP-associated genes have these elements within the critical 15 nt, these findings identify a regulatory mechanism with the potential to affect translation from a large number of genes.


Asunto(s)
Proteínas de Escherichia coli/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Northern Blotting , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Genéticos , Estabilidad del ARN , ARN Mensajero/metabolismo , Ribonucleósido Difosfato Reductasa/genética , Ribonucleótido Reductasas/genética
8.
Mol Cell ; 58(3): 393-405, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25891076

RESUMEN

During ribosomal and transfer RNA maturation, external transcribed spacer (ETS) and internal transcribed spacer (ITS) sequences are excised and, as non-functional by-products, are rapidly degraded. However, we report that the 3'ETS of the glyW-cysT-leuZ polycistronic tRNA precursor is highly and specifically enriched by co-purification with at least two different small regulatory RNAs (sRNAs), RyhB and RybB. Both sRNAs are shown to base pair with the same region in the 3'ETS of leuZ (3'ETS(leuZ)). Disrupting the pairing by mutating 3'ETS(leuZ) strongly increased the activity of sRNAs, even under non-inducing conditions. Our results indicate that 3'ETS(leuZ) prevents sRNA-dependent remodeling of tricarboxylic acid (TCA) cycle fluxes and decreases antibiotic sensitivity when sRNAs are transcriptionally repressed. This suggests that 3'ETS(leuZ) functions as a sponge to absorb transcriptional noise from repressed sRNAs. Additional data showing RybB and MicF sRNAs are co-purified with ITS(metZ-metW) and ITS(metW-metV) strongly suggest a wide distribution of this phenomenon.


Asunto(s)
Precursores del ARN/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , ARN de Transferencia/genética , Transcripción Genética , Secuencia de Bases , Northern Blotting , Western Blotting , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Precursores del ARN/química , Precursores del ARN/clasificación , ARN Bacteriano/química , ARN Pequeño no Traducido/química , ARN de Transferencia/química , ARN de Transferencia/clasificación , Análisis de Secuencia de ARN , Homología de Secuencia de Ácido Nucleico , Factor sigma/genética , Factor sigma/metabolismo
9.
BMC Genomics ; 23(1): 66, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35057752

RESUMEN

BACKGROUND: Northern blotting is still used as a gold standard for validation of the data obtained from high-throughput whole transcriptome-based methods. However, its disadvantages of lower sensitivity, labor-intensive operation, and higher quality of RNA required limit its utilization in a routine molecular biology laboratory to monitor gene expression at RNA level. Therefore, it is necessary to optimize the traditional Northern protocol to make the technique more applicable for standard use. RESULTS: In this paper, we report modifications and tips used to improve the traditional Northern protocol for the detection of mRNAs in total RNA. To maximize the retention of specifically bound radiolabeled probes on the blot, posthybridization washes were performed under only with moderate-stringency until the level of radioactivity retained on the filter decreased to 20~50 counts per second, rather than normally under high and low stringency sequentially for scheduled time or under only high stringent condition. Successful detection of the low-expression gene using heterologous DNA probes in 20 µg of total RNA after a two-day exposure suggested an improvement in detection sensitivity. Quantitatively controlled posthybridization washes combined with an ethidium bromide-prestaining RNA procedure to directly visualize prestained RNA bands at any time during electrophoresis or immediately after electrophoresis, which made the progress of the Northern procedure to be monitored and evaluated step by step, thereby making the experiment reliable and controllable. We also report tips used in the modified Northern protocol, including the moderate concentration of formaldehyde in the gel, the accessory capillary setup, and the staining jar placed into an enamel square tray with a lid used for hybridization. Using our modified Northern protocol, eight rounds of rehybridization could be performed on a single blot. The modification made and tips used ensured the efficient proceeding of the experiment and the resulting good performance, but without using special reagents or equipment. CONCLUSIONS: The modified Northern protocol improved detection sensitivity and made the experiment easy, less expensive, reliable, and controllable, and can be employed in a routine molecular biology laboratory to detect low-expressed mRNAs with heterologous DNA probes in total RNA.


Asunto(s)
Formaldehído , ARN , Northern Blotting , Hibridación de Ácido Nucleico , ARN Mensajero/genética
10.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499398

RESUMEN

Tomato spotted wilt virus (TSWV) causes severe viral diseases on many economically important plants of Solanaceae. During the infection process of TSWV, a series of 3'-truncated subgenomic RNAs (sgRNAs) relative to corresponding genomic RNAs were synthesized, which were responsible for the expression of some viral proteins. However, corresponding genomic RNAs (gRNAs) seem to possess the basic elements for expression of these viral proteins. In this study, molecular characteristics of sgRNAs superior to genomic RNAs in viral protein expression were identified. The 3' ends of sgRNAs do not cover the entire intergenic region (IGR) of TSWV genomic RNAs and contain the remarkable A-rich characteristics. In addition, the 3' terminal nucleotides of sgRNAs are conserved among different TSWV isolates. Based on the eIF4E recruitment assay and subsequent northern blot, it is suggested that the TSWV sgRNA, but not gRNA, is capped in vivo; this is why sgRNA is competent for protein expression relative to gRNA. In addition, the 5' and 3' untranslated region (UTR) of sgRNA-Ns can synergistically enhance cap-dependent translation. This study further enriched the understanding of sgRNAs of ambisense RNA viruses.


Asunto(s)
Tospovirus , Tospovirus/genética , ARN Subgenómico , ARN Viral/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Northern Blotting
11.
Curr Issues Mol Biol ; 43(2): 457-484, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206608

RESUMEN

Northern blotting (NB), a gold standard for RNA detection, has lost its charm due to its hands-on nature, need for good quality RNA, and radioactivity. With the emergence of the field of microRNAs (miRNAs), the necessity for sensitive and quantitative NBs has again emerged. Here, we developed highly sensitive yet non-radiolabeled, fast, economical NB, and liquid hybridization (LH) assays without radioactivity or specialized reagents like locked nucleic acid (LNA)- or digoxigenin-labeled probes for mRNAs/small RNAs, especially miRNAs using biotinylated probes. An improvised means of hybridizing oligo probes along with efficient transfer, cross-linking, and signal enhancement techniques was employed. Important caveats of each assay were elaborated upon, especially issues related to probe biotinylation, use of exonuclease, and bioimagers not reported earlier. We demonstrate that, while the NBs were sensitive for mRNAs and small RNAs, our LH protocol could efficiently detect these and miRNAs using less than 10-100 times the total amount of RNA, a sensitivity comparable to radiolabeled probes. Compared to NBs, LH was a faster, more sensitive, and specific approach for mRNA/small RNA/miRNA detection. A comparison of present work with six seminal studies is presented along with detailed protocols for easy reproducibility. Overall, our study provides effective platforms to study large and small RNAs in a sensitive, efficient, and cost-effective manner.


Asunto(s)
Northern Blotting/métodos , MicroARNs/genética , Hibridación de Ácido Nucleico/métodos , ARN Mensajero/genética , Biotina , Sondas de ADN , Digoxigenina
12.
Methods ; 183: 4-12, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31493516

RESUMEN

There is conclusive evidential support for the existence of virus-derived small RNA (vsRNA) in mammals. Two types of vsRNA have been reported from picornaviruses. The first is virus-derived short-interfering RNA (vsiRNA) that is processed from viral double-stranded RNA intermediates during RNA replication. The other is small RNA derived from the highly base-paired single-stranded genomic region, e.g. the internal ribosome entry site (IRES) of picornaviruses. vsiRNA interacts with the Argonaute protein to control viral RNA replication through the process of RNA interference. However, the function of structure-based vsRNA is largely unknown. We previously identified vsRNA1 generated from the enterovirus-A71 (EV-A71) IRES region by the endogenous enzyme Dicer. Exogenous vsRNA1 can inhibit IRES activity both in vivo and in vitro, hence viral replication is inhibited. Here we describe key methods used to characterize vsRNA, including annotation by next-generation sequencing, abundance measurement by Northern blotting, determination of Dicer-dependence by gel-shift assay and in vitro cleavage assay, and the inhibitory effect on IRES activity via in vitro translation assay.


Asunto(s)
Northern Blotting/métodos , Enterovirus Humano A/genética , Genoma Viral , ARN Viral/análisis , Animales , Línea Celular Tumoral , ARN Helicasas DEAD-box , Electroforesis en Gel de Poliacrilamida/métodos , Ensayo de Cambio de Movilidad Electroforética/métodos , Regulación Viral de la Expresión Génica , Humanos , Sitios Internos de Entrada al Ribosoma/genética , Ratones , Interferencia de ARN , ARN Interferente Pequeño , ARN Viral/metabolismo , Ribonucleasa III , Análisis de Secuencia de ARN/métodos , Replicación Viral/genética
13.
Mol Cell ; 51(4): 539-51, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23973377

RESUMEN

Mature ribosomal RNAs (rRNAs) are produced from polycistronic precursors following complex processing. Precursor (pre)-rRNA processing has been extensively characterized in yeast and was assumed to be conserved in humans. We functionally characterized 625 nucleolar proteins in HeLa cells and identified 286 required for processing, including 74 without a yeast homolog. For selected candidates, we demonstrated that pre-rRNA processing defects are conserved in different cell types (including primary cells), defects are not due to activation of a p53-dependent nucleolar tumor surveillance pathway, and they precede cell-cycle arrest and apoptosis. We also investigated the exosome's role in processing internal transcribed spacers (ITSs) and report that 3' end maturation of 18S rRNA involves EXOSC10/Rrp6, a yeast ITS2 processing factor. We conclude that human cells adopt unique strategies and recruit distinct trans-acting factors to carry out essential processing steps, posing fundamental implications for understanding ribosomopathies at the molecular level and developing effective therapeutic agents.


Asunto(s)
Nucléolo Celular/genética , Proteínas Nucleares/metabolismo , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética , Ribosomas/metabolismo , Transactivadores/metabolismo , Apoptosis , Northern Blotting , Puntos de Control del Ciclo Celular , Nucléolo Celular/metabolismo , Células Cultivadas , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Células HCT116 , Células HeLa , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Proteínas Nucleares/genética , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Transactivadores/genética
14.
Mol Cell ; 52(2): 184-92, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24095278

RESUMEN

In cells, tRNAs are synthesized as precursor molecules bearing extra sequences at their 5' and 3' ends. Some tRNAs also contain introns, which, in archaea and eukaryotes, are cleaved by an evolutionarily conserved endonuclease complex that generates fully functional mature tRNAs. In addition, tRNAs undergo numerous posttranscriptional nucleotide chemical modifications. In Trypanosoma brucei, the single intron-containing tRNA (tRNA(Tyr)GUA) is responsible for decoding all tyrosine codons; therefore, intron removal is essential for viability. Using molecular and biochemical approaches, we show the presence of several noncanonical editing events, within the intron of pre-tRNA(Tyr)GUA, involving guanosine-to-adenosine transitions (G to A) and an adenosine-to-uridine transversion (A to U). The RNA editing described here is required for proper processing of the intron, establishing the functional significance of noncanonical editing with implications for tRNA processing in the deeply divergent kinetoplastid lineage and eukaryotes in general.


Asunto(s)
Intrones/genética , Edición de ARN , Empalme del ARN , ARN de Transferencia de Tirosina/genética , Trypanosoma brucei brucei/genética , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Protozoario/genética , ARN Protozoario/metabolismo , ARN de Transferencia de Tirosina/química , ARN de Transferencia de Tirosina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Trypanosoma brucei brucei/metabolismo
15.
Nucleic Acids Res ; 47(7): 3353-3364, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30820533

RESUMEN

While the number of human miRNA candidates continuously increases, only a few of them are completely characterized and experimentally validated. Toward determining the total number of true miRNAs, we employed a combined in silico high- and experimental low-throughput validation strategy. We collected 28 866 human small RNA sequencing data sets containing 363.7 billion sequencing reads and excluded falsely annotated and low quality data. Our high-throughput analysis identified 65% of 24 127 mature miRNA candidates as likely false-positives. Using northern blotting, we experimentally validated miRBase entries and novel miRNA candidates. By exogenous overexpression of 108 precursors that encode 205 mature miRNAs, we confirmed 68.5% of the miRBase entries with the confirmation rate going up to 94.4% for the high-confidence entries and 18.3% of the novel miRNA candidates. Analyzing endogenous miRNAs, we verified the expression of 8 miRNAs in 12 different human cell lines. In total, we extrapolated 2300 true human mature miRNAs, 1115 of which are currently annotated in miRBase V22. The experimentally validated miRNAs will contribute to revising targetomes hypothesized by utilizing falsely annotated miRNAs.


Asunto(s)
Simulación por Computador , MicroARNs/análisis , MicroARNs/genética , Análisis de Secuencia de ARN , Northern Blotting , Línea Celular , Conjuntos de Datos como Asunto , Reacciones Falso Positivas , Humanos , MicroARNs/aislamiento & purificación , Anotación de Secuencia Molecular , Precursores del ARN/análisis , Precursores del ARN/genética , Reproducibilidad de los Resultados
16.
Nucleic Acids Res ; 47(11): 5936-5949, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30997502

RESUMEN

In eukaryotes and archaea, tRNA genes frequently contain introns, which are removed during maturation. However, biological roles of tRNA introns remain elusive. Here, we constructed a complete set of Saccharomyces cerevisiae strains in which the introns were removed from all the synonymous genes encoding 10 different tRNA species. All the intronless strains were viable, but the tRNAPheGAA and tRNATyrGUA intronless strains displayed slow growth, cold sensitivity and defective growth under respiratory conditions, indicating physiological importance of certain tRNA introns. Northern analyses revealed that removal of the introns from genes encoding three tRNAs reduced the amounts of the corresponding mature tRNAs, while it did not affect aminoacylation. Unexpectedly, the tRNALeuCAA intronless strain showed reduced 5.8S rRNA levels and abnormal nucleolar morphology. Because pseudouridine (Ψ) occurs at position 34 of the tRNAIleUAU anticodon in an intron-dependent manner, tRNAIleUAU in the intronless strain lost Ψ34. However, in a portion of tRNAIleUAU population, position 34 was converted into 5-carbamoylmethyluridine (ncm5U), which could reduce decoding fidelity. In summary, our results demonstrate that, while introns are dispensable for cell viability, some introns have diverse roles, such as ensuring proper growth under various conditions and controlling the appropriate anticodon modifications for accurate pairing with the codon.


Asunto(s)
Intrones , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticodón , Northern Blotting , Codón , Genoma Fúngico , Leucina/química , Mutación , Conformación de Ácido Nucleico , Fenotipo , Plásmidos/metabolismo , Seudouridina , ARN/química , Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , ARN Ribosómico 5.8S/metabolismo
17.
Nucleic Acids Res ; 47(14): 7321-7332, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31214713

RESUMEN

AntimiR is an antisense oligonucleotide that has been developed to silence microRNA (miRNA) for the treatment of intractable diseases. Enhancement of its in vivo efficacy and improvement of its toxicity are highly desirable but remain challenging. We here design heteroduplex oligonucleotide (HDO)-antimiR as a new technology comprising an antimiR and its complementary RNA. HDO-antimiR binds targeted miRNA in vivo more efficiently by 12-fold than the parent single-stranded antimiR. HDO-antimiR also produced enhanced phenotypic effects in mice with upregulated expression of miRNA-targeting messenger RNAs. In addition, we demonstrated that the enhanced potency of HDO-antimiR was not explained by its bio-stability or delivery to the targeted cell, but reflected an improved intracellular potency. Our findings provide new insights into biology of miRNA silencing by double-stranded oligonucleotides and support the in vivo potential of this technology based on a new class of for the treatment of miRNA-related diseases.


Asunto(s)
ADN de Cadena Simple/genética , Silenciador del Gen , MicroARNs/genética , Ácidos Nucleicos Heterodúplex/genética , Oligonucleótidos Antisentido/genética , Animales , Northern Blotting , ADN de Cadena Simple/metabolismo , Femenino , Regulación de la Expresión Génica , Riñón/metabolismo , Hígado/metabolismo , Ratones Endogámicos ICR , MicroARNs/metabolismo , Ácidos Nucleicos Heterodúplex/metabolismo , Ácidos Nucleicos Heterodúplex/farmacocinética , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacocinética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Bazo/metabolismo
18.
RNA ; 24(12): 1871-1877, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30201850

RESUMEN

Northern blot analysis detects RNA molecules immobilized on nylon membranes through hybridization with radioactive 32P-labeled DNA or RNA oligonucleotide probes. Alternatively, nonradioactive northern blot relies on chemiluminescent reactions triggered by horseradish peroxidase (HRP) conjugated probes. The use of regulated radioactive material and the complexity of chemiluminescent reactions and detection have hampered the adoption of northern blot techniques by the wider biomedical research community. Here, we describe a sensitive and straightforward nonradioactive northern blot method, which utilizes near-infrared (IR) fluorescent dye-labeled probes (irNorthern). We found that irNorthern has a detection limit of ∼0.05 femtomoles (fmol), which is slightly less sensitive than 32P-Northern. However, we found that the IR dye-labeled probe maintains the sensitivity after multiple usages as well as long-term storage. We also present alternative irNorthern methods using a biotinylated DNA probe, a DNA probe labeled by terminal transferase, or an RNA probe labeled during in vitro transcription. Furthermore, utilization of different IR dyes allows multiplex detection of different RNA species. Therefore, irNorthern represents a more convenient and versatile tool for RNA detection compared to traditional northern blot analysis.


Asunto(s)
Northern Blotting/métodos , Colorantes Fluorescentes/química , Hibridación de Ácido Nucleico/métodos , ARN/aislamiento & purificación , Sondas de ADN/química , ARN/química , Sondas ARN/química
19.
Plant Cell Environ ; 43(7): 1722-1739, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32329086

RESUMEN

Increasing evidences highlight the importance of DEAD-box RNA helicases in plant development and stress responses. In a previous study, we characterized the tomato res mutant (restored cell structure by salinity), showing chlorosis and development alterations that reverted under salt-stress conditions. Map-based cloning demonstrates that RES gene encodes SlDEAD39, a chloroplast-targeted DEAD-box RNA helicase. Constitutive expression of SlDEAD39 complements the res mutation, while the silencing lines had a similar phenotype than res mutant, which is also reverted under salinity. Functional analysis of res mutant proved SlDEAD39 is involved in the in vivo processing of the chloroplast, 23S rRNA, at the hidden break-B site, a feature also supported by in vitro binding experiments of the protein. In addition, our results show that other genes coding for chloroplast-targeted DEAD-box proteins are induced by salt-stress, which might explain the rescue of the res mutant phenotype. Interestingly, salinity restored the phenotype of res adult plants by increasing their sugar content and fruit yield. Together, these results propose an unprecedented role of a DEAD-box RNA helicase in regulating plant development and stress response through the proper ribosome and chloroplast functioning, which, in turn, represents a potential target to improve salt tolerance in tomato crops.


Asunto(s)
ARN Helicasas DEAD-box/fisiología , Proteínas de Plantas/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Northern Blotting , Cloroplastos/metabolismo , ARN Helicasas DEAD-box/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Salino
20.
Plant Cell Environ ; 43(5): 1117-1129, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31834628

RESUMEN

Plant genomes contain two major classes of innate immune receptors to recognize different pathogens. The pattern recognition receptors perceive conserved pathogen-associated molecular patterns and the resistance genes with nucleotide-binding (NB) and leucine-rich repeat (LRR) domains recognize specific pathogen effectors. The precise regulation of resistance genes is important since the unregulated expression of NB-LRR genes can inhibit growth and may result in autoimmunity in the absence of pathogen infection. It was shown that a subset of miRNAs could target NB-LRR genes and act as an important regulator of plant immunity in the absence of pathogens. Plants not only interact with pathogens, but they can also establish symbiotic interactions with microbes. Nitrogen-fixing symbiotic interaction and nodule formation of legumes may also require the suppression of host defence to prevent immune responses. We found that upon symbiotic interactions, miRNAs repressing NB-LRR expression are upregulated in the developing nodules of Medicago truncatula. Furthermore, we show that the suppression of the activity of the NB-LRR genes targeted by these miRNAs is important during nodule development. Our results suggest that the downregulation of NB-LRR resistance genes in the developing nodule produces a suitable niche that facilitates bacterial colonization and the development of an N-fixing nodule.


Asunto(s)
Genes de Plantas/fisiología , Medicago truncatula/metabolismo , MicroARNs/metabolismo , Proteínas NLR/metabolismo , Bacterias Fijadoras de Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Northern Blotting , Regulación de la Expresión Génica de las Plantas/genética , Hibridación in Situ , Medicago truncatula/microbiología , Medicago truncatula/fisiología , MicroARNs/fisiología , Proteínas NLR/fisiología , Proteínas de Plantas/fisiología , ARN de Planta/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Plantones/metabolismo , Plantones/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA